Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Indoor Air ; 32(11): e13173, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36437657

RESUMO

Indoor PM2.5 in apartments must be effectively managed to minimize adverse impacts on human health. Cooking is the one of the main PM2.5 sources in apartments, and indoor air quality (IAQ) management methods (natural ventilation, mechanical ventilations, range hoods, and air purifiers) are typically used to reduce PM2.5 generated during cooking. For effective control of indoor PM2.5 , prediction of PM2.5 reduction for various IAQ management methods is necessary. This study carefully predicted indoor PM2.5 concentrations in an apartment when IAQ management methods were applied separately and/or in combination during cooking. The infiltration and exfiltration were verified by comparing the experimental results of CO2 concentration with those predicted with or without mechanical ventilation. The deposition rate for PM2.5 generated by cooking was also derived by comparing the experimental PM2.5 changes with the predicted values for PM2.5 natural decay. Through this method, effective PM2.5 control ways during cooking in apartments can be proposed, such as natural ventilation with a range hood for 30 min and then the operation of an air purifier for 30 min. Additionally, if this prediction is combined with energy consumption, it will be possible to propose the most energy-efficient indoor PM2.5 control methods for various seasons and outdoor conditions.


Assuntos
Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/análise , Culinária , Material Particulado/análise , República da Coreia
2.
Indoor Air ; 31(3): 717-729, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33070378

RESUMO

This paper presents pollutant concentrations and performance data for code-required mechanical ventilation equipment in 23 low-income apartments at 4 properties constructed or renovated 2013-2017. All apartments had natural gas cooking burners. Occupants pledged to not use windows for ventilation during the study but several did. Measured airflows of range hoods and bathroom exhaust fans were lower than product specifications. Only eight apartments operationally met all ventilation code requirements. Pollutants measured over one week in each apartment included time-resolved fine particulate matter (PM2.5 ), nitrogen dioxide (NO2 ), formaldehyde and carbon dioxide (CO2 ) and time-integrated formaldehyde, NO2 and nitrogen oxides (NOX ). Compared to a recent study of California houses with code-compliant ventilation, apartments were smaller, had fewer occupants, higher densities, and higher mechanical ventilation rates. Mean PM2.5 , formaldehyde, NO2 , and CO2 were 7.7 µg/m3 , 14.1, 18.8, and 741 ppm in apartments; these are 4% lower, 25% lower, 165% higher, and 18% higher compared to houses with similar cooking frequency. Four apartments had weekly PM2.5 above the California annual outdoor standard of 12 µg/m3 and also discrete days above the World Health Organization 24-hour guideline of 25 µg/m3 . Two apartments had weekly NO2 above the California annual outdoor standard of 30 ppb.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Gás Natural , Material Particulado , Ventilação , Poluentes Atmosféricos , California , Culinária , Monitoramento Ambiental , Formaldeído , Dióxido de Nitrogênio , Pobreza , Respiração Artificial , Emissões de Veículos
3.
Build Environ ; 2012021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34177073

RESUMO

Some cooking events can generate high levels of hazardous PM2.5. This study assesses the dispersion of cooking-related PM2.5 throughout a naturally-ventilated apartment in the US, examines the dynamic process of cooking-related emissions, and demonstrates the impact of different indoor PM2.5 mitigating strategies. We conducted experiments with a standardized pan-frying cooking procedure under seven scenarios, involving opening kitchen windows, using a range hood, and utilizing a portable air cleaner (PAC) in various indoor locations. Real-time PM2.5 concentrations were measured in the open kitchen, living room, bedroom (door closed), and outdoor environments. Decay-related parameters were estimated, and time-resolved PM2.5 emission rates for each experiment were determined using a dynamic model. Results show that the 1-min mean PM2.5 concentrations in the kitchen and living room peaked 1-7 min after cooking at levels of 200-1400 µg/m3, which were more than 9 times higher than the peak bedroom levels. Mean (standard deviation) kt for the kitchen, ranging from 0.58 (0.02) to 6.62 (0.34) h-1, was generally comparable to that of the living room (relative difference < 20%), but was 1-5 times larger than that of the bedroom. The range of PM2.5 full-decay time was between 1-10 h for the kitchen and living room, and from 0 to > 6 h for the bedroom. The PM2.5 emission rates during and 5 min after cooking were 2.3 (3.4) and 5.1 (3.9) mg/min, respectively. Intervention strategies, including opening kitchen windows and using PACs either in the kitchen or living room, can substantially reduce indoor PM2.5 levels and the related full-decay time. For scenarios involving a PAC, placing it in the kitchen (closer to the source) resulted in better efficacy.

4.
Indoor Air ; 30(2): 198-212, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31845405

RESUMO

This paper reviews the published literature on indoor thermal environment and air quality in Chinese-style residential kitchens (CRKs). The paper first discusses typical characteristics of CRKs, including kitchen layout, cooking methods, and ventilation systems used. Next, the paper describes the current state of the indoor thermal environment and air quality in CRKs. Finally, this paper summarizes measures to control and improve the environment inside CRKs. The results indicate that the indoor environment of CRKs is too hot in summer and exhibits a large vertical temperature difference. No appropriate model was available for accurately evaluating the thermal environment in CRKs. At the same time, CRKs are highly polluted by COx, NOx, TVOC, and particulate matter (PM). Although existing exhaust hoods could improve the indoor environment to some extent, the use of a combined exhaust, make-up air, and air-conditioning system should be considered to provide a comfortable and healthy environment in CRKs.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Culinária , Monitoramento Ambiental , Temperatura , Ar Condicionado , Poluentes Atmosféricos , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , China , Habitação , Humanos , Material Particulado/análise , Ventilação
5.
Indoor Air ; 25(1): 45-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24750219

RESUMO

Effective exhaust hoods can mitigate the indoor air quality impacts of pollutant emissions from residential cooking. This study reports capture efficiencies (CE) measured for cooking-generated particles for scripted cooking procedures in a 121-m3 chamber with kitchenette. CEs also were measured for burner produced CO2 during cooking and separately for pots and pans containing water. The study used four exhaust hoods previously tested by Delp and Singer (Environ. Sci. Technol., 2012, 46, 6167-6173). For pan-frying a hamburger over medium heat on the back burner, CEs for particles were similar to those for burner produced CO2 and mostly above 80%. For stir-frying green beans in a wok (high heat, front burner), CEs for burner CO2 during cooking varied by hood and airflow: CEs were 34-38% for low (51-68 l/s) and 54-72% for high (109-138 l/s) settings. CEs for 0.3-2.0 µm particles during front burner stir-frying were 3-11% on low and 16-70% on high settings. Results indicate that CEs measured for burner CO2 are not predictive of CEs of cooking-generated particles under all conditions, but they may be suitable to identify devices with CEs above 80% both for burner combustion products and for cooking-related particles.


Assuntos
Poluição do Ar em Ambientes Fechados , Dióxido de Carbono , Culinária , Material Particulado , Ventilação/métodos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono/análise , Monitoramento Ambiental , Habitação , Humanos , Material Particulado/análise
6.
J Occup Environ Hyg ; 12(4): 235-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25436893

RESUMO

The flow and spillage characteristics of an inclined quad-vortex (IQV) range hood subject to the influence of drafts from various directions were studied. The laser-assisted smoke flow visualization technique was used to reveal the flow characteristics, and the tracer-gas (sulfur hexafluoride) concentration detection method was used to indicate the quantitative values of the capture efficiency of the hood. It was found that the leakage mechanisms of the IQV range hood are closely related to the flow characteristics. A critical draft velocity of about 0.5 m/s and a critical face velocity of about 0.25 m/s for the IQV range hood were found. When the IQV range hood was influenced by a draft with a velocity larger than the critical draft velocity, the spillage of pollutants became significant and the pollutant spillage rate increased with increasing draft velocity. At draft velocities less than or equal to the critical value, no containment leakages induced by the turbulence diffusion, reverse flow, or boundary-layer separation were observed, and the capture efficiency was about 100%. The IQV range hood exhibited a high ability to resist the influences of lateral and frontal drafts. The capture efficiency of the IQV range hood operated at the suction flow rate 5 to 9 m(3)/min is higher than that of the conventional range hood operated at 11 to 15 m(3)/min.


Assuntos
Movimentos do Ar , Poluição do Ar em Ambientes Fechados/análise , Ventilação/instrumentação , Poluentes Ocupacionais do Ar/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Culinária/instrumentação , Difusão , Desenho de Equipamento , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Hexafluoreto de Enxofre/análise , Ventilação/métodos
7.
Environ Pollut ; 348: 123821, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521392

RESUMO

Cooking is one of the major contributors to indoor pollution. Fine particulate matter (PM2.5) produced during cooking commonly mix into adjacent rooms and elevates indoor PM2.5 concentrations. The risk of human exposure to cooking-generated PM2.5 is mainly related to the exposure duration and particulate matter (PM) concentration. The PM2.5 concentration is influenced by cooking methods and ventilation patterns. Range hoods and open windows are conventional strategies for lowering the concentration of cooking-generated particles. To decrease PM emissions, kitchen air supply systems have been proposed, providing alternative possibilities for kitchen ventilation patterns. The effects of cooking methods, air supply systems, range hoods, and windows on PM2.5 concentrations must be analyzed and compared. To understand and provide advice on reducing exposure to PM2.5 due to cooking activities, we measured the PM2.5 mass concentration in a kitchen and adjacent room during cooking. The identified factors, including cooking method, range hood use, window status, and air supply system, were varied based on orthogonal design. The delay time between the PM2.5 peak in the kitchen and that in the adjacent room was determined. The degree of exposure risk for cooking-generated PM2.5 was evaluated using the mean exposure dose. The results indicated that the mean PM2.5 mass concentration in the kitchen ranged from 22 to 2296 µg/m3. In descending order, the factors affecting the indoor PM2.5 concentration in the apartment studied were range hood use, cooking methods, window status, and air supply system. The PM2.5 peak in the adjacent room occurred 200-800 s later than that in the kitchen. Other conditions being constant in these experiments, the use of range hoods, air supply systems, and windows reduce exposure doses by 90%, 37%, and 51%, respectively. These research results provide insights for reducing human exposure to cooking-generated PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Culinária/métodos , China , Poluentes Atmosféricos/análise
8.
Ann Occup Hyg ; 57(9): 1189-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23831934

RESUMO

In order to increase containment efficiency and reduce energy consumption, an inclined quad-vortex range hood (IQV range hood) was developed and tested by experimental methods. The flow structure was observed by a laser-assisted flow visualization technique and laser Doppler velocimetry (LDV). Leakage characteristics were measured by the tracer gas (sulfur hexafluoride) detection method. By arranging a narrow suction slot on the bottom face of the hood and two side plates hanging under lateral faces of the hood, a flow field featuring four backwards-inclined vortical flow structures was formed at suction velocities of larger than about 10 m s(-1) (suction flow rate 7.2 m(3) min(-1)). Oil mists were coherently contained in the vortical flow structures without observable dispersion out of the vortices; they rose up spirally with inclination towards the rear wall and were inducted into the suction slot. The backwards inclination of the oil-mist-containing vortical flow structures, caused by the backwards offset arrangement of the suction slot and the Coanda effect, benefited from the reduction in pollutant leakage induced by the influence of a mannequin's presence. Experimental results using the tracer gas concentration detection method showed a close correlation with the results from the flow visualization and LDV measurements. Under both occupied and unoccupied conditions, in which the mannequin was either present or not present, the IQV range hood provided low SF6 leakage concentration levels.


Assuntos
Movimentos do Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , Culinária , Utensílios Domésticos/instrumentação , Ventilação/instrumentação , Desenho de Equipamento , Humanos
9.
Ann Occup Hyg ; 57(7): 920-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23479025

RESUMO

In order to understand the physical mechanisms of the production of nanometer-sized particulate generated from cooking oils, the ventilation of kitchen hoods was studied by determining the particle concentration, particle size distribution, particle dimensions, and hood's flow characteristics under several cooking scenarios. This research varied the temperature of the frying operation on one cooking operation, with three kinds of commercial cooking oils including soybean oil, olive oil, and sunflower oil. The variations of particle concentration and size distributions with the elevated cooking oil temperatures were presented. The particle concentration increases as a function of temperature. For oil temperatures ranging between 180°C and 210°C, a 5°C increase in temperature increased the number concentration of ultrafine particles by 20-50%. The maximum concentration of ultrafine particles was found to be approximately 6 × 10(6) particles per cm(3) at 260°C. Flow visualization techniques and particle distribution measurement were performed for two types of hood designs, a wall-mounted range hood and an island hood, at a suction flow rate of 15 m(3) min(-1). The flow visualization results showed that different configurations of kitchen hoods induce different aerodynamic characteristics. By comparing the results of flow visualizations and nanoparticle measurements, it was found that the areas with large-scale turbulent vortices are more prone to dispersion of ultrafine particle leakage because of the complex interaction between the shear layers and the suction movement that results from turbulent dispersion. We conclude that the evolution of ultrafine particle concentration fluctuations is strongly affected by the location of the hood, which can alter the aerodynamic features. We suggest that there is a correlation between flow characteristics and amount of contaminant leakage. This provides a comprehensive strategy to evaluate the effectiveness of kitchen hoods in capturing cooking oil fumes, which is based on an assessment of the entire hood face exposure instead of on breathing-zone sampling alone.


Assuntos
Movimentos do Ar , Poluentes Ocupacionais do Ar/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Culinária , Utensílios Domésticos/instrumentação , Ventilação/instrumentação , Poluição do Ar em Ambientes Fechados/análise , Temperatura Alta , Tamanho da Partícula , Óleos de Plantas/análise
10.
J Expo Sci Environ Epidemiol ; 33(3): 439-447, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059807

RESUMO

BACKGROUND: Cooking is a substantial contributor to air pollutant exposures in many residences. Effective use of kitchen ventilation can mitigate exposure; however, information on its availability, usage, and potential to increase its use across the population has been limited. OBJECTIVE: This study aimed to obtain nationally representative information on cooking methods, kitchen ventilation availability and usage, and the potential for education to increase effective usage. METHODS: An online survey was sent to a representative sample of Canadian homes to collect data on cooking methods, the presence and use of mechanical kitchen ventilation devices, perceived device performance, and willingness to implement mitigation strategies. Responses were weighted to match key demographic factors and analyzed using non-parametric statistics. RESULTS: Among the 4500 respondents, 90% had mechanical ventilation devices over the cooktop (66% of which were vented to the outside), and 30% reported regularly using their devices. Devices were used most often for deep-frying, followed by stir-frying, sautéing or pan-frying, indoor grilling, boiling or steaming. Almost half reported rarely or never using their ventilation devices during baking or oven self-cleaning. Only 10% were fully satisfied with their devices. More frequent use was associated with the device being vented to the outdoors, having more than two speed settings, quiet operation if only one speed, covering over half of the cooktop, and higher perceived effectiveness. After being informed of the benefits of kitchen ventilation, 64% indicated they would consider using their devices more often, preferentially using back burners with ventilation, and/or using higher ventilation device settings when needed. IMPACT: This study provides population-representative data on the most used cooking methods, kitchen ventilation availability and usage, and influencing factors in Canadian homes. Such data are needed for exposure assessments and evaluating the potential to mitigate cooking-related pollutant exposures via more effective use of kitchen ventilation. The data can be reasonably extrapolated to the United States, given the similarities in residential construction practices and cultural norms between the two countries.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Canadá , Poluentes Atmosféricos/análise , Ventilação , Culinária , Material Particulado/análise
11.
Sci Total Environ ; 881: 163243, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37004771

RESUMO

Cooking oil fume (COF) is associated with an increased risk of health effects. The particle number size distribution (PNSD) of COF presenting as lognormal structures is recognized as a key metric in determining its exposure toxicities, but the information of its spatial distributions and impacting factors are still lacking. This study conducted real-time monitoring COF PNSD during the cooking processes in a kitchen laboratory. Results showed that COF PNSD presented as a combination of two lognormal distributions. The peak diameters of PNSD inside the kitchen were: 385 nm (very close to the source), 126 nm (5 cm above the source), 85 nm (10 cm above the source) to 36 nm (breath point, 50 cm above the source), 33 nm (sucking surface of the ventilation hood), 31 nm (1 m horizontally to the source), and 29 nm (3.5 m horizontally to the source). The reasons of this observation was the sharp decrease of temperature from the pot to the indoor environment reduced the surface partial pressure of the COF particles and caused a large amount of semi-volatile organic carbons (SVOCs) with lower saturation ratios condensed on the COF surface. With the temperature difference became insignificant with the distance further to the source, the reduction of the supersaturation helped the gasification of these SVOCs. Dispersion led to a linearly horizontal decreases ((1.85 ± 0.10) × 106#/cm3/m) in particle numbers with further distances, making the peak particle number concentrations decrease from 3.5 × 105#/cm3 at the breath point to 1.1 × 105#/cm3 at the point 3.5 m to the source. Cooking dishes also presented as mode diameters of 22-32 nm at the breath point. The amount of edible oil used in different dishes is positively correlated with the peak concentration of COF. Only increasing the exhaust force of the range hood cannot significantly change the sucked COF particle numbers and sizes, owning to that COF particles are mainly small sizes. New technologies on cleaning small size particles and efficient supplemental air should be given more considerations.

12.
Front Public Health ; 10: 1052610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36711357

RESUMO

During the COVID-19 pandemic, many buildings in northeast China have had clusters of infected cases in the vertical layout. There is speculation that vertical aerosol transmission occurs. The houses in northeast China are airtight, and range hoods may be used for a long period of time when cooking. The pathway and factors influencing vertical aerosol transmission are worth studying. To elucidate a viral aerosol transmission pathway, we selected a multistory apartment and a high-rise building in Changchun city, Jilin province, China, to conduct an in-depth investigation and on-site simulation experiments. According to epidemiological investigation information on infected cases, building structures, drainage, ventilation, etc., we used fluorescent microspheres to simulate the behaviors of infected people, such as breathing and flushing the toilet after defecation, to discharge simulated viruses and track and monitor them. The field simulation experiment confirmed the transmission of fluorescent microsphere aerosols to other rooms in two types of buildings using a vertical aerosol transmission pathway of toilet flush-sewage pipe-floor drain without a water seal. Our study showed that, in the absence of a U-shaped trap or floor drain water seal whether in a multistory apartment or high-rise residential building, there is a transmission pathway of "excretion of virus through feces-toilet flushing-sewage pipe-floor drain without water seal," which will cause the vertical transmission of viral aerosol across floors during the COVID-19 pandemic. Moreover, the negative pressure generated by turning on the range hood when closing doors and windows increase aerosol transmission. Based on this negative pressure, prevention and control measures for residential buildings in northeast China during the COVID-19 pandemic were proposed.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Esgotos , Aerossóis e Gotículas Respiratórios , China/epidemiologia
13.
Sci Total Environ ; 798: 149236, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340070

RESUMO

Interventions that improve air exchange or filter the air have the potential to reduce particle exposures from residential cooking. In this study, we evaluated the effect of using a range hood, opening kitchen windows, and using portable air cleaners (PACs) in various home locations on the concentrations of ultrafine particles (UFPs) at different times and in different rooms during and after cooking. All experiments were conducted using a standardized cooking protocol in a real-world naturally-ventilated apartment located in the northwest United States. Real-time UFP measurements collected from the kitchen, living room, and bedroom locations were used to estimate parameters of a dynamic model, which included time-varying particle emission rates from cooking and particle decay. We found that 1-min mean UFP number concentrations in the kitchen and living room mostly peaked within 0-10 min after cooking ended at levels of 150,000-500,000 particles/cm3. In contrast, the bedroom UFP concentrations were consistently low except for the window-open scenario. While varying considerably with time, the 1-min UFP emission rates were comparable during and within 5-min after cooking, with means (standard deviations) of 0.8 (1.1) × 1012 and 1.1 (1.2) × 1012 particles/min, respectively. Compared with the no-intervention scenario, keeping the kitchen windows open and using a kitchen range hood reduced the mean indoor average UFP concentrations during and 1 h after cooking by ~70% and ~35%, respectively. Along with the range hood on, utilizing a PAC in the kitchen during and after cooking further reduced the mean indoor average UFP levels during and 1 h after cooking by an additional 53%. In contrast, placing the PAC in the living room or bedroom resulted in worse efficacy, with additional 2-13% reductions. These findings provide useful information on how to reduce cooking-related UFP exposure via readily accessible intervention strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Culinária , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-33113790

RESUMO

Indoor cooking is the main cause of particulate matter (PM) within residential houses along with smoking. Even with the range hood turned on, cooking-generated PM can spread quickly into the living room due to the heat generated by the cookstove. In order to improve the PM spread prevention performance of the range hood, a supply of make-up air is needed. Generally, make-up air is supplied through a linear diffuser between the kitchen and living room. In such cases, it is necessary to determine the appropriate location of the supply diffuser. This study evaluates the spread of PM according to different locations of the supply diffuser, which feeds in make-up air. For this purpose, indoor airflow and PM spread were analyzed through CFD (Computational Fluid Dynamics) simulation analysis. By changing the location of the supply diffuser from the contaminant source, PM concentration was analyzed in the kitchen and living room of an apartment house in Korea. Based on the results, the optimal installation location was determined. In this study, 1.5 m from the source was the most effective location of make-up air supply to prevent the spread of cooking-generated particles.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Culinária , Tamanho da Partícula , Material Particulado/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , República da Coreia , Ventilação
15.
Sci Total Environ ; 668: 56-66, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852226

RESUMO

The fine particles (PM2.5, PM10) have worsened indoor air quality and have caused an adverse effect on health. While range hoods have been typically used to exhaust cooking-generated fine particles in residential buildings, it is difficult to remove the fine particles effectively. The present study analyzed the effect of cooking on indoor air quality through the on-site measurements of cooking-generated fine particles (PM2.5 and PM10) in 30 residential buildings. The results of the field measurement showed that the fine particles occurred during the cooking and the concentration exceeded the Korean indoor fine particle concentration standards for PM10 and PM2.5. The particle decay rate constant in field measurement was 1.27-21.83 h-1. The emission rates were 0.39-20.45 mg/min. In addition, the fine particles were measured in the experimental building by varying the cooking methods and ventilation types. Four different cooking methods were selected including broiling fish, meat, frying egg, and meat. By operating the range, hood system and the natural ventilation, the dispersion of the fine particle concentration, the particle emission rate, decay rate constant, and the Living-Kitchen (L/K) Ratio change was evaluated quantitatively. Based on the obtained results, the maximum concentrations of the fine particles were measured when broiling fish. Moreover, the range hood system was not able to decrease the cooking-emitted particle concentration effectively during the cooking period. The cooking-emitted particles were removed rapidly when both natural ventilation and the range hood system were operated simultaneously, where the particle decay rate constant was approximately 9 h-1. Furthermore, the selection of cooking type was the most important factor that can significantly have an impact on indoor particle concentrations. Cooking - generated particles; Range hood; Particle decay rate constant; Living-Kitchen (L/K); PM2.5; Emission rate.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/análise , Culinária/instrumentação , Culinária/métodos , Habitação , Tamanho da Partícula , Ventilação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA