Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116859, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39137466

RESUMO

The developmental toxicity and human health risks of triazole fungicides (TFs) have attracted worldwide attention due to the ability to enter the human body in a variety of ways. Nevertheless, the specific mechanism by which TFs exert remains incompletely understood. Given that retinoic acid (RA) signaling pathway are closely related to development, this study aimed to screen and identify developmentally disabled chemicals in commonly used TFs and to reveal the potential effects of TFs on developmental retardation through the RA signaling pathway in mouse embryonic stem cells (mESCs). Specifically, six typical TFs (myclobutanil, tebuconazole, hexaconazole, propiconazole, difenoconazole, and flusilazole) were exposed through the construction of an embryoid bodies (EBs)-based in vitro global differentiation models. Our results clarified that various TFs disturbed lineage commitment during early embryonic development. Crucially, the activation of RA signaling pathway, which alters the expression of key genes and interferes the transport and metabolism of retinol, may be responsible for this effect. Furthermore, molecular docking, molecular dynamics simulations, and experiments using a retinoic acid receptor α inhibitor provide evidence supporting the potential modulatory role of the retinoic acid signaling pathway in developmental injury. The current study offers new insights into the TFs involved in the RA signaling pathway that interfere with the differentiation process of mESCs, which is crucial for understanding the impact of TFs on pregnancy and early development.


Assuntos
Diferenciação Celular , Fungicidas Industriais , Transdução de Sinais , Tretinoína , Triazóis , Triazóis/toxicidade , Fungicidas Industriais/toxicidade , Diferenciação Celular/efeitos dos fármacos , Tretinoína/toxicidade , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Simulação de Acoplamento Molecular , Dioxolanos/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Nitrilas , Silanos
2.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047187

RESUMO

Type 2 diabetes mellitus (T2DM) represents an important microvascular disease concerning the kidney and the brain. Gut dysbiosis and microbiota-derived metabolites may be in relation with early pathophysiological changes in diabetic kidney disease (DKD). The aim of the study was to find new potential gut-derived biomarkers involved in the pathogenesis of early DKD, with a focus on the complex interconnection of these biomarkers with podocyte injury, proximal tubule dysfunction, renal and cerebrovascular endothelial dysfunction. The study design consisted of metabolite profiling of serum and urine of 90 T2DM patients (subgroups P1-normoalbuminuria, P2-microalbuminuria, P3-macroalbuminuria) and 20 healthy controls (group C), based on ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry analysis (UHPLC-QTOF-ESI+-MS). By multivariate and univariate analyses of serum and urine, which included Partial Least Squares Discriminant Analysis (PLSDA), Variable Importance Plots (VIP), Random Forest scores, One Way ANOVA and Biomarker analysis, there were discovered metabolites belonging to nitrogen metabolic pathway and retinoic acid signaling pathway which differentiate P1 group from P2, P3, C groups. Tyrosine, phenylalanine, indoxyl sulfate, serotonin sulfate, and all-trans retinoic acid express the metabolic fingerprint of P1 group vs. P2, P3, C groups, revealing a particular pattern in early DKD in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Albuminúria/metabolismo , Biomarcadores
3.
Wei Sheng Yan Jiu ; 52(6): 993-999, 2023 Nov.
Artigo em Zh | MEDLINE | ID: mdl-38115665

RESUMO

OBJECTIVE: To observe the expression of the retinoic acid(RA) pathway in hypothalamus and pituitary damage induced by combined exposure of low-level lead and 1-nitropyrene in mice, and to explore the relationship between the changes of RA pathway and hypothalamus and pituitary damage. METHODS: A total of 84 4-week-old ICR mice were randomly divided into the control group, Pb~(2+) tainted group(0.008 mg/L), 1-NP tainted group(0.1 mg/kg), low(0.008 mg/L Pb~(2+)+0.004 mg/kg 1-NP), medium(0.008 mg/L Pb~(2+)+0.02 mg/kg 1-NP), and high-dose co-toxicity group(0.008 mg/L Pb~(2+)+0.1 mg/kg 1-NP) according to body weight, with 14 mice in each group. Among them, Pb~(2+) was provided by lead acetate, added to deionized water and ingested by mice drinking freely, 1-NP was given by intraperitoneal injection, 1-NP was administered by intraperitoneal injection. Record daily water intake and food intake. After 21 consecutive days of exposure, body mass was measured, histological changes in the hypothalamus and pituitary were observed under an optical microscope, and lead content in brain tissue was measured by atomic absorption spectrometry. The real-time fluorescence quantitative PCR was used to detect the abundance of retinoic acid pathway members and c-Jun N-terminal kinases genes(Jnks), and the western blot method was used to detect expression levels of acetaldehyde dehydrogenase 2(ALDH2), cytochrome P450 family member 26A1(CYP26a1) proteins. RESULTS: There was no difference in the mean weekly water intake and food intake of the mice in each group. The body weight of the high-dose co-toxicity group mice((27.4±1.9)g) was lower than that of the control group((29.8±2.3)g)(P<0.05). The level of serum follicle-stimulating hormone(FSH) in the middle and high dose co-toxicity groups((265.01±2.99), (260.42±3.61)pg/mL, respectively) was lower than that in the control group((279.00±1.30)pg/mL, P<0.05). The content of Pb~(2+) in the brain of each group containing Pb~(2+) was higher than that of the control group. In the hypothalamic and pituitary tissues, the abundance of Adh1, Adh2, Rar and Rxr, and ALDH2 levels in the medium and high dose co-toxicity groups were higher than those in the control group(P<0.05). Cyp26a1 gene abundance and protein levels were lower in the medium and high dose co-toxicity groups than in the control group(P<0.05). The abundance of Jnks in the high-dose co-toxicity group was higher than that in the control group(P<0.05). CONCLUSION: Continuous exposure to 0.008 mg/L Pb~(2+)+0.1 mg/kg 1-NP for 21 days can cause damage to the hypothalamus and pituitary of mice, and activate the RA signaling pathway.


Assuntos
Chumbo , Tretinoína , Camundongos , Animais , Chumbo/toxicidade , Ácido Retinoico 4 Hidroxilase , Camundongos Endogâmicos ICR , Hipotálamo , Peso Corporal
4.
Wei Sheng Yan Jiu ; 50(6): 1000-1005, 2021 Nov.
Artigo em Zh | MEDLINE | ID: mdl-34949330

RESUMO

OBJECTIVE: To investigate the expression of key genes and proteins of retinoic acid signaling pathway in procymidone-induced uterine injury in adolescent mice, and analyze the relationship between the signaling pathway and female reproductive damage. METHODS: The 3-week age ICR mice were randomly divided into low, medium, and high-dose groups and one control group with 8 mice in each group by weight. The low, medium and high dose groups were respectively given 50, 100 and 200 mg/(kg·d) procymidone orally for 21 days continuously, while the control group was given equal volume of soybean oil. After the mice were sacrificed, the uterus was taken from both sides for observing the histological changes in the cross-sectional slices of the uterus, the detection of the expression abundance of genes which related to the retinoic acid signaling pathway by the real-time fluorescent quantitative PCR, and the measurement of ALDH2 and CYP26 a1 proteins expression by Western blot. RESULTS: The body weight of mice in low-dose, medium-dose and high-dose groups were(27.50±1.49) g, (27.72±1.40) g and(26.89±1.19) g, respectively, which were lower than those in control group(31.48±1.14) g(P<0.05). The density of uterine lining monolayer columnar epithelium and lamina propria tubular uterine glands gradually decreases, at the same time the uterine folds become less with the dose of procymidone increases. adh1, ad/2, aldh1a1 in each experimental group were higher than those in the control group(P<0.05); the expression levels of aldh1a2 and aldh1a3 genes in the middle and high dose groups were higher than those in the control group(P<0.05); the expression levels of retinoic acid nuclear receptor rarα, rarγ, rxrα and rxrß genes in the high-dose group were higher than those in the control(P<0.05); yet the expression levels of cyp26a2 and cyp26a3 in the high-dose group were lower than those in the control group(P<0.05); the jnk family in medium and high dose groups were higher than the control(P<0.05). The expression of ALDH2 in each experimental group was higher than that in the control group, and increased with the increase of the dose(P<0.05); the expression of CYP26 a1 in each experimental group was not significantly different from that of the control group. CONCLUSION: The retinoic acid signal pathway is activated in procymidone-induced uterine injury in mice, then regulates the increase of the expression of jnk family, leading to the damage.


Assuntos
Transdução de Sinais , Tretinoína , Animais , Compostos Bicíclicos com Pontes , Estudos Transversais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Tretinoína/toxicidade , Útero
5.
Mol Biol Rep ; 47(8): 6105-6110, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32780252

RESUMO

The etiology of pterygium remains unclear, but ultraviolet (UV) radiation is generally considered to be major risk factor. Pterygium has similarity features with many cancers, including inflammation, invasion, cell proliferation, anti-apoptosis, angiogenesis and recurrence after resection. Retinoic acid via cellular retinoic acid binding protein 2 (CRABP2) is involved in cell cycle arrest, apoptosis and differentiation, while it via fatty acid binding protein 5 (FABP5) is involved in survival, cell proliferation and angiogenesis, which pathway gets activated depends on the CRABP2/FABP5 ratio. Alterations of retinoid signaling were found in many cancer types. The deregulated retinoid signaling may also contribute to the development and/or recurrence of pterygium. The aim of our study was to determine mRNA and protein expressions of CRABP2 and FABP5 and ratio of CRABP2/FABP5 in primer and recurrent pterygium tissues. Pterygia tissues were collected from 30 eyes of 30 patients undergoing pterygium excision. CRABP2 and FABP5 mRNA and protein expression were assessed using Real-time PCR and Western blotting through examination of excised specimens from pterygium and conjunctiva tissues. The ratio of CRABP2/FABP5 gene expression was not altered when primary pterygium tissues compared normal conjunctival tissues (1.00-fold change). Whereas the ratio of CRABP2/ FABP5 gene expression was decreased when recurrent pterygium tissues compared normal conjunctival tissues (0.81-fold change). Understanding etiopathogenesis of pterygium may aid in the find of more promising treatments to prevent pterygium in earlier stages.


Assuntos
Proteínas do Olho/genética , Proteínas de Ligação a Ácido Graxo/genética , Pterígio/genética , Receptores do Ácido Retinoico/genética , Idoso , Túnica Conjuntiva/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Ligação a Ácido Graxo/biossíntese , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pterígio/metabolismo , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Receptores do Ácido Retinoico/biossíntese , Recidiva
6.
Theor Biol Med Model ; 15(1): 16, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30322383

RESUMO

BACKGROUND: In the classical pathway of retinoic acid (RA) mediated gene transcription, RA binds to a nuclear hormone receptor dimer composed of retinoic acid receptor (RAR) and retinoid X receptor (RXR), to induce the expression of its downstream target genes. In addition to nuclear receptors, there are other intracellular RA binding proteins such as cellular retinoic acid binding proteins (CRABP1 and CRABP2) and cytochrome P450 (CYP) enzymes, whose contributions to the RA signaling pathway have not been fully understood. The objective of this study was to compare the significance of various RA binding receptors, i.e. CRABP1, CRABP2, CYP and RAR in the RA signaling pathway. In this regard, we developed a mathematical model of the RA pathway, which is one of the few models, if not the only one, that includes all main intracellular RA binding receptors. We then performed a global sensitivity analysis (GSA) to investigate the contribution of the RA receptors to RA-induced mRNA production, when the cells were treated with a wide range of RA levels, from physiological to pharmacological concentrations. RESULTS: Our results show that CRABP2 and RAR are the most and the least important proteins, respectively, in controlling the model performance at physiological concentrations of RA (1-10 nM). However, at higher concentrations of RA, CYP and RAR are the most sensitive parameters of the system. Furthermore, we found that depending on the concentrations of all RA binding proteins, the rate of metabolism of RA can either change or remain constant following RA therapy. The cellular levels of CRABP1 are more important than that of CRABP2 in controlling RA metabolite formation at pharmacological conditions (RA = 0.1-1 µM). Finally, our results indicate a significant negative correlation between total mRNA production and total RA metabolite formation at pharmacological levels of RA. CONCLUSIONS: Our simulations indicate that the significance of the RA binding proteins in the RA pathway of gene expression strongly depends on intracellular concentration of RA. This study not only can explain why various cell types respond to RA therapy differently, but also can potentially help develop pharmacological methods to increase the efficacy of the drug.


Assuntos
Proteínas/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Modelos Biológicos , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia , Tretinoína/toxicidade
7.
Front Cell Dev Biol ; 12: 1381362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699158

RESUMO

Background: The COBLL1 gene has been implicated in human central obesity, fasting insulin levels, type 2 diabetes, and blood lipid profiles. However, its molecular mechanisms remain largely unexplored. Methods: In this study, we established cobll1a mutant lines using the CRISPR/Cas9-mediated gene knockout technique. To further dissect the molecular underpinnings of cobll1a during early development, transcriptome sequencing and bioinformatics analysis was employed. Results: Our study showed that compared to the control, cobll1a -/- zebrafish embryos exhibited impaired development of digestive organs, including the liver, intestine, and pancreas, at 4 days post-fertilization (dpf). Transcriptome sequencing and bioinformatics analysis results showed that in cobll1a knockout group, the expression level of genes in the Retinoic Acid (RA) signaling pathway was affected, and the expression level of lipid metabolism-related genes (fasn, scd, elovl2, elovl6, dgat1a, srebf1 and srebf2) were significantly changed (p < 0.01), leading to increased lipid synthesis and decreased lipid catabolism. The expression level of apolipoprotein genes (apoa1a, apoa1b, apoa2, apoa4a, apoa4b, and apoea) genes were downregulated. Conclusion: Our study suggest that the loss of cobll1a resulted in disrupted RA metabolism, reduced lipoprotein expression, and abnormal lipid transport, therefore contributing to lipid accumulation and deleterious effects on early liver development.

8.
World J Pediatr ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789720

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a complex group of neurodevelopmental disorders. Research has highlighted a close association between the retinoic acid (RA) signaling pathway and ASD. This study investigates alterations in the vitamin A (VA, retinol) to RA metabolic pathway in children with ASD and speculates on the underlying reasons for these changes. We propose a subtype characterized by downregulated RA signaling in ASD, laying the groundwork for precise diagnosis and treatment research. METHODS: We included 489 children with ASD and 280 typically developing (TD) children. Those with ASD underwent evaluations of core symptoms and neuro-developmental levels, which were conducted by professional developmental behavior physicians using assessment scales. Serum VA and all-trans RA (atRA) levels were determined by high-performance liquid chromatography and ultra-high-performance liquid chromatography-tandem mass spectrometry. The expression levels and concentrations of enzyme molecules such as retinol dehydrogenase 10 were assessed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Children with ASD exhibited reduced serum atRA, accompanied by a downregulation of atRA synthesis enzymes. The reduction in serum atRA levels was linked not only to VA levels but also to the aberrant expression of metabolic enzymes responsible for atRA. Furthermore, the serum atRA levels in children with ASD were more strongly correlated with core symptoms and neurodevelopmental levels than VA levels. CONCLUSION: Children with ASD exhibited a dual regulation of reduced serum atRA levels, influenced by both VA levels and abnormal expression of atRA metabolic enzymes.

9.
Sci Total Environ ; 883: 163590, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37088389

RESUMO

The toxicological and pathological influences of polybrominated diphenyl ethers (PBDEs) on the animal central nervous system have attracted worldwide attention. However, their mechanism of action has not been completely elucidated. Given that retinoic acid (RA) and thyroid hormone (TH) signaling pathway are closely related to neurodevelopment, the crosstalk between the two signaling pathways at the levels of metabolite conversion, gene expression and ligand-receptor interaction after exposure to two representative PBDE congeners (BDE-47 and BDE-209) using zebrafish larvae, dual reporter gene assay, and docking simulation was studied. Our results clarified that BDE-47 could disrupt the transport and metabolism of retinoids, induce changes in expression of key genes, bind with the seven nuclear receptors, and activate RA signaling pathway. BDE-47 exhibited more effects on the indicators of the two signaling pathways than BDE-209. Furthermore, BDE-47 may disrupt TH signaling pathway by disrupting RA signaling pathway, indicating that RA signal is priorly influenced than TH signal. This work offered a new perspective to elucidate TH signal disruption mechanism induced by PBDEs from RA signaling pathway, which is of great significance to elucidate the health effects of PBDEs.


Assuntos
Éteres Difenil Halogenados , Peixe-Zebra , Animais , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/metabolismo , Peixe-Zebra/metabolismo , Tretinoína/toxicidade , Tretinoína/metabolismo , Hormônios Tireóideos/metabolismo , Transdução de Sinais
10.
Toxicol Lett ; 384: 96-104, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451652

RESUMO

The evaluation of chemical and pharmaceutical safety for humans is moving from animal studies to New Approach Methodologies (NAM), reducing animal use and focusing on mechanism of action, whilst enhancing human relevance. In developmental toxicology, the mechanistic approach is facilitated by the assessment of predictive biomarkers, which allow mechanistic pathways perturbation monitoring at the basis of human hazard assessment. In our search for biomarkers of maldevelopment, we focused on chemically-induced perturbation of the retinoic acid signaling pathway (RA-SP), a major pathway implicated in a plethora of developmental processes. A genome-wide expression screening was performed on zebrafish embryos treated with two teratogens, all-trans retinoic acid (ATRA) and valproic acid (VPA), and a non-teratogen reference compound, folic acid (FA). Each compound was found to have a specific mRNA expression profile with 248 genes commonly dysregulated by both teratogenic compounds but not by FA. These genes were implicated in several developmental processes (e.g., the circulatory and nervous system). Given the prominent response of neurodevelopmental gene sets, and the crucial need to better understand developmental neurotoxicity, our study then focused on nervous system development. We found 62 genes that are potential early neurodevelopmental toxicity biomarker candidates. These results advance NAM-based safety assessment evaluation by highlighting the usefulness of the RA-SP in providing early toxicity biomarker candidates.


Assuntos
Tretinoína , Peixe-Zebra , Animais , Humanos , Tretinoína/toxicidade , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ácido Valproico/toxicidade , Regulação da Expressão Gênica , Teratogênicos/toxicidade , Biomarcadores , Sistema Nervoso/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA