Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234917

RESUMO

Flavonols are found in plants as aglycones and as glycosides. Antioxidant activity of flavonols may occur via several mechanisms within the cell, and mitochondria as a target may play an important role. There is a lack of information about the influence of the sugar moiety on biological activity of flavonoid glycosides. The aims of study were to investigate the effects of quercetin and its glycosides on mitochondrial respiration rates at various metabolic states, and to evaluate their antioxidant potential using chemical and biological approaches. Mitochondrial function was measured using an oxygraphic method, cytochrome c reduction spectrophotometrically, H2O2 generation in mitochondria fluorimetrically, and antioxidant activity of flavonoids using an HPLC-post column system. Our data revealed that quercetin and its glycosides isoquercitrin, rutin, and hyperoside uncouple kidney mitochondrial respiration (increasing the State 2 respiration rate) and significantly reduce cytochrome c. Moreover, quercetin, and its glycosides decrease the production of mitochondrial H2O2 and possess radical scavenging and ferric reducing capacities. The highest activity was characteristic for quercetin, showing that the sugar moiety significantly diminishes its activity. In conclusion, our results show the efficient radical scavenging, ferric and cytochrome c reducing capacities, and uncoupling properties of quercetin and its glycosides, as well as the importance of the sugar residue and its structure in the regulation of kidney mitochondrial function.


Assuntos
Antioxidantes , Quercetina , Antioxidantes/química , Citocromos c/metabolismo , Flavonoides/química , Flavonóis/química , Glicosídeos/química , Peróxido de Hidrogênio/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Quercetina/química , Rutina/metabolismo , Rutina/farmacologia , Açúcares/metabolismo
2.
Environ Monit Assess ; 193(10): 641, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508322

RESUMO

With the aim to recommend an integrated alternative for the combined treatment of olive mill wastewater (OMW) and cotton residues (CR), and the production of high value and environmentally friendly products, two compost piles were set up. The first pile (control, pile 1) consisted of ginned CR, whereas the second (pile 2) was made of CR with the addition of OMW. A series of physicochemical parameters and the culturable microbial diversity in both piles were assessed. Co-composting (pile 2) displayed higher temperatures during the whole process, a prolonged second thermophilic phase and temperature values higher than 40 °C even after the thermophilic stage. Comparing the physicochemical parameters of the pile 2 with those of the pile 1, it was deduced that pH in the former was more acidic during the onset of the process; the EC values were higher throughout the process, while the levels of ammonium and nitrate nitrogen, as well as the NH4+/NO3- ratios, were lower at most of the sampling dates. By evaluating the abovementioned results, it was estimated that the co-composting process headed sooner toward stability and maturity, Isolated microorganisms from both piles were identified as members of the genera Brevibacillus, Serratia, Klebsiella, and Aspergillus, whereas active thermotolerant diazotrophs were detected in both piles at the 2nd thermophilic phase emerging a promising prospect upon further evaluation for enhancing the end-product quality. Our findings indicate that co-composting is an interesting approach for the exploitation of large quantities of agro-industrial residues with a final product suitable for improving soil fertility and health.


Assuntos
Compostagem , Olea , Monitoramento Ambiental , Solo , Temperatura , Águas Residuárias
3.
J Therm Biol ; 74: 14-22, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29801619

RESUMO

Heat shock response (HSR), in terms of transcription regulation of two heat shock proteins genes hsp70 and hsp90), was analysed in a widespread tropical copepod Pseudodiaptomus annandalei. The mRNA transcripts of both genes were quantified after copepods at a salinity of 20 underwent an acclimation process involving an initial acclimation temperature of 29 °C, followed by gradual thermal ramping to the target exposure temperature range of 24-36 °C. The respective cellular HSR and organismal metabolism, measured by respiratory activity at exposure temperatures, were compared. The fold change in mRNA expression for both hsp70 and hsp90 (8-9 fold) peaks at 32 °C, which is very close to 32.4 °C, the upper thermal optimum for respiration in the species. Unexpectedly, the modelled HSR curves peak at only 3 °C (hsp90) and 3.5 °C (hsp70) above the mean water temperature (29.32 °C) of the copepod in the field. We propose that copepods in tropical waters adopt a preparative HSR strategy, early at the upper limit of its thermal optimum, due to the narrow thermal range of its habitat thus precluding substantial energy demand at higher temperatures. However, the model suggests that the species could survive to at least 36 °C with short acclimation time. Nevertheless, the significant overlap between its thermal range of hsp synthesis and the narrow temperature range of its habitat also suggests that any unprecedented rise in sea temperature would have a detrimental effect on the species.


Assuntos
Aclimatação , Copépodes/metabolismo , Resposta ao Choque Térmico , Estresse Fisiológico , Temperatura , Animais , Estuários , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , RNA Mensageiro/metabolismo , Clima Tropical
4.
Ecology ; 98(12): 3106-3115, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940445

RESUMO

Many studies examine how body size mediates energy use, but few investigate how size simultaneously regulates energy acquisition. Furthermore, rarely energy fluxes are examined while accounting for the role of biotic and abiotic factors in which they are nested. These limitations contribute to an incomplete understanding of how size affects the transfer of energy through individuals, populations, and communities. Here we characterized photosynthesis-irradiance (P-I) curves and per-cell net-energy use for 21 phytoplankton species spanning across four orders of magnitude of size and seven phyla, each measured across six light intensities and four population densities. We then used phylogenetic mixed models to quantify how body size influences the energy turnover rates of a species, and how this changes across environments. Rate-parameters for the P-I curve and net-energy budgets were mostly highly correlated and consistent with an allometric size-scaling exponent of <1. The energy flux of a cell decreased with population density and increased with light intensity, but the effect of body size remained constant across all combinations of treatment levels (i.e. no size×populationdensity interaction). The negative effect of population density on photosynthesis and respiration is mostly consistent with an active downregulation of metabolic rates following a decrease in per-cell resource availability, possibly as an adaptive strategy to reduce the minimum requirements of a cell and improve its competitive ability. Also, because an increase in body size corresponds to a less-than-proportional increase in net-energy (i.e. exponent<1), we propose that volume-specific net-energy flux can represent an important cost of evolving larger body sizes in autotrophic single-cell organisms.


Assuntos
Ecossistema , Fitoplâncton , Biomassa , Luz , Fotossíntese , Filogenia
5.
Biology (Basel) ; 12(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36671801

RESUMO

Because of climate change, the McMurdo Dry Valleys of Antarctica (MCM) have experienced an increase in the frequency and magnitude of summer pulse warming and surface ice and snow melting events. In response to these environmental changes, some nematode species in the MCM have experienced steady population declines over the last three decades, but Plectus murrayi, a mesophilic nematode species, has responded with a steady increase in range and abundance. To determine how P. murrayi responds to increasing temperatures, we measured metabolic heat and CO2 production rates and calculated O2 consumption rates as a function of temperature at 5 °C intervals from 5 to 50 °C. Heat, CO2 production, and O2 consumption rates increase approximately exponentially up to 40 °C, a temperature never experienced in their polar habitat. Metabolic rates decline rapidly above 40 °C and are irreversibly lost at 50 °C due to thermal stress and mortality. Caenorhabditis elegans, a much more widespread nematode that is found in more temperate environments reaches peak metabolic heat rate at just 27 °C, above which it experiences high mortality due to thermal stress. At temperatures from 10 to 40 °C, P. murrayi produces about 6 times more CO2 than the O2 it consumes, a respiratory quotient indicative of either acetogenesis or de novo lipogenesis. No potential acetogenic microbes were identified in the P. murrayi microbiome, suggesting that P. murrayi is producing increased CO2 as a byproduct of de novo lipogenesis. This phenomenon, in conjunction with increased summer temperatures in their polar habitat, will likely lead to increased demand for carbon and subsequent increases in CO2 production, population abundance, and range expansion. If such changes are not concomitant with increased carbon inputs, we predict the MCM soil ecosystems will experience dramatic declines in functional and taxonomic diversity.

6.
Ecology ; 103(4): e3648, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080770

RESUMO

Coastal vegetated habitats such as seagrasses are known to play a critical role in carbon cycling and the potential to mitigate climate change, as blue carbon habitats have been repeatedly highlighted. However, little information is known about the role of associated macrofauna communities on the dynamics of critical processes of seagrass carbon metabolism (e.g., respiration, turnover, and production). We conducted a field study across a spatial gradient of seagrass meadows involving variable environmental conditions and macrobenthic diversity to investigate (1) the relationship between macrofauna biodiversity and secondary production (i.e., consumer incorporation of organic matter per time unit), and (2) the role of macrofauna communities in seagrass organic carbon metabolism (i.e., respiration and primary production). We show that, although several environmental factors influence secondary production, macrofauna biodiversity controls the range of local seagrass secondary production. We demonstrate that macrofauna respiration rates were responsible for almost 40% of the overall seafloor community respiration. Macrofauna represented on average >25% of the total benthic organic C stocks, high secondary production that is likely to become available to upper trophic levels of the coastal food web. Our findings support the role of macrofauna biodiversity in maintaining productive ecosystems, implying that biodiversity loss due to ongoing environmental change yields less productive seagrass ecosystems. Therefore, the assessment of carbon dynamics in coastal habitats should include associated macrofauna biodiversity elements if we aim to obtain robust estimates of global carbon budgets required to implement management actions for the sustainable functioning of the world's coasts.


Assuntos
Carbono , Ecossistema , Biodiversidade , Carbono/metabolismo , Sequestro de Carbono , Sedimentos Geológicos
7.
Geobiology ; 20(6): 857-869, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36081384

RESUMO

We investigated the impact of pressure on thermophilic, chemolithoautotrophic NO 3 - reducing bacteria of the phyla Campylobacterota and Aquificota isolated from deep-sea hydrothermal vents. Batch incubations at 5 and 20 MPa resulted in decreased NO 3 - consumption, lower cell concentrations, and overall slower growth in Caminibacter mediatlanticus (Campylobacterota) and Thermovibrio ammonificans (Aquificota), relative to batch incubations near standard pressure (0.2 MPa) conditions. Nitrogen isotope fractionation effects from chemolithoautotrophic NO 3 - reduction by both microorganisms were, on the contrary, maintained under all pressure conditions. Comparable chemolithoautotrophic NO 3 - reducing activities between previously reported natural hydrothermal vent fluid microbial communities dominated by Campylobacterota at 25 MPa and Campylobacterota laboratory isolates at 0.2 MPa, suggest robust similarities in cell-specific NO 3 - reduction rates and doubling times between microbial populations and communities growing maximally under similar temperature conditions. Physiological and metabolic comparisons of our results with other studies of pressure effects on anaerobic chemolithoautotrophic processes (i.e., microbial S0 -oxidation coupled to Fe(III) reduction and hydrogenotrophic methanogenesis) suggest that anaerobic chemolithoautotrophs relying on oxidation-reduction (redox) reactions that yield higher Gibbs energies experience larger shifts in cell-specific respiration rates and doubling times at increased pressures. Overall, our results advance understanding of the role of pressure, its relationship with temperature and redox conditions, and their effects on seafloor chemolithoautotrophic NO 3 - reduction and other anaerobic chemolithoautotrophic processes.


Assuntos
Compostos Férricos , Água do Mar , Pressão Hidrostática , Isótopos de Nitrogênio , Filogenia , Água do Mar/microbiologia
8.
AoB Plants ; 11(2): plz013, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30949326

RESUMO

Golden genotype of papaya (Carica papaya), named for its yellowish leaves, produces fruits very much appreciated by consumers worldwide. However, its growth and yield are considerably lower than those of other genotypes, such as 'Sunrise Solo', which has intensely green leaves. We undertook an investigation with the goal of evaluating key physiological traits that can affect biomass accumulation of both Golden and Sunrise Solo genotypes. Papaya seeds from two different genotypes with contrasting leaf colour 'Sunrise Solo' and Golden were grown in greenhouse conditions. Plant growth (plant height, leaf number, stem diameter, leaf area, plant dry weight), leaf gas exchanges, leaf carbon balance, RuBisCO oxygenation and carboxylation rates, nitrogen, as well as chlorophyll concentrations and fluorescence variables were assessed. Although no significant differences were observed for photosynthetic rates between genotypes, the accumulation of small differences in photosynthesis, day after day, over a long period, might contribute to some extend to a higher C-budget in Sunrise Solo, higher leaf area and, thus, to higher productivity. Additionally, we consider that physiological processes other than photosynthesis and leaf respiration can be as well involved in lower growth and yield of Golden. One of these aspects could be related to the higher rates of photorespiration observed in Sunrise Solo, which could improve the rate of N assimilation into organic compounds, such as amino acids, thus contributing to the higher biomass production in Sunrise Solo relative to Golden. Further experiments to evaluate the effects of N metabolism on physiology and growth of Golden are required as it has the potential to limit its yield.

9.
Toxins (Basel) ; 10(2)2018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-29462982

RESUMO

Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95-0.90) and temperature (10-25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20-25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95-0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca <1.0% DML, there was a low risk of ZEN contamination exceeding EU legislative limits, while at >1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.


Assuntos
Grão Comestível , Contaminação de Alimentos/análise , Fusarium/isolamento & purificação , Triticum , Zearalenona/análise , Dióxido de Carbono/metabolismo , Grão Comestível/química , Grão Comestível/microbiologia , Grão Comestível/efeitos da radiação , Irradiação de Alimentos , Armazenamento de Alimentos , Fusarium/metabolismo , Fusarium/efeitos da radiação , Raios gama , Temperatura , Triticum/química , Triticum/microbiologia , Triticum/efeitos da radiação , Água/análise
10.
Ecol Evol ; 7(21): 8761-8769, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29152175

RESUMO

Empirical studies indicate that the exponents governing the scaling of plant respiration rates (R) with respect to biomass (M) numerically vary between three-fourth for adult plants and 1.0 for seedlings and saplings and are affected by nitrogen (N) and phosphorus (P) content. However, whether the scaling of R with respect to M (or N and P) varies among different phylogenetic groups (e.g., gymnosperms vs. angiosperms) or during the growing and dormant seasons remains unclear. We measured the whole-plant R and M, and N and P content of the seedlings of four woody species during the growing season (early October) and the dormant season (January). The data show that (i) the scaling exponents of R versus M, R versus N, and R versus P differed significantly among the four species, but (ii), not between the growing and dormant seasons for each of the four species, although (iii) the normalization constants governing the scaling relationships were numerically greater for the growing season compared to the dormant season. In addition, (iv) the scaling exponents of R versus M, R versus N, and R versus P were numerically larger for the two angiosperm species compared to those of the two gymnosperm species, (v) the interspecific scaling exponents for the four species were greater during the growing season than in the dormant season, and (vi), interspecifically, P scaled nearly isometric with N content. Those findings indicate that the metabolic scaling relationships among R, M, N, and P manifest seasonal variation and differ between angiosperm and gymnosperm species, that is, there is no single, canonical scaling exponent for the seedlings of woody species.

11.
Sci Total Environ ; 539: 114-124, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26356184

RESUMO

Naphthenic acids (NAs) are persistent compounds that are components of most petroleum, including those found in the Athabasca oil sands. Their presence in freshly processed tailings is of significant environmental concern due to their toxicity to aquatic organisms. Gamma irradiation (GI) was used to reduce the toxicity and concentration of NAs in oil sands process water (OSPW) and fluid fine tailings (FFT). This investigation systematically studied the impact of GI on the biogeochemical development and progressive reduction of toxicity using laboratory incubations of fresh and aged tailings under anoxic and oxic conditions. GI reduced NA concentrations in OSPW by up to 97% in OSPW and in FFT by 85%. The GI-treated FFT exhibited increased rates of biogeochemical change, dependent on the age of the tailings source. Dissolved oxygen (DO) flux was enhanced in GI-treated FFT from fresh and aged source materials, whereas hydrogen sulfide (HS(-)) flux was stimulated only in the fresh FFT. Acute toxicity to Vibrio fischeri was immediately reduced following GI treatment of fresh OSPW. GI treatment followed by 4-week incubation reduced toxicity of aged OSPW to V. fischeri.


Assuntos
Ácidos Carboxílicos/análise , Recuperação e Remediação Ambiental/métodos , Raios gama , Poluentes Químicos da Água/análise , Campos de Petróleo e Gás , Eliminação de Resíduos Líquidos/métodos
12.
Protist ; 165(4): 485-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24995585

RESUMO

Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size.


Assuntos
Respiração Celular/fisiologia , Mitocôndrias/metabolismo , Oxigênio/metabolismo
13.
Gene ; 533(2): 500-7, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24080481

RESUMO

Environmental-induced hyperthermia compromises animal production with drastic economic consequences to global animal agriculture and jeopardizes animal welfare. Heat stress is a major stressor that occurs as a result of an imbalance between heat production within the body and its dissipation and it affects animals at cellular, molecular and ecological levels. The molecular mechanism underlying the physiology of heat stress in the cattle remains undefined. The present study sought to evaluate mRNA expression profiles in the cattle blood in response to heat stress. In this study we report the genes that were differentially expressed in response to heat stress using global scale genome expression technology (Microarray). Four Sahiwal heifers were exposed to 42°C with 90% humidity for 4h followed by normothermia. Gene expression changes include activation of heat shock transcription factor 1 (HSF1), increased expression of heat shock proteins (HSP) and decreased expression and synthesis of other proteins, immune system activation via extracellular secretion of HSP. A cDNA microarray analysis found 140 transcripts to be up-regulated and 77 down-regulated in the cattle blood after heat treatment (P<0.05). But still a comprehensive explanation for the direction of fold change and the specific genes involved in response to acute heat stress still remains to be explored. These findings may provide insights into the underlying mechanism of physiology of heat stress in cattle. Understanding the biology and mechanisms of heat stress is critical to developing approaches to ameliorate current production issues for improving animal performance and agriculture economics.


Assuntos
Bovinos/genética , Bovinos/fisiologia , Resposta ao Choque Térmico/genética , Animais , Temperatura Corporal/fisiologia , Mapeamento Cromossômico , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Temperatura Alta , Umidade , Redes e Vias Metabólicas/genética , Análise em Microsséries , Análise de Sequência de DNA , Fatores de Transcrição/genética
14.
Acta biol. colomb ; 16(1): 195-208, abr. 2011.
Artigo em Espanhol | LILACS | ID: lil-635059

RESUMO

Se evaluó el proceso de bioestimulación por nutrientes utilizando fertilizantes inorgánicos compuestos (FIC) N:P:K 28:12:7 y sales inorgánicas simples (SIS) NH4NO3 y K2HPO4 en suelos contaminados con hidrocarburos utilizando respirometría. El suelo fue contaminado con lodos aceitosos a una concentración 40.000 mgTPH/kgps. Para cuantificar el consumo de oxígeno se utilizaron dos respirómetros de medición manométrica HACH® 2173b y OXITOP® PF600 durante ensayos de 13 días (n=3). Se evaluaron dos tratamientos (FIC y SIS) y tres controles (abiótico, sustrato de referencia y sin nutrientes). Se analizaron parámetros físico-químicos (pH, nutrientes y TPH) y microbiológicos (heterótrofos y degradadores) al inicio y al final de cada ensayo. SIS y el control sin nutrientes presentaron las mayores tasas de respiración, en el equipo HACH se obtuvieron valores de 802,28 y 850,72 mgO2kgps-1d-1 respectivamente, y en OXITOP fueron de 936,65 y 502,05 mgO2kgps-1d-1, respectivamente, indicando que los nutrientes de SIS estimularon el metabolismo microbiano. Por otro lado, FIC presentó los recuentos y tasas de respiración más bajas (188,18 y 139,87 mgO2kgps-1d-1 en HACH y OXITOP, respectivamente), esto pudo estar relacionado a un efecto inhibitorio generado por la acumulación de amoniaco, limitando el crecimiento de la población degradadora.


The biostimulation process was evaluated in a hydrocarbon contaminated soil by respirometry after amendment with inorganic compound fertilizer (ICF) (N:P:K 28:12:7) and simple inorganic salts (SIS) (NH4NO3 and K2HPO4). The soil was contaminated with oily sludge (40,000 mgTPH/kgdw). The oxygen uptake was measured using two respirometers (HACH® 2173b and OXITOP® PF600) during thirteen days (n=3). Two treatments (ICF and SIS) and three controls (abiotic, reference substance and without nutrients) were evaluated during the study. Physicochemical (pH, nutrients, and TPH) and microbiological analysis (heterotrophic and hydrocarbon-utilizing microorganisms) were obtained at the beginning and at the end of each assay. Higher respiration rates were recorded in SIS and without nutrient control. Results were 802.28 and 850.72-1d-1,mgO2kgps-1d-1 in HACH, while in OXITOP were 936.65 and 502.05 mgO2kgps respectively. These data indicate that amendment of nutrients stimulated microbial metabolism. ICF had lower respiration rates (188.18 and 139.87 mgO2kgps-1d-1 in HACH and OXITOP, respectively) as well as counts, this could be attributed to ammonia toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA