Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(39): e2308006120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725639

RESUMO

Quantum many-body systems are typically endowed with a tensor product structure. A structure they inherited from probability theory, where the probability of two independent events is the product of the probabilities. The tensor product structure of a Hamiltonian thus gives a natural decomposition of the system into independent smaller subsystems. It is interesting to understand whether a given Hamiltonian is compatible with some particular tensor product structure. In particular, we ask, is there a basis in which an arbitrary Hamiltonian has a 2-local form, i.e., it contains only pairwise interactions? Here we show, using analytical and numerical calculations, that a generic Hamiltonian (e.g., a large random matrix) can be approximately written as a linear combination of two-body interaction terms with high precision; that is, the Hamiltonian is 2-local in a carefully chosen basis. Moreover, we show that these Hamiltonians are not fine-tuned, meaning that the spectrum is robust against perturbations of the coupling constants. Finally, by analyzing the adjacency structure of the couplings [Formula: see text], we suggest a possible mechanism for the emergence of geometric locality from quantum chaos.

2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417309

RESUMO

We consider a nonlinear autonomous system of [Formula: see text] degrees of freedom randomly coupled by both relaxational ("gradient") and nonrelaxational ("solenoidal") random interactions. We show that with increased interaction strength, such systems generically undergo an abrupt transition from a trivial phase portrait with a single stable equilibrium into a topologically nontrivial regime of "absolute instability" where equilibria are on average exponentially abundant, but typically, all of them are unstable, unless the dynamics is purely gradient. When interactions increase even further, the stable equilibria eventually become on average exponentially abundant unless the interaction is purely solenoidal. We further calculate the mean proportion of equilibria that have a fixed fraction of unstable directions.

3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431670

RESUMO

The selection of a single molecular handedness, or homochirality across all living matter, is a mystery in the origin of life. Frank's seminal model showed in the '50s how chiral symmetry breaking can occur in nonequilibrium chemical networks. However, an important shortcoming in this classic model is that it considers a small number of species, while there is no reason for the prebiotic system, in which homochirality first appeared, to have had such a simple composition. Furthermore, this model does not provide information on what could have been the size of the molecules involved in this homochiral prebiotic system. Here, we show that large molecular systems are likely to undergo a phase transition toward a homochiral state, as a consequence of the fact that they contain a large number of chiral species. Using chemoinformatics tools, we quantify how abundant chiral species are in the chemical universe of all possible molecules of a given length. Then, we propose that Frank's model should be extended to include a large number of species, in order to possess the transition toward homochirality, as confirmed by numerical simulations. Finally, using random matrix theory, we prove that large nonequilibrium reaction networks possess a generic and robust phase transition toward a homochiral state.

4.
BIT Numer Math ; 64(3): 32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022760

RESUMO

The numerical solution of the generalized eigenvalue problem for a singular matrix pencil is challenging due to the discontinuity of its eigenvalues. Classically, such problems are addressed by first extracting the regular part through the staircase form and then applying a standard solver, such as the QZ algorithm, to that regular part. Recently, several novel approaches have been proposed to transform the singular pencil into a regular pencil by relatively simple randomized modifications. In this work, we analyze three such methods by Hochstenbach, Mehl, and Plestenjak that modify, project, or augment the pencil using random matrices. All three methods rely on the normal rank and do not alter the finite eigenvalues of the original pencil. We show that the eigenvalue condition numbers of the transformed pencils are unlikely to be much larger than the δ -weak eigenvalue condition numbers, introduced by Lotz and Noferini, of the original pencil. This not only indicates favorable numerical stability but also reconfirms that these condition numbers are a reliable criterion for detecting simple finite eigenvalues. We also provide evidence that, from a numerical stability perspective, the use of complex instead of real random matrices is preferable even for real singular matrix pencils and real eigenvalues. As a side result, we provide sharp left tail bounds for a product of two independent random variables distributed with the generalized beta distribution of the first kind or Kumaraswamy distribution.

5.
Entropy (Basel) ; 26(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38785644

RESUMO

Random matrix theory, particularly using matrices akin to the Wishart ensemble, has proven successful in elucidating the thermodynamic characteristics of critical behavior in spin systems across varying interaction ranges. This paper explores the applicability of such methods in investigating critical phenomena and the crossover to tricritical points within the Blume-Capel model. Through an analysis of eigenvalue mean, dispersion, and extrema statistics, we demonstrate the efficacy of these spectral techniques in characterizing critical points in both two and three dimensions. Crucially, we propose a significant modification to this spectral approach, which emerges as a versatile tool for studying critical phenomena. Unlike traditional methods that eschew diagonalization, our method excels in handling short timescales and small system sizes, widening the scope of inquiry into critical behavior.

6.
Entropy (Basel) ; 26(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39056926

RESUMO

We consider a quantum system of large size N and its subsystem of size L, assuming that N is much larger than L, which can also be sufficiently large, i.e., 1≪L≲N. A widely accepted mathematical version of this inequality is the asymptotic regime of successive limits: first the macroscopic limit N→∞, then an asymptotic analysis of the entanglement entropy as L→∞. In this paper, we consider another version of the above inequality: the regime of asymptotically proportional L and N, i.e., the simultaneous limits L→∞,N→∞,L/N→λ>0. Specifically, we consider a system of free fermions that is in its ground state, and such that its one-body Hamiltonian is a large random matrix, which is often used to model long-range hopping. By using random matrix theory, we show that in this case, the entanglement entropy obeys the volume law known for systems with short-range hopping but described either by a mixed state or a pure strongly excited state of the Hamiltonian. We also give streamlined proof of Page's formula for the entanglement entropy of black hole radiation for a wide class of typical ground states, thereby proving the universality and the typicality of the formula.

7.
J Math Biol ; 87(1): 13, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335417

RESUMO

Lotka-Volterra (LV) equations play a key role in the mathematical modeling of various ecological, biological and chemical systems. When the number of species (or, depending on the viewpoint, chemical components) becomes large, basic but fundamental questions such as computing the number of surviving species still lack theoretical answers. In this paper, we consider a large system of LV equations where the interactions between the various species are a realization of a random matrix. We provide conditions to have a unique equilibrium and present a heuristics to compute the number of surviving species. This heuristics combines arguments from Random Matrix Theory, mathematical optimization (LCP), and standard extreme value theory. Numerical simulations, together with an empirical study where the strength of interactions evolves with time, illustrate the accuracy and scope of the results.


Assuntos
Ecossistema , Modelos Biológicos , Matemática
8.
Entropy (Basel) ; 25(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37238480

RESUMO

We discuss the cumulant approach to spectral properties of large random matrices. In particular, we study in detail the joint cumulants of high traces of large unitary random matrices and prove Gaussian fluctuation for pair-counting statistics with non-smooth test functions.

9.
Entropy (Basel) ; 25(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36832749

RESUMO

Statistical Topology emerged as topological aspects continue to gain importance in many areas of physics. It is most desirable to study topological invariants and their statistics in schematic models that facilitate the identification of universalities. Here, the statistics of winding numbers and of winding number densities are addressed. An introduction is given for readers with little background knowledge. Results that my collaborators and I obtained in two recent works on proper random matrix models for the chiral unitary and symplectic cases are reviewed, avoiding a technically detailed discussion. There is a special focus on the mapping of topological problems to spectral ones as well as on the first glimpse of universality.

10.
Entropy (Basel) ; 25(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37998199

RESUMO

I extend to the case of complex matrices, rather than the case of real matrices as in a prior study, a method of iterating the operation of an "inflating random matrix" onto a state vector to describe complex growing systems. I show that the process also describes in this complex case a punctuated growth with quakes and stasis. I assess that under one such inflation step, the vector will shift to a really different one (quakes) only if the inflated matrix has sufficiently dominant new eigenvectors. The vector shall prefer stasis (a similar vector) otherwise, similar to the real-valued matrices discussed in a prior study. Specifically, in order to extend the model relevance, I assess that under various update schemes of the system's representative vector, the bimodal distribution of the changes of the dominant eigenvalue remains the core concept. Overall, I contend that the punctuations may appropriately address the issue of growth in systems combining a large weight of history and some sudden quake occurrences, such as economic systems or ecological systems, with the advantage that unpaired complex eigenvalues provide more degrees of freedom to suit real systems. Furthermore, random matrices could be the right meeting point for exerting thermodynamic analogies in a reasonably agnostic manner in such rich contexts, taking into account the profusion of items (individuals, species, goods, etc.) and their networked, tangled interactions 50+ years after their seminal use in R.M. May's famous "interaction induced instability" paradigm. Finally, I suggest that non-ergodic tools could be further applied for tracking the specifics of large-scale evolution paths and for checking the model's relevance to the domains mentioned above.

11.
Entropy (Basel) ; 25(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37372202

RESUMO

In this paper, we study a two-parameter family of Stieltjes transformations related to holomorphic Lambert-Tsallis functions, which are a two-parameter generalization of the Lambert function. Such Stieltjes transformations appear in the study of eigenvalue distributions of random matrices associated with some growing statistically sparse models. A necessary and sufficient condition on the parameters is given for the corresponding functions being Stieltjes transformations of probabilistic measures. We also give an explicit formula of the corresponding R-transformations.

12.
Entropy (Basel) ; 25(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372301

RESUMO

We present a thorough numerical analysis of the relaxational dynamics of the Sherrington-Kirkpatrick spherical model with an additive non-disordered perturbation for large but finite sizes N. In the thermodynamic limit and at low temperatures, the perturbation is responsible for a phase transition from a spin glass to a ferromagnetic phase. We show that finite-size effects induce the appearance of a distinctive slow regime in the relaxation dynamics, the extension of which depends on the size of the system and also on the strength of the non-disordered perturbation. The long time dynamics are characterized by the two largest eigenvalues of a spike random matrix which defines the model, and particularly by the statistics concerning the gap between them. We characterize the finite-size statistics of the two largest eigenvalues of the spike random matrices in the different regimes, sub-critical, critical, and super-critical, confirming some known results and anticipating others, even in the less studied critical regime. We also numerically characterize the finite-size statistics of the gap, which we hope may encourage analytical work which is lacking. Finally, we compute the finite-size scaling of the long time relaxation of the energy, showing the existence of power laws with exponents that depend on the strength of the non-disordered perturbation in a way that is governed by the finite-size statistics of the gap.

13.
J Math Biol ; 85(6-7): 66, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374355

RESUMO

Consider a large ecosystem (foodweb) with n species, where the abundances follow a Lotka-Volterra system of coupled differential equations. We assume that each species interacts with [Formula: see text] other species and that their interaction coefficients are independent random variables. This parameter d reflects the connectance of the foodweb and the sparsity of its interactions especially if d is much smaller that n. We address the question of feasibility of the foodweb, that is the existence of an equilibrium solution of the Lotka-Volterra system with no vanishing species. We establish that for a given range of d, namely [Formula: see text] or [Formula: see text] with an extra condition on the sparsity structure, there exists an explicit threshold depending on n and d and reflecting the strength of the interactions, which guarantees the existence of a positive equilibrium as the number of species n gets large. From a mathematical point of view, the study of feasibility is equivalent to the existence of a positive solution [Formula: see text] (component-wise) to the equilibrium linear equation: [Formula: see text]where [Formula: see text] is the [Formula: see text] vector with components 1 and [Formula: see text] is a large sparse random matrix, accounting for the interactions between species. The analysis of such positive solutions essentially relies on large random matrix theory for sparse matrices and Gaussian concentration of measure. The stability of the equilibrium is established. The results in this article extend to a sparse setting the results obtained by Bizeul and Najim in Bizeul and Najim (2021).


Assuntos
Ecossistema , Modelos Biológicos , Estudos de Viabilidade
14.
J Math Biol ; 85(3): 20, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960362

RESUMO

Although ecological networks are typically constructed based on a single type of interaction, e.g. trophic interactions in a food web, a more complete picture of ecosystem composition and functioning arises from merging networks of multiple interaction types. In this work, we consider tripartite networks constructed by merging two bipartite networks, one mutualistic and one antagonistic. Taking the interactions within each sub-network to be distributed randomly, we consider the stability of the dynamics of the network based on the spectrum of its community matrix. In the asymptotic limit of a large number of species, we show that the spectrum undergoes an eigenvalue phase transition, which leads to an abrupt destabilisation of the network as the ratio of mutualists to antagonists is increased. We also derive results that show how this transition is manifest in networks of finite size, as well as when disorder is introduced in the segregation of the two interaction types. Our random-matrix results will serve as a baseline for understanding the behaviour of merged networks with more realistic structures and/or more detailed dynamics.


Assuntos
Ecossistema , Cadeia Alimentar , Simbiose
15.
Lett Math Phys ; 112(3): 58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706900

RESUMO

We focus on functional renormalization for ensembles of several (say n ≥ 1 ) random matrices, whose potentials include multi-traces, to wit, the probability measure contains factors of the form exp [ - Tr ( V 1 ) × â‹¯ × Tr ( V k ) ] for certain noncommutative polynomials V 1 , … , V k ∈ C ⟨ n ⟩ in the n matrices. This article shows how the "algebra of functional renormalization"-that is, the structure that makes the renormalization flow equation computable-is derived from ribbon graphs, only by requiring the one-loop structure that such equation (due to Wetterich) is expected to have. Whenever it is possible to compute the renormalization flow in terms of U ( N ) -invariants, the structure gained is the matrix algebra M n ( A n , N , ⋆ ) with entries in A n , N = ( C ⟨ n ⟩ ⊗ C ⟨ n ⟩ ) ⊕ ( C ⟨ n ⟩ ⊠ C ⟨ n ⟩ ) , being C ⟨ n ⟩ the free algebra generated by the n Hermitian matrices of size N (the flowing random variables) with multiplication of homogeneous elements in A n , N given, for each P , Q , U , W ∈ C ⟨ n ⟩ , by ( U ⊗ W ) ⋆ ( P ⊗ Q ) = P U ⊗ W Q , ( U ⊠ W ) ⋆ ( P ⊗ Q ) = U ⊠ P W Q , ( U ⊗ W ) ⋆ ( P ⊠ Q ) = W P U ⊠ Q , ( U ⊠ W ) ⋆ ( P ⊠ Q ) = Tr ( W P ) U ⊠ Q , which, together with the condition ( λ U ) ⊠ W = U ⊠ ( λ W ) for each complex λ , fully define the symbol ⊠ .

16.
Entropy (Basel) ; 25(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36673215

RESUMO

Complex eigenvalues of random matrices J=GUE+iγdiag(1,0,…,0) provide the simplest model for studying resonances in wave scattering from a quantum chaotic system via a single open channel. It is known that in the limit of large matrix dimensions N≫1 the eigenvalue density of J undergoes an abrupt restructuring at γ=1, the critical threshold beyond which a single eigenvalue outlier ("broad resonance") appears. We provide a detailed description of this restructuring transition, including the scaling with N of the width of the critical region about the outlier threshold γ=1 and the associated scaling for the real parts ("resonance positions") and imaginary parts ("resonance widths") of the eigenvalues which are farthest away from the real axis. In the critical regime we determine the density of such extreme eigenvalues, and show how the outlier gradually separates itself from the rest of the extreme eigenvalues. Finally, we describe the fluctuations in the height of the eigenvalue outlier for large but finite N in terms of the associated large deviation function.

17.
J Theor Biol ; 509: 110475, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33017577

RESUMO

A deeper understanding of the processes underlying the distribution of animals in space is crucial for both basic and applied ecology. The Common buzzard (Buteo buteo) is a highly aggressive, territorial bird of prey that interacts strongly with its intra- and interspecific competitors. We propose and use random matrix theory to quantify the strength and range of repulsion as a function of the buzzard population density, thus providing a novel approach to model density dependence. As an indicator of territorial behaviour, we perform a large-scale analysis of the distribution of buzzard nests in an area of 300 square kilometres around the Teutoburger Wald, Germany, as gathered over a period of 20 years. The nearest and next-to-nearest neighbour spacing distribution between nests is compared to the two-dimensional Poisson distribution, originating from uncorrelated random variables, to the complex eigenvalues of random matrices, which are strongly correlated, and to a two-dimensional Coulomb gas interpolating between these two. A one-parameter fit to a time-moving average reveals a significant increase of repulsion between neighbouring nests, as a function of the observed increase in absolute population density over the monitored period of time, thereby proving an unexpected yet simple model for density-dependent spacing of predator territories. A similar effect is obtained for next-to-nearest neighbours, albeit with weaker repulsion, indicating a short-range interaction. Our results show that random matrix theory might be useful in the context of population ecology.


Assuntos
Falconiformes , Animais , Aves , Densidade Demográfica , Territorialidade
18.
Entropy (Basel) ; 23(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34441167

RESUMO

In this work, we study two different approaches to defining the entropy of a quantum channel. One of these is based on the von Neumann entropy of the corresponding Choi-Jamiolkowski state. The second one is based on the relative entropy of the output of the extended channel relative to the output of the extended completely depolarizing channel. This entropy then needs to be optimized over all possible input states. Our results first show that the former entropy provides an upper bound on the latter. Next, we show that for unital qubit channels, this bound is saturated. Finally, we conjecture and provide numerical intuitions that the bound can also be saturated for random channels as their dimension tends to infinity.

19.
Ann Stat ; 48(3): 1452-1474, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33859446

RESUMO

Recovering low-rank structures via eigenvector perturbation analysis is a common problem in statistical machine learning, such as in factor analysis, community detection, ranking, matrix completion, among others. While a large variety of bounds are available for average errors between empirical and population statistics of eigenvectors, few results are tight for entrywise analyses, which are critical for a number of problems such as community detection. This paper investigates entrywise behaviors of eigenvectors for a large class of random matrices whose expectations are low-rank, which helps settle the conjecture in Abbe et al. (2014b) that the spectral algorithm achieves exact recovery in the stochastic block model without any trimming or cleaning steps. The key is a first-order approximation of eigenvectors under the ℓ ∞ norm: u k ≈ A u k * λ k * , where {u k } and { u k * } are eigenvectors of a random matrix A and its expectation E A , respectively. The fact that the approximation is both tight and linear in A facilitates sharp comparisons between u k and u k * . In particular, it allows for comparing the signs of u k and u k * even if ‖ u k - u k * ‖ ∞ is large. The results are further extended to perturbations of eigenspaces, yielding new ℓ ∞-type bounds for synchronization ( ℤ 2 -spiked Wigner model) and noisy matrix completion.

20.
Entropy (Basel) ; 22(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-33286741

RESUMO

We introduce a family of models, which we name matrix models associated with children's drawings-the so-called dessin d'enfant. Dessins d'enfant are graphs of a special kind drawn on a closed connected orientable surface (in the sky). The vertices of such a graph are small disks that we call stars. We attach random matrices to the edges of the graph and get multimatrix models. Additionally, to the stars we attach source matrices. They play the role of free parameters or model coupling constants. The answers for our integrals are expressed through quantities that we call the "spectrum of stars". The answers may also include some combinatorial numbers, such as Hurwitz numbers or characters from group representation theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA