Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764398

RESUMO

Volatile methyl siloxanes (VMS), which are considered to be the most troublesome impurities in current biogas-cleaning technologies, need to be removed. In this study, we fabricated a series of Fe3O4-urea-modified reduced graphene-oxide aerogels (Fe3O4-urea-rGOAs) by using industrial-grade graphene oxide as the raw material. A fixed-bed dynamic adsorption setup was built, and the adsorption properties of the Fe3O4-urea-rGOAs for hexamethyldisiloxane (L2, as a VMS model pollutant) were studied. The properties of the as-prepared samples were investigated by employing various characterization techniques (SEM, TEM, FTIR, XRD, Raman spectroscopy, and N2 adsorption/desorption techniques). The results showed that the Fe3O4-urea-rGOA-0.4 had a high specific surface area (188 m2 g-1), large porous texture (0.77 cm3 g-1), and the theoretical maximum adsorption capacity for L2 (146.5 mg g-1). The adsorption capacity considerably increased with a decrease in the bed temperature of the adsorbents, as well as with an increase in the inlet concentration of L2. More importantly, the spent Fe3O4-urea-rGOA adsorbent could be readily regenerated and showed an excellent adsorption performance. Thus, the proposed Fe3O4-urea-rGOAs are promising adsorbents for removing the VMS in biogas.

2.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672689

RESUMO

To expand the applications of graphene-based materials to biogas purification, a series of reduced graphene oxide aerogels (rGOAs) were prepared from industrial grade graphene oxide using a simple hydrothermal method. The influences of the hydrothermal preparation temperature on the textural properties, hydrophobicity and physisorption behavior of the rGOAs were investigated using a range of physical and spectroscopic techniques. The results showed that the rGOAs had a macro-porous three-dimensional network structure. Raising the hydrothermal treatment temperature reduced the number of oxygen-containing groups, whereas the specific surface area (SBET), micropore volume (Vmicro) and water contact angle values of the rGOAs all increased. The dynamic adsorption properties of the rGOAs towards hexamethyldisiloxane (L2) increased with increasing hydrothermal treatment temperature and the breakthrough adsorption capacity showed a significant linear association with SBET, Vmicro and contact angle. There was a significant negative association between the breakthrough time and inlet concentration of L2, and the relationship could be reliably predicted with a simple empirical formula. L2 adsorption also increased with decreasing bed temperature. Saturated rGOAs were readily regenerated by a brief heat-treatment at 100 °C. This study has demonstrated the potential of novel rGOA for applications using adsorbents to remove siloxanes from biogas.


Assuntos
Grafite/química , Siloxanas/química , Adsorção , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
3.
Small ; 15(13): e1804779, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30828961

RESUMO

An all-carbon pressure sensor is designed and fabricated based on reduced graphene oxide (rGO) nanomaterials. By sandwiching one layer of superelastic rGO aerogel between two freestanding high-conductive rGO thin papers, the sensor works based on the contact resistance at the aerogel-paper interfaces, getting rid of the alien materials such as polymers and metals adopted in traditional sensors. Without the limitation of alien materials, the all-carbon sensors demonstrate an ultrawide detecting range (0.72 Pa-130 kPa), low energy consumption (≈0.58 µW), ultrahigh sensitivity (349-253 kPa-1 ) at low-pressure regime (<1.4 Pa), fast response time (8 ms at 1 kPa), high stability (10 000 unloading-loading cycles between 0 and 1 kPa), light weight (<10 mg), easily scalable fabrication process, and excellent chemical stability. These merits enable them to detect real-time human physiological signals and monitor the weights of various droplets of not only water but also hazardous chemical reagents including strong acid, strong alkali, and organic solvents. This shows their great potential applications in real-time health monitoring, sport performance detecting, harsh environment-related robotics and industry, and so forth.

4.
Mikrochim Acta ; 186(5): 291, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31016395

RESUMO

Nanosheets of tungsten disulfide (WS2) were used to improve the physicochemical properties of reduced graphene oxide aerogel (rGA). The nanosheets were directly integrated into 3D hybrid architecture of rGA by a solvothermal mixing method by which the WS2 sheets were assembled onto the conductive graphene network. WS2 with highly exfoliated and defect-rich structure made the WS2/rGA composite possess plentiful active sites, and this enhanced the electrocatalytic capability of the composite. The introduction of poorly conductive WS2 into 3D rGA system decreases the background current of rGA when used as electrode material. This is advantageous in terms of signal to-noise ratio and analytical performance in general. The WS2/rGA electrode, best operated at a potential of 0.68 V (vs. SCE) has a linear response in the 0.01 to 130 µM nitrite concentration range with a low detection limit of 3 nM (at S/N = 3). It is selective, reproducible, stable and is successfully applied to the determination of nitrite in spiked bacon samples. Graphical Abstract Schematic presentation of an electrochemically modified electrode for the detection of nitrite based on 3D tungsten disulfide/reduced graphene oxide aerogel (WS2/rGA).

5.
Nano Lett ; 17(11): 6893-6899, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29053279

RESUMO

Li-iodine chemistry is of interest for electrochemical energy storage because it has been shown to provide both high power and high energy density. However, Li-iodine batteries are typically formed using Li metal and elemental iodine, which presents safety and fabrication challenges (e.g., the high vapor pressure of iodine). These disadvantages could be circumvented by using LiI as a starting cathode. Here, we present fabrication of a reduced graphene oxide (rGO)/LiI composite cathode, enabling for the first time the use of LiI as the Li-ion battery cathode. LiI was coated on rGO by infiltration of an ethanolic solution of LiI into a compressed rGO aerogel followed by drying. The free-standing rGO/LiI electrodes show stable long-term cycling and good rate performance with high specific capacity (200 mAh g-1 at 0.5 C after 100 cycles) and small hysteresis (0.056 V at 1 C). Shuttling was suppressed significantly. We speculate the improved electrochemical performance is due to strong interactions between the active materials and rGO, and the reduced ion and electron transport distances provided by the three-dimensional structured cathode.

6.
Environ Pollut ; 342: 123117, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086507

RESUMO

Mercury (Hg) pollution is a global concern in cropland systems. Hg contamination causes a disruption in the growth, energy metabolism, redox balance, and photosynthetic activity of plants. In the removal of Hg toxicity, a recent critical strategy is the use of aerogels with biodegradability and biocompatibility. However, it is unknown how graphene oxide-based aerogels stimulate the defense systems in wheat plants exposed to Hg toxicity. Therefore, in this study, the photosynthetic, genetic, and biochemical effects of reduced graphene oxide aerogel treatments (gA; 50-100-250 mg L-1) were examined in wheat (Triticum aestivum) under Hg stress (50 µM HgCl2). The relative growth rate (RGR) significantly decreased (84%) in response to Hg stress. However, the reduced RGR and water relations (RWC) of wheat were improved by gA treatments. The impaired gas exchange levels (stomatal conductance, carbon assimilation rate, intercellular CO2 concentrations, and transpiration rate) caused by stress were reversed under Hg plus gAs. Additionally, stress hampered chlorophyll fluorescence (Fv/Fo, Fv/Fm), and under Hg toxicity the expression of psaA genes was reduced (>0.4-fold), but psaB gene was significantly up-regulated (>3-fold) which are the genes involved in PSI. By increasing expression patterns of both genes relating to PSI, gAs reversed the adverse consequences on Fv/Fo and Fv/Fm in the presence of excessive Hg concentration. The activities of glutathione S-transferase (GST), glutathione reductase (GR), catalase (CAT), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) decreased under Hg toxicity. On the other hand, the activities of superoxide dismutase (SOD), APX, GST, and glutathione peroxidase (GPX) increased following gA treatments against stress, leading to the successful elimination of toxic levels of H2O2 and lipid peroxidation (TBARS content) by decreasing the levels by about 30%, and 40%, respectively. By modulating enzyme/non-enzyme activity/contents including the AsA-GSH cycle, gAs contributed to the protection of the cellular redox state. Most important of all, gA applications were able to reduce Hg intake by approximately 66%. Therefore, these results showed that gAs were effective in highly inhibiting Hg uptake and could significantly increase wheat tolerance to toxicity by eliminating Hg-induced oxidative damage and inhibiting metabolic processes involved in photosynthesis. The findings obtained from the study provide a new perspective on the alleviation roles of reduced graphene oxide aerogels as an effective adsorbent for decreasing damages of mercury toxicity in wheat plants.


Assuntos
Antioxidantes , Grafite , Mercúrio , Antioxidantes/metabolismo , Triticum/metabolismo , Mercúrio/toxicidade , Mercúrio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fotossíntese , Estresse Oxidativo , Ascorbato Peroxidases/metabolismo , Expressão Gênica , Glutationa/metabolismo
7.
J Chromatogr A ; 1736: 465357, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39270566

RESUMO

The ability of reduced graphene oxide aerogels (rGOAs) for challenging gas-phase separation was investigated with hexane isomers and benzene (C6 hydrocarbons) using inverse gas chromatography (IGC). For the first, rGOAs were synthesized with sodium dithionite (DTN) as a reductant. Experiments revealed that the most optimal DTN to graphene oxide mass ratio was 2:1, resulting in the highest specific surface area of 432.3 m2 g-1 and the highest degree of graphitization among analyzed samples. C6 hydrocarbon adsorption tests demonstrated the dominant role of the kinetic effect for the adsorption of branched and cyclic hexane isomers - the partition coefficient decreased as the molecule kinetic diameter increased. The contribution of thermodynamic effects was distinguished for molecules with uneven charge distribution. A comparison of the partition coefficient ratios for different pairs of hydrocarbons demonstrated the potential of rGOAs in separating various C6 hydrocarbons. The selectivity, calculated from binary-component adsorption tests of benzene (Bz)/cC6 equimolar mixture, was 13.7, 8.5 and 2.8 for DTN4, DTN2, and DTN1. The research indicates that rGOAs may have potential as adsorbents for the selective separation of hydrocarbons, however, the competitive adsorption and performance at high surface coverages of adsorbates have to be accounted for in further research to assess the applicability of rGOAs reliably.

8.
J Food Sci ; 89(9): 6016-6030, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39136979

RESUMO

In this work, an ultrasensitive electrochemical sensor based on Zr-MOF-SH/rGA/NPG was developed for the first time for the rapid determination of mercury ions. First, nanoporous gold (NPG) film was covered on the glassy carbon electrode (GCE) to offer a desirable substrate. Then, Zr-MOF-SH/rGA composites were dropped on the NPG film to form a modified electrode. Mercapto functionalized MOFs (Zr-MOF-SH) showed strong adsorption capability toward mercury ions, and the unique structure of reduced graphene oxide aerogel (rGA) provided various sites for coupling with Zr-MOF-SH as well as improved the electrochemical activity. As a consequence of the synergistic effect of Zr-MOF-SH, rGA, and NPG, the optimized Zr-MOF-SH/rGA/NPG/GCE sensor showed excellent detection performance toward mercury ions with a linear range from 0 to 200 nM and a low limit of detection of 1.4 nM. Meanwhile, the fabricated electrochemical sensor exhibited outstanding stability, reproducibility, and anti-interference ability. To verify the practical applicability, the Zr-MOF-SH/rGA/NPG/GCE was applied for the determination of mercury ions in real rice samples with desirable recovery rates ranging from 98.8% to 108.3%.


Assuntos
Técnicas Eletroquímicas , Ouro , Grafite , Limite de Detecção , Mercúrio , Zircônio , Grafite/química , Mercúrio/análise , Ouro/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Zircônio/química , Reprodutibilidade dos Testes , Eletrodos , Nanoporos , Oryza/química , Géis/química , Contaminação de Alimentos/análise , Adsorção , Estruturas Metalorgânicas/química
9.
Gels ; 9(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37754362

RESUMO

Within this work, new aerogels based on graphene oxide are proposed to adsorb salicylic acid (SA) and herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous media. Graphene oxide aerogel (GOA) and reduced graphene oxide aerogel (rGOA) were obtained by freeze-drying processes and then studied by Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) analysis. The influence of contact time and the concentration of the adsorbates were also assessed. It was found that equilibrium for high adsorption is reached in 150 min. In a single system, the pseudo-first-order, pseudo-second-order kinetic models, Intraparticle diffusion, and Elovich models were used to discuss the detail of the aerogel adsorbing pollutant. Moreover, the Langmuir, Freundlich, and Temkin adsorption models were applied to describe the equilibrium isotherms and calculate the isotherm constants.

10.
J Hazard Mater ; 428: 128254, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051772

RESUMO

In this study, three-dimensional reduced graphene oxide aerogel (rGOA)-supported nanozero-valent iron (rGOA-nZVI) was successfully synthesized via tailored design and applied to activate persulfate (PS) to degrade three organophosphorus pesticides (OPPs; phorate, terbufos and parathion) in water and a historically contaminated soil. The results showed that loading nZVI nanoparticles on rGOA could prevent the aggregation of nZVI. rGOA-nZVI presented a better catalytic performance for PS activation to degrade the three OPPs than bare nZVI and rGOA, with degradation efficiencies of greater than 99.5% within 5 min. pH had negligible effects on the PS activated by rGOA-nZVI (rGOA-nZVI/PS). EPR measurements and radical quenching experiments showed that ·SO4- and ·OH were the main radicals responsible for OPP removal in the rGOA-nZVI/PS system. Furthermore, nine intermediates were identified, and the oxidation and scission of C-S-C, P-S/O and PS were the dominant degradation pathways of the three OPPs in aqueous solutions treated with rGOA-nZVI/PS. Additionally, rGOA-nZVI/PS achieved degradation efficiencies of 95.1% for phorate, 79.9% for terbufos and 89.1% for parathion in the contaminated soil, and the detected intermediates could be further degraded except triethylphosphate. Overall, this study provides practical knowledge for OPP removal by rGOA-nZVI/PS in wastewater and actual contaminated soil.


Assuntos
Grafite , Praguicidas , Poluentes Químicos da Água , Compostos Organofosforados , Poluentes Químicos da Água/análise
11.
Nanomaterials (Basel) ; 12(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35957075

RESUMO

In this study, ß-cyclodextrin-modified reduced graphene oxide aerogels (ß-CD-rGOAs) were synthesized via a one-step hydrothermal method and were used to remove hexamethyldisiloxane (L2) from biogas. The ß-CD-rGOAs were characterized by the Brunner-Emmet-Teller technique, using Fourier-transform infrared spectroscopy, Raman spectrometry, scanning electron microscopy (SEM), contact angle measurements, and X-ray diffraction. The results of the characterizations indicate that ß-CD was grafted onto the surface of rGOAs as a cross-linking modifier. The ß-CD-rGOA had a three-dimensional, cross-linked porous structure. The maximum breakthrough adsorption capacity of L2 on ß-CD-rGOA at 273 K was 111.8 mg g-1. A low inlet concentration and bed temperature facilitated the adsorption of L2. Moreover, the ß-CD-rGOA was regenerated by annealing at 80 °C, which renders this a promising material for removing L2 from biogas.

12.
Materials (Basel) ; 14(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435447

RESUMO

A graphene oxide aerogel (GOA) was formed inside a melamine sponge (MS) framework. After reduction with hydrazine at 60 °C, the electrical conductive nitrogen-enriched rGOA-MS composite material with a specific density of 20.1 mg/cm3 was used to fabricate an electrode, which proved to be a promising electrocatalyst for the oxygen reduction reaction. The rGOA-MS composite material was characterized by elemental analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. It was found that nitrogen in the material is presented by different types with the maximum concentration of pyrrole-like nitrogen. By using Raman scattering it was established that the rGOA component of the material is graphene-like carbon with an average size of the sp2-domains of 5.7 nm. This explains a quite high conductivity of the composite obtained.

13.
J Pharm Biomed Anal ; 190: 113505, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32771826

RESUMO

Three-dimensional reduced graphene oxide aerogel (3D rGA) was synthesized by hydrothermal method and cobalt imidazolate framework-67 (ZIF-67) was further grown in situ on the 3D rGA matrix directly. The resultant ZIF-67@3D rGA nanocomposite was checked by different techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). The presence of 3D rGA acted as the backbone for the loading of ZIF-67, and the resultant ZIF-67@3D rGA nanocomposite exhibited an interconnected porous structure with large surface area and high conductivity due to synergistic effects, which was applied to the electrode modification and used for rutin detection. The developed method showed excellent performance with a wider linear range (0.05-200.0 µmol/L) and lower detection limit (0.028 ± 0.0016 µmol/L, S/N=3). Various samples including the compounded rutin tablets and onions were analyzed by this modified electrode with satisfactory results.


Assuntos
Nanocompostos , Rutina , Técnicas Eletroquímicas , Grafite , Limite de Detecção , Óxidos , Rutina/análise , Espectroscopia de Infravermelho com Transformada de Fourier
14.
ACS Appl Mater Interfaces ; 12(22): 25243-25252, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32391684

RESUMO

A chemiresistive gas sensor based on a three-dimensional Ag-modified reduced graphene oxide (3D Ag-rGO) aerogel is reported. We improve the graphene-based sensor performance by optimization of operating temperature, chemical modification, and new design of the material geometrical structure. The self-assembly and Ag nanoparticle (NP) decoration of the Ag-rGO aerogel are realized by a facile, one-step hydrothermal method. An integrated low-power microheater fabricated on a micromachined SiO2 membrane is employed to enhance the performance of the sensor with a fast response to NO2 and a shortened recovery time. The 3D Ag-rGO-based sensor at a temperature of 133 °C exhibits the highest response. At the same time, the response to other gases is suppressed while the response of the Ag-rGO sensor toward ammonia at 133 °C is reduced to half of the value at room temperature, demonstrating a greatly improved selectivity toward NO2. Additionally, the sensor exhibits a remarkably fast response to 50 ppb NO2 and a low limit of detection of 6.9 ppb.

15.
Nanomaterials (Basel) ; 10(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260654

RESUMO

A peculiar 3D graphene-based architecture, i.e., partial reduced-Graphene Oxide Aerogel Microspheres (prGOAM), having a dandelion-like morphology with divergent microchannels to implement innovative electrocatalysts for the hydrogen evolution reaction (HER) is investigated in this paper. prGOAM was used as a scaffold to incorporate exfoliated transition metals dichalcogenide (TMDC) nanosheets, and the final hybrid materials have been tested for HER and photo-enhanced HER. The aim was to create a hybrid material where electronic contacts among the two pristine materials are established in a 3D architecture, which might increase the final HER activity while maintaining accessible the TMDC catalytic sites. The adopted bottom-up approach, based on combining electrospraying with freeze-casting techniques, successfully provides a route to prepare TMDC/prGOAM hybrid systems where the dandelion-like morphology is retained. Interestingly, the microspherical morphology is also maintained in the tested electrode and after the electrocatalytic experiments, as demonstrated by scanning electron microscopy images. Comparing the HER activity of the TMDC/prGOAM hybrid systems with that of TMDC/partially reduced-Graphene Oxide (prGO) and TMDC/Vulcan was evidenced in the role of the divergent microchannels present in the 3D architecture. HER photoelectron catalytic (PEC) tests have been carried out and demonstrated an interesting increase in HER performance.

16.
Front Chem ; 4: 36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597939

RESUMO

Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

17.
ACS Appl Mater Interfaces ; 8(49): 34045-34053, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960410

RESUMO

The working potential of symmetric supercapacitors is not so wide because one type of material used for the supercapacitor electrodes prefers either positive or negative charge to both charges. To address this problem, a novel asymmetrical supercapacitor (ASC) of battery-type MnCo2O4 nanofibers (NFs)//N-doped reduced graphene oxide aerogel (N-rGOAE) was fabricated in this work. The MnCo2O4 NFs at the positive electrode store the negative charges, i.e., solvated OH-, while the N-rGOAE at the negative electrode stores the positive charges, i.e., solvated K+. An as-fabricated aqueous-based MnCo2O4//N-rGOAE ASC device can provide a wide operating potential of 1.8 V and high energy density and power density at 54 W h kg-1 and 9851 W kg-1, respectively, with 85.2% capacity retention over 3000 cycles. To understand the charge storage reaction mechanism of the MnCo2O4, the synchrotron-based X-ray absorption spectroscopy (XAS) technique was also used to determine the oxidation states of Co and Mn at the MnCo2O4 electrode after being electrochemically tested. The oxidation number of Co is oxidized from +2.76 to +2.85 after charging and reduced back to +2.75 after discharging. On the other hand, the oxidation state of Mn is reduced from +3.62 to +3.44 after charging and oxidized to +3.58 after discharging. Understanding in the oxidation states of Co and Mn at the MnCo2O4 electrode here leads to the awareness of the uncertain charge storage mechanism of the spinel-type oxide materials. High-performance ASC here in this work may be practically used in high-power applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA