Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931611

RESUMO

This article investigates the causes of occasional flight instability observed in Unmanned Aerial Vehicles (UAVs). The issue manifests as unexpected oscillations that can lead to emergency landings. The analysis focuses on delays in the Extended Kalman Filter (EKF) algorithm used to estimate the drone's attitude, position, and velocity. These delays disrupt the flight stabilization process. The research identifies two potential causes for the delays. First cause is magnetic field distrurbances created by UAV motors and external magnetic fields (e.g., power lines) that can interfere with magnetometer readings, leading to extended EKF calculations. Second cause is EKF fusion step implementation of the PX4-ECL library combining magnetometer data with other sensor measurements, which can become computionally expensive, especially when dealing with inconsistent magnetic field readings. This can significantly increase EKF processing time. The authors propose a solution of moving the magnetic field estimation calculations to a separate, lower-priority thread. This would prevent them from blocking the main EKF loop and causing delays. The implemented monitoring techniques allow for continuous observation of the real-time operating system's behavior. Since addressing the identified issues, no significant problems have been encountered during flights. However, ongoing monitoring is crucial due to the infrequent and unpredictable nature of the disturbances.

2.
Sensors (Basel) ; 11(6): 5900-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163934

RESUMO

This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes' life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.


Assuntos
Sistemas Computacionais , Monitorização Ambulatorial/instrumentação , Telemetria/instrumentação , Telemetria/métodos , Redes de Comunicação de Computadores/instrumentação , Computadores , Fontes de Energia Elétrica , Desenho de Equipamento , Humanos , Modelos Teóricos , Monitorização Ambulatorial/métodos , Linguagens de Programação , Transdutores , Interface Usuário-Computador , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA