Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 368: 122141, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128345

RESUMO

Microalgae have emerged as a promising source of biomass to produce renewable biofuels due to their ability to synthesize high-energy density compounds of commercial interest. This study proposes an approach for pilot-scale oil extraction, purification by fractional distillation, hydrocarbon characterization by gas chromatography coupled to mass spectrometry (GC-MS), evaluation of physicochemical parameters of the produced hydrocarbons, preliminary cost analysis, and challenges and future opportunities for green diesel on a commercial scale. Here, the microalgae Tetradesmus obliquus was cultivated in 12 m³ photobioreactors using biodigested swine waste as a culture medium. The resulting biomass was subjected to drying and harvesting, followed by oil extraction using a hot solvent extraction method, followed by distillation to purify the compounds. Three different extraction and distillation experiments were conducted, each using different solvent combinations. The results obtained revealed that extraction with a solvent blend, composed of hexane and ethanol, provided more significant yields compared to extraction with pure hexane. GC-MS analysis showed the presence of alkanes and alkenes in the oil samples, and the proportion of solvent used in the extraction directly influenced the production of alkanes. Additionally, specific hydrocarbons such as 4-methyl-1-decene, 8-heptadecene, 1-pentadecene, 9-heneicosene, and 2-dodecene were identified. The evaluation of the physicochemical parameters demonstrated that the calorific value of the distilled oil samples is within the range of typical values for petroleum diesel. However, it was observed that the distilled oil samples had higher sulfur content compared to conventional diesel. Regarding the cost analysis, it was found that it varies depending on the experimental conditions. In particular, the process using a solvent mixture of 70% hexane and 30% ethanol proved to be more economical than the others, since it extracted a greater quantity of oil with a lower initial biomass requirement. In summary, this microalgae-derived hydrocarbon production process is promising and offers insights for compound purification and future biofuel applications.


Assuntos
Biocombustíveis , Biomassa , Microalgas , Microalgas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Animais , Gasolina , Solventes/química
2.
Environ Sci Technol ; 56(12): 7512-7521, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35576244

RESUMO

This study presents a life-cycle analysis of greenhouse gas (GHG) emissions of biodiesel (fatty acid methyl ester) and renewable diesel (RD, or hydroprocessed easters and fatty acids) production from oilseed crops, distillers corn oil, used cooking oil, and tallow. Updated data for biofuel production and waste fat rendering were collected through industry surveys. Life-cycle GHG emissions reductions for producing biodiesel and RD from soybean, canola, and carinata oils range from 40% to 69% after considering land-use change estimations, compared with petroleum diesel. Converting tallow, used cooking oil, and distillers corn oil to biodiesel and RD could achieve higher GHG reductions of 79% to 86% lower than petroleum diesel. The biodiesel route has lower GHG emissions for oilseed-based pathways than the RD route because transesterification is less energy-intensive than hydro-processing. In contrast, processing feedstocks with high free fatty acid such as tallow via the biodiesel route results in slightly higher GHG emissions than the RD route, mainly due to higher energy use for pretreatment. Besides land-use change and allocation methods, key factors driving biodiesel and RD life-cycle GHG emissions include fertilizer use and nitrous oxide emissions for crop farming, energy use for grease rendering, and energy and chemicals input for biofuel conversion.


Assuntos
Gases de Efeito Estufa , Petróleo , Animais , Biocombustíveis , Óleo de Milho , Estágios do Ciclo de Vida , Estados Unidos
3.
Environ Sci Technol ; 56(20): 14640-14648, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36177943

RESUMO

Biodiesel usage is increasing steadily worldwide as the push for renewable fuel sources increases. The increased oxygen content in biodiesel fuel is believed to cause decreased particulate matter (PM) and increased nitrous oxides within its exhaust. The addition of fuel additives to further increase the oxygen content may contribute to even further benefits in exhaust composition. The aim of this study was to assess the toxicity of 10% (v/v) diethylene glycol dimethyl ether (DGDME) added as a biodiesel fuel additive. Primary human airway epithelial cells were grown at the air-liquid interface and exposed to diluted exhaust from an engine running on either grapeseed, bran, or coconut biodiesel or the same three biodiesels with 10% (v/v) DGDME added to them; mineral diesel and air were used as controls. Exhaust properties, culture permeability, epithelial cell damage, and IL-6 and IL-8 release were measured postexposure. The fuel additive DGDME caused a decrease in PM and nitrous oxide concentrations. However, exhaust exposure with DGDME also caused decreased permeability, increased epithelial cell damage, and increased release of IL-6 and IL-8 (p < 0.05). Despite the fuel additive having beneficial effects on the exhaust properties of the biodiesel, it was found to be more toxic.


Assuntos
Poluentes Atmosféricos , Biocombustíveis , Poluentes Atmosféricos/análise , Células Epiteliais , Etilenoglicóis , Gasolina/toxicidade , Humanos , Interleucina-6/farmacologia , Interleucina-8/farmacologia , Éteres Metílicos , Minerais , Óxido Nitroso , Oxigênio , Material Particulado/análise , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
4.
Part Fibre Toxicol ; 19(1): 9, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073958

RESUMO

BACKGROUND: Diesel engine exhaust causes adverse health effects. Meanwhile, the impact of renewable diesel exhaust, such as hydrotreated vegetable oil (HVO), on human health is less known. Nineteen healthy volunteers were exposed to HVO exhaust for 3 h in a chamber with a double-blind, randomized setup. Exposure scenarios comprised of HVO exhaust from two modern non-road vehicles with 1) no aftertreatment system ('HVOPM+NOx' PM1: 93 µg m-3, EC: 54 µg m-3, NO: 3.4 ppm, NO2: 0.6 ppm), 2) an aftertreatment system containing a diesel oxidation catalyst and a diesel particulate filter ('HVONOx' PM1: ~ 1 µg m-3, NO: 2.0 ppm, NO2: 0.7 ppm) and 3) filtered air (FA) as control. The exposure concentrations were in line with current EU occupational exposure limits (OELs) of NO, NO2, formaldehyde, polycyclic aromatic hydrocarbons (PAHs), and the future OEL (2023) of elemental carbon (EC). The effect on nasal patency, pulmonary function, and self-rated symptoms were assessed. Calculated predicted lung deposition of HVO exhaust particles was compared to data from an earlier diesel exhaust study. RESULTS: The average total respiratory tract deposition of PM1 during HVOPM+NOx was 27 µg h-1. The estimated deposition fraction of HVO PM1 was 40-50% higher compared to diesel exhaust PM1 from an older vehicle (earlier study), due to smaller particle sizes of the HVOPM+NOx exhaust. Compared to FA, exposure to HVOPM+NOx and HVONOx caused higher incidence of self-reported symptoms (78%, 63%, respectively, vs. 28% for FA, p < 0.03). Especially, exposure to HVOPM+NOx showed 40-50% higher eye and throat irritation symptoms. Compared to FA, a decrement in nasal patency was found for the HVONOx exposures (- 18.1, 95% CI: - 27.3 to - 8.8 L min-1, p < 0.001), and for the HVOPM+NOx (- 7.4 (- 15.6 to 0.8) L min-1, p = 0.08). Overall, no clinically significant change was indicated in the pulmonary function tests (spirometry, peak expiratory flow, forced oscillation technique). CONCLUSION: Short-term exposure to HVO exhaust concentrations corresponding to EU OELs for one workday did not cause adverse pulmonary function changes in healthy subjects. However, an increase in self-rated mild irritation symptoms, and mild decrease in nasal patency after both HVO exposures, may indicate irritative effects from exposure to HVO exhaust from modern non-road vehicles, with and without aftertreatment systems.


Assuntos
Óleos de Plantas , Emissões de Veículos , Voluntários Saudáveis , Humanos , Pulmão , Material Particulado/toxicidade , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
5.
Molecules ; 27(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163908

RESUMO

Four Ni catalysts and one Mo-Ni catalyst supported on montmorillonite were synthesized, characterized by various techniques and evaluated, under solvent-free conditions, for the production of green diesel from waste cooking oil. The optimum Ni content was found to be 20 wt.%. The addition of 2 wt.% Mo to the catalyst resulted in a considerable increase in the amount of green diesel hydrocarbons. The Mo species, moreover, led to a decrease in the (C15 + C17)/(C16 + C18) ratio, which is beneficial from the viewpoint of carbon atom economy. The promoting action of Mo was mainly attributed to the synergy between the oxygen vacancies on the surface of the well-dispersed Mo(V) and Mo(VI) oxides and the neighboring Ni0 sites. The optimum reaction conditions, for achieving a proportion of liquid product in the green diesel hydrocarbons (C15-18) equal to 96 wt.%, were found to be 350 °C, 3 g of catalyst per 100 mL of waste cooking oil and 13 h reaction time. These conditions correspond to an LHSV of 2.5 h-1, a value that is considered quite reliable from the viewpoint of industrial applications. Thus, the cheap and abundant mineral montmorillonite is proved a promising support for developing efficient Ni-Mo catalysts for green diesel production.

6.
Part Fibre Toxicol ; 17(1): 38, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771016

RESUMO

BACKGROUND: Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from three fuel types were compared at 13% engine intake O2 concentration: MK1 ultra low sulfur diesel (DEP13) and the two renewable diesel fuels hydrotreated vegetable oil (HVO13) and rapeseed methyl ester (RME13). Additionally, diesel particles from MK1 ultra low sulfur diesel were generated at 9.7% (DEP9.7) and 17% (DEP17) intake O2 concentration. We evaluated physicochemical properties and histopathological, inflammatory and genotoxic responses on day 1, 28, and 90 after single intratracheal instillation in mice compared to reference diesel particles and carbon black. RESULTS: Moderate variations were seen in physical properties for the five particles: primary particle diameter: 15-22 nm, specific surface area: 152-222 m2/g, and count median mobility diameter: 55-103 nm. Larger differences were found in chemical composition: organic carbon/total carbon ratio (0.12-0.60), polycyclic aromatic hydrocarbon content (1-27 µg/mg) and acid-extractable metal content (0.9-16 µg/mg). Intratracheal exposure to all five particles induced similar toxicological responses, with different potency. Lung particle retention was observed in DEP13 and HVO13 exposed mice on day 28 post-exposure, with less retention for the other fuel types. RME exposure induced limited response whereas the remaining particles induced dose-dependent inflammation and acute phase response on day 1. DEP13 induced acute phase response on day 28 and inflammation on day 90. DNA strand break levels were not increased as compared to vehicle, but were increased in lung and liver compared to blank filter extraction control. Neutrophil influx on day 1 correlated best with estimated deposited surface area, but also with elemental carbon, organic carbon and PAHs. DNA strand break levels in lung on day 28 and in liver on day 90 correlated with acellular particle-induced ROS. CONCLUSIONS: We studied diesel exhaust particles designed to differ in physicochemical properties. Our study highlights specific surface area, elemental carbon content, PAHs and ROS-generating potential as physicochemical predictors of diesel particle toxicity.


Assuntos
Gasolina/toxicidade , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Emissões de Veículos/toxicidade , Animais , Carbono , Carcinógenos , Dano ao DNA , Pulmão , Camundongos , Camundongos Endogâmicos C57BL
7.
Combust Flame ; 214: 65-79, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32189720

RESUMO

Particulate matter coming from the combustion of renewable diesel (RD), ultra-low sulfur diesel (ULSD) and a volumetric blend of 30% of RD with ULSD (RD30) were collected and physico-chemically characterized. Soot samples were generated in two flame burner types (non-premixed flame, NPF, and partially premixed flame, PPF) trying to simulate the diffusion and premix regimes found in diesel engines. The impact of both fuel nature and burner type was assessed on soot mass, particle size and morphology, particle nanostructure and surface functional groups. In general, although the results of HRTEM and SMPS suggested that the addition of RD reduced the average particle size and increased the concentration of ultra-fine particles, the mass emission of soot was drastically mitigated regardless of the burner used. The results also suggest that the changes in the chemical characteristics of the soot were slightly more sensitive than the changes in the internal nanostructure of the particles, since the graphitic character (as showed by Raman and infrared analysis) increased as the RD content increased, being stronger for the PPF system. Comparisons between engine soot and flame soot confirmed that the addition of RD into ULSD produced smaller and more carbonized particles. In fact, some engine results were located in between those obtained in PPF and NPF burners, suggesting that both combustion regimes are contributing to soot characteristics in engines. This consistency suggests that a first assessment of the impact of alternative fuels on the characteristics of particulate matter can be conducted through the basic approach offered by laboratory flames, thereby avoiding the costs associated with generating large quantities of fuel and the complexities of in-cylinder physical interactions and engine parameters.

8.
Fuel (Lond) ; 278: 118255, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32834073

RESUMO

Nowadays, production of biofuels is a rather hot topic due to depleting of conventional fossil fuel feedstocks and a number of other factors. Plant lipid-based feedstocks are very important for production of diesel-, kerosene-, and gasoline-like hydrocarbons. Usually, (hydro)deoxygenation processes are aimed at obtaining of linear hydrocarbons known to have poor fuel characteristics compared to the branched ones. Thus, further hydroisomerization is required to improve their properties as motor fuel components. This review article is focused on conversion of lipid-based feedstocks and model compounds into high-quality fuel components for a single step - direct cracking into aromatics and merged hydrodeoxygenation-hydroisomerization to obtain isoparaffins. The second process is quite novel and a number of the research articles presented in the literature is relatively low. As auxiliary subsections, hydroisomerization of straight hydrocarbons and techno-economic analysis of renewable diesel-like fuel production are briefly reviewed as well.

9.
J Environ Manage ; 203(Pt 3): 950-961, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28554482

RESUMO

This work describes the economic feasibility of hydroprocessed diesel fuel production via catalytic decarboxylation of rubber seed oil in Malaysia. A comprehensive techno-economic assessment is developed using Aspen HYSYS V8.0 software for process modelling and economic cost estimates. The profitability profile and minimum fuels selling price of this synthetic fuels production using rubber seed oil as biomass feedstock are assessed under a set of assumptions for what can be plausibly be achieved in 10-years framework. In this study, renewable diesel processing facility is modelled to be capable of processing 65,000 L of inedible oil per day and producing a total of 20 million litre of renewable diesel product per annual with assumed annual operational days of 347. With the forecasted renewable diesel retail price of 3.64 RM per kg, the pioneering renewable diesel project investment offers an assuring return of investment of 12.1% and net return as high as 1.35 million RM. Sensitivity analysis conducted showed that renewable diesel production cost is most sensitive to rubber seed oil price and hydrogen gas price, reflecting on the relative importance of feedstock prices in the overall profitability profile.


Assuntos
Gorduras Insaturadas/análise , Gasolina , Biomassa , Catálise , Análise Custo-Benefício , Descarboxilação , Gorduras Insaturadas/química , Gasolina/análise , Hidrogênio , Investimentos em Saúde , Malásia
10.
J Occup Environ Hyg ; 13(4): 293-302, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26588029

RESUMO

This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel (HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The effects of HVORD on criteria aerosol and gaseous emissions were compared with those of ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions and one transient cycle were used to characterize the aerosol and gaseous emissions from two older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged electronically controlled engine. Both engines were equipped with diesel oxidation catalytic converters (DOCs). For all test conditions, both engines emitted measurably lower total mass concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in place of ULSD. For all test conditions, the reductions in total mass concentrations were more substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In the case of the turbocharged electronically controlled engine, for some of the test conditions HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the majority of the test cases involving the naturally aspirated mechanically controlled engine, HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The effects of the fuels on NO2 concentrations were masked by the more prominent effects of DOC.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Biocombustíveis , Óleos de Plantas , Emissões de Veículos/análise , Carbono , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Gasolina , Hidrocarbonetos/análise , Óxidos de Nitrogênio/análise , Exposição Ocupacional/prevenção & controle
11.
Chemosphere ; 354: 141695, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492678

RESUMO

This study proposes measuring the risk of five alternative renewable diesel production technologies using a multi-criteria decision matrix strategy. Evaluated criteria include environmental, economic, technological, social, and process safety risks. The subjective Analytical Hierarchy Process (AHP) with stakeholder input provides criteria and sub-criteria weightings and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) ranks alternatives. Alternative renewable diesel options are Green Diesel from first, second, and third-generation feedstocks, Fischer-Tropsch Diesel from second-generation biomass, and the transesterification of vegetable oils (VO) to make biodiesel. This study is a response to an earlier work measuring the sustainability of the same renewable technologies. While the previous work indicated Fischer-Tropsch Diesel as the most sustainable, this current work indicated the process as the "most risky," suggesting that risk is a significant driver of decision making over sustainability, and newly developed decision tools should address both perspectives.


Assuntos
Biocombustíveis , Óleos de Plantas , Esterificação
12.
J Xenobiot ; 14(4): 1432-1449, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39449421

RESUMO

The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity.

13.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770577

RESUMO

Two nickel alumina catalysts containing 60 wt. % Ni were synthesized by wet impregnation and co-precipitation in order to study the effect of preparation methods on the catalytic efficiency concerning the transformation of sunflower oil into green diesel. The effect of activation temperature on the catalytic efficiency of the most active catalyst was also studied. The catalysts were characterized using various techniques and which were evaluated in the aforementioned reaction using a semi-batch reactor. The catalyst prepared by co-precipitation exhibited a higher specific surface area and smaller mean crystal size of the nickel nanoparticle (higher nickel metallic surface). These justify its higher efficiency with respect to the corresponding catalyst synthesized by wet impregnation. The increase in the activation temperature from 400 to 600 °C increased the size of the nickel nanoparticles through sintering, thus destroying the small pores. These led to a decrease in the nickel surface and specific surface area and, thus, to a decrease in the catalytic efficiency. The optimization of the reaction conditions over the most active catalyst (prepared by co-precipitation and activated at 400 °C) leads to the complete transformation not only of the sunflower oil (edible oil) but also of waste cooking oil (non-edible oil) into green diesel. The liquid produced after the hydrotreatment for these two feedstocks for 7 h, at H2 pressure 40 bar and temperature 350 °C using 100 mL of oil and 1 g of catalyst was composed of 97 and 96 wt. % of green diesel, respectively.

14.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242019

RESUMO

In the present work, natural mordenite originated from volcanic soils in Greek islands, activated using HCl solution and HCl solution followed by NaOH solution, was used as support for preparing two metallic nickel catalysts (30 wt.% Ni). The catalysts were thoroughly characterized (XRF, N2 adsorption-desorption, SEM, XRD, TEM, H2-TPR, NH3-TPD) and evaluated for biodiesel upgrading to green (renewable) diesel. Double activation of natural mordenite optimized its supporting characteristics, finally resulting in a supported nickel catalyst with (i) enhanced specific surface area (124 m2 g-1) and enhanced mean pore diameter (14 nm) facilitating mass transfer; (ii) easier nickel phase reduction; (iii) enhanced Ni0 dispersion and thus high active surface; (iv) balanced population of moderate and strong acid sites; (v) resistance to sintering; and (vi) low coke formation. Over the corresponding catalyst, the production of a liquid consisting of 94 wt.% renewable diesel was achieved, after 9 h of reaction at 350 °C and 40 bar H2 pressure, in a semi-batch reactor under solvent-free conditions.

15.
Plants (Basel) ; 11(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336654

RESUMO

Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing "camelina" from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches.

16.
Environ Sci Pollut Res Int ; 29(34): 51143-51152, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35075565

RESUMO

Non-edible Ceiba oil has the potential to be a sustainable biofuel resource in tropical countries that can replace a portion of today's fossil fuels. Catalytic deoxygenation of the Ceiba oil (high O/C ratio) was conducted to produce hydrocarbon biofuel (high H/C ratio) over NiO-CaO5/SiO2-Al2O3 catalyst with aims of high diesel selectivity and catalyst reusability. In the present study, response surface methodology (RSM) technique with Box-Behnken experimental designs (BBD) was used to evaluate and optimize liquid hydrocarbon yield by considering the following deoxygenation parameters: catalyst loading (1-9 wt. %), reaction temperature (300-380 °C) and reaction time (30-180 min). According to the RSM results, the maximum yield for liquid hydrocarbon n-(C8-C20) was found to be 77% at 340 °C within 105 min and 5 wt. % catalyst loading. In addition, the deoxygenation model showed that the catalyst loading-reaction time interaction has a major impact on the deoxygenation activity. Based on the product analysis, oxygenated species from Ceiba oil were successfully removed in the form of CO2/CO via decarboxylation/decarbonylation (deCOx) pathways. The NiO-CaO5/SiO2-Al2O3 catalyst rendered stable reusability for five consecutive runs with liquid hydrocarbon yield within the range of 66-75% with n-(C15 + C17) selectivity of 64-72%. Despite this, coke deposition was observed after several times of catalyst usage, which is due to the high deoxygenation temperature (> 300 °C) that resulted in unfavourable polymerization side reaction.


Assuntos
Biocombustíveis , Ceiba , Catálise , Hidrocarbonetos , Dióxido de Silício
17.
Artigo em Inglês | MEDLINE | ID: mdl-34208511

RESUMO

Hydrogenated vegetable oil (HVO) is a renewable diesel fuel used to replace petroleum diesel. The organic compounds in HVO are poorly characterized; therefore, toxicological properties could be different from petroleum diesel exhaust. The aim of this study was to evaluate the exposure and effective biomarkers in 18 individuals after short-term (3 h) exposure to HVO exhaust and petroleum diesel exhaust fumes. Liquid chromatography tandem mass spectrometry was used to analyze urinary biomarkers. A proximity extension assay was used for the measurement of inflammatory proteins in plasma samples. Short-term (3 h) exposure to HVO exhaust (PM1 ~1 µg/m3 and ~90 µg/m3 for vehicles with and without exhaust aftertreatment systems, respectively) did not increase any exposure biomarker, whereas petroleum diesel exhaust (PM1 ~300 µg/m3) increased urinary 4-MHA, a biomarker for p-xylene. HVO exhaust from the vehicle without exhaust aftertreatment system increased urinary 4-HNE-MA, a biomarker for lipid peroxidation, from 64 ng/mL urine (before exposure) to 141 ng/mL (24 h after exposure, p < 0.001). There was no differential expression of plasma inflammatory proteins between the HVO exhaust and control exposure group. In conclusion, short-term exposure to low concentrations of HVO exhaust did not increase urinary exposure biomarkers, but caused a slight increase in lipid peroxidation associated with the particle fraction.


Assuntos
Exposição por Inalação , Emissões de Veículos , Biocombustíveis , Biomarcadores , Humanos , Óleos de Plantas , Emissões de Veículos/toxicidade
18.
Biotechnol Biofuels ; 14(1): 166, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353363

RESUMO

BACKGROUND: The objective of this study was to evaluate the environmental impact of the production of a range of liquid biofuels produced from the combination of fermenting sorghum stalk juice (bioethanol) and the pyrolysis/hydrotreatment of residual bagasse (renewable gasoline and diesel). Life cycle impact assessment (LCIA) was performed on a farm-to-wheels system that included: (i) sorghum farming, (ii) juice extraction, (iii) juice fermenting, (iv) bagasse pretreatment, (v) bagasse thermochemical treatment (pyrolysis, hydroprocessing, and steam reforming), and (vi) typical passenger vehicle operation. LCIA results were compared to those of petroleum fuels providing the equivalent functional unit-cumulative kilometers driven by spark ignition direct injection (SIDI) vehicles utilizing either renewable gasoline or 'bioE85-a blend of bioethanol and renewable gasoline,' and a compression ignition direct injection (CIDI) vehicle utilizing renewable diesel produced from 76 tons of harvested sweet sorghum (1 ha). RESULTS: Sweet sorghum biofuels resulted in a 48% reduction climate change impact and a 52% reduction in fossil fuel depletion. Additionally, reduced impacts in ozone depletion and eutrophication were found (67% and 47%, respectively). Petroleum fuels had lower impacts for the categories of non-carcinogenic health impact, smog, respiratory effects, and ecotoxicity, showing tradeoffs between sorghum and petroleum fuels. CONCLUSION: Overall, sorghum biofuels provide advantages in environmental impact categories including global warming potential, fossil fuel depletion and eutrophication, showing potential for sorghum as a promising second-generation feedstock for fuel.

19.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1041-1042: 94-97, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28013180

RESUMO

Existing liquid chromatography - mass spectrometry method for the analysis of short chain carboxylic acids was expanded and validated to cover also the measurement of glycerol from oils and fats. The method employs chloride anion attachment and two ions, [glycerol+35Cl]- and [glycerol+37Cl]-, as alternative quantifiers for improved selectivity of glycerol measurement. The averaged within run precision, between run precision and accuracy ranged between 0.3-7%, 0.4-6% and 94-99%, respectively, depending on the analyte ion and sample matrix. Selected renewable diesel feedstocks were analyzed with the method.


Assuntos
Cromatografia Líquida/métodos , Gorduras/química , Glicerol/análise , Óleos de Plantas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Biocombustíveis , Glicerol/química , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Water Res ; 102: 330-345, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27379729

RESUMO

The conversion of lignocellulosic biomass to biofuel requires water. This study is focused on the production of hydrogenation-derived renewable diesel (HDRD) from lignocellulosic biomass. Although there has been considerable focus on the assessment of greenhouse gas (GHG) emissions, there is limited work on the assessment of the life cycle water footprint of HDRD production. This paper presents a life cycle water consumption study on lignocellulosic biomass to HDRD via pyrolysis and hydrothermal liquefaction (HTL) processes. The results of this study show that whole tree (i.e., tree chips) biomass has water requirements of 497.79 L/MJ HDRD and 376.16 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Forest residues (i.e., chips from branches and tops generated during logging operations) have water requirements of 338.58 L/MJ HDRD and 255.85 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Agricultural residues (i.e., straw from wheat, oats, and barley), which are more water efficient, have water requirements of 83.7 L/MJ HDRD and 59.1 L/MJ HDRD through fast pyrolysis and the HTL process, respectively. Differences in water use between feedstocks and conversion processes indicate that the choices of biomass feedstock and conversion pathway water efficiency are crucial factors affecting water use efficiency of HDRD production.


Assuntos
Biomassa , Água/química , Biocombustíveis , Hidrogenação , Ciclo Hidrológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA