Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Infect Dis ; 229(Supplement_2): S285-S292, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804521

RESUMO

COVID-19 has intensified humanity's concern about the emergence of new pandemics. Since 2018, epidemic outbreaks of the mpox virus have become worrisome. In June 2022, the World Health Organization declared the disease a global health emergency, with 14 500 cases reported by the Centers for Disease Control and Prevention in 60 countries. Therefore, the development of a vaccine based on the current virus genome is paramount in combating new cases. In view of this, we hypothesized the obtainment of rational immunogenic peptides predicted from proteins responsible for entry of the mpox virus into the host (A17L, A26L/A30L, A33R, H2R, L1R), exit (A27L, A35R, A36R, C19L), and both (B5R). To achieve this, we aligned the genome sequencing data of mpox virus isolated from an infected individual in the United States in June 2022 (ON674051.1) with the reference genome dated 2001 (NC_003310.1) for conservation analysis. The Immune Epitope Database server was used for the identification and characterization of the epitopes of each protein related to major histocompatibility complex I or II interaction and recognition by B-cell receptors, resulting in 138 epitopes for A17L, 233 for A28L, 48 for A33R, 77 for H2R, 77 for L1R, 270 for A27L, 72 for A35R, A36R, 148 for C19L, and 276 for B5R. These epitopes were tested in silico for antigenicity, physicochemical properties, and allergenicity, resulting in 51, 40, 10, 34, 38, 57, 25, 7, 47, and 53 epitopes, respectively. Additionally, to select an epitope with the highest promiscuity of binding to major histocompatibility complexes and B-cell receptor simultaneously, all epitopes of each protein were aligned, and the most repetitive and antigenic regions were identified. By classifying the results, we obtained 23 epitopes from the entry proteins, 16 from the exit proteins, and 7 from both. Subsequently, 1 epitope from each protein was selected, and all 3 were fused to construct a chimeric protein that has potential as a multiepitope vaccine. The constructed vaccine was then analyzed for its physicochemical, antigenic, and allergenic properties. Protein modeling, molecular dynamics, and molecular docking were performed on Toll-like receptors 2, 4, and 8, followed by in silico immune simulation of the vaccine. Finally, the results indicate an effective, stable, and safe vaccine that can be further tested, especially in vitro and in vivo, to validate the findings demonstrated in silico.


Assuntos
Imunoinformática , Mpox , Humanos , Simulação de Acoplamento Molecular , Peptídeos , Epitopos , Epitopos de Linfócito T , Epitopos de Linfócito B , Biologia Computacional , Vacinas de Subunidades Antigênicas
2.
BMC Immunol ; 25(1): 27, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706005

RESUMO

BACKGROUND: Due to antibiotic resistance, the Klebsiella genus is linked to morbidity and death, necessitating the development of a universally protective vaccine against Klebsiella pathogens. METHODS: Core sequence analysis prioritized non-redundant host molecules and expected lipid bilayer peptides from fully sequenced Klebsiella genomes. These proteins were refined to identify epitopes, examining their immunogenicity, toxicity, solubility, and interaction with MHC alleles. Epitopes were linked to CPG ODN C274 via EAAAK, HEYGAEALERAG, and GGGS linkers to enhance immunological responses. The vaccine's tertiary structure was modelled and docked with MHC-I and MHC-II. RESULTS: Fifty-five proteins were recognized in the Vaxign collection as having remarkable features. Twenty-three proteins with potential pathogenicity were then identified. Eight options for vaccines emerged after the immunogenicity of proteins was examined. The best antigens were three proteins: MrkD, Iron-regulated lipid membrane polypeptides, and RmpA. These compounds were selected for their sensitivity. The structural protein sequences of K. pneumoniae were utilized to identify seven CTL epitopes, seven HTL epitopes, and seven LBL epitopes, respectively. The produced immunization displayed a stable contact with the receptors, based on molecular dynamic simulations lasting 250 nanoseconds. Intermolecular binding free energies also indicated the dominance of the van der Waals and electrostatic energies. CONCLUSION: In summary, the results of this study might help scientists develop a novel vaccine to prevent K. pneumoniae infections.


Assuntos
Vacinas Bacterianas , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/imunologia , Vacinas Bacterianas/imunologia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/prevenção & controle , Animais , Epitopos de Linfócito T/imunologia , Camundongos , Humanos , Simulação de Dinâmica Molecular , Antígenos de Bactérias/imunologia , Oligodesoxirribonucleotídeos/imunologia , Epitopos/imunologia , Simulação de Acoplamento Molecular
3.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35649389

RESUMO

Rational vaccine design, especially vaccine antigen identification and optimization, is critical to successful and efficient vaccine development against various infectious diseases including coronavirus disease 2019 (COVID-19). In general, computational vaccine design includes three major stages: (i) identification and annotation of experimentally verified gold standard protective antigens through literature mining, (ii) rational vaccine design using reverse vaccinology (RV) and structural vaccinology (SV) and (iii) post-licensure vaccine success and adverse event surveillance and its usage for vaccine design. Protegen is a database of experimentally verified protective antigens, which can be used as gold standard data for rational vaccine design. RV predicts protective antigen targets primarily from genome sequence analysis. SV refines antigens through structural engineering. Recently, RV and SV approaches, with the support of various machine learning methods, have been applied to COVID-19 vaccine design. The analysis of post-licensure vaccine adverse event report data also provides valuable results in terms of vaccine safety and how vaccines should be used or paused. Ontology standardizes and incorporates heterogeneous data and knowledge in a human- and computer-interpretable manner, further supporting machine learning and vaccine design. Future directions on rational vaccine design are discussed.


Assuntos
COVID-19 , Vacinas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Mineração de Dados , Humanos , Aprendizado de Máquina , Vacinas/química , Vacinas/genética , Vacinologia/métodos
4.
J Viral Hepat ; 31(8): 446-456, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38727597

RESUMO

Hepatitis E virus (HEV) is a foodborne virus transmitted through the faecal-oral route that causes viral hepatitis in humans worldwide. Ever since its discovery as a zoonotic agent, HEV was isolated from several species with an expanding range of hosts. HEV possesses several features of other RNA viruses but also has certain HEV-specific traits that make its viral-host interactions inimitable. HEV leads to severe morbidity and mortality in immunocompromised people and pregnant women across the world. The situation in underdeveloped countries is even more alarming. Even after creating a menace across the world, we still lack an effective vaccine against HEV. Till date, there is only one licensed vaccine for HEV available only in China. The development of an anti-HEV vaccine that can reduce HEV-induced morbidity and mortality is required. Live attenuated and killed vaccines against HEV are not accessible due to the lack of a tolerant cell culture system, slow viral replication kinetics and varying growth conditions. Thus, the main focus for anti-HEV vaccine development is now on the molecular approaches. In the current study, we have designed a multi-epitope vaccine against HEV through a reverse vaccinology approach. For the first time, we have used viral ORF3, capsid protein and polyprotein altogether for epitope prediction. These are crucial for viral replication and persistence and are major vaccine targets against HEV. The proposed in silico vaccine construct comprises of highly immunogenic and antigenic T-cell and B-cell epitopes of HEV proteins. The construct is capable of inducing an effective and long-lasting host immune response as evident from the simulation results. In addition, the construct is stable, non-allergic and antigenic for the host. Altogether, our findings suggest that the in silico vaccine construct may be useful as a vaccine candidate for preventing HEV infections.


Assuntos
Simulação por Computador , Hepatite E , Vacinas de Subunidades Proteicas , Vacinas contra Hepatite Viral , Humanos , Epitopos/imunologia , Epitopos/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Hepatite E/prevenção & controle , Hepatite E/imunologia , Vírus da Hepatite E/imunologia , Vírus da Hepatite E/genética , Vacinas de Subunidades Proteicas/imunologia , Desenvolvimento de Vacinas , Vacinas contra Hepatite Viral/imunologia , Proteínas Virais/imunologia , Proteínas Virais/genética
5.
Microb Pathog ; 188: 106539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211835

RESUMO

BACKGROUND: Shigella is one of the major causes of dysenteric diarrhea, which is known shigelosis. Shigelosis causes 160,000 deaths annually of diarrheal disease in the global scale especially children less than 5 years old. No licensed vaccine is available against shigelosis, therefore, efforts for develop an effective and safe vaccine against Shigella as before needed. The reverse vaccinology (RV) is a novel strategy that evaluate genome or proteome of the organism to find a new promising vaccine candidate. In this study, immunogenicity of a designed-recombinant antigen is evaluated through the in silico studies and animal experiments to predict a new immunogenic candidate against Shigella. METHODS: In the first step, proteome of Shigella flexneri was obtained from UniProtKB and then the outer membrane and extracellular proteins were predicted. In this study TolC as an outer membrane protein was selected and confirmed among candidates. In next steps, pre-selected protein was evaluated for transmembrane domains, homology, conservation, antigenicity, solubility, and B- and T-cell prediction by different online servers. RESULT: TolC as a conserved outer membrane protein, using different immune-informatics tools had acceptable scores and was selected as the immunogenic antigen for animal experiment studies. Recombinant TolC protein after expression and purification, was administered to BALB/c mice over three intraperitoneal routes. The sera of mice was used to evaluate the IgG1 production assay by indirect-ELISA. The immunized mice depicted effective protection against 2LD50 of Shigella. Flexneri ATCC12022 (challenge study). CONCLUSION: Therefore, the reverse vaccinology approach and experimental test results demonstrated that TolC as a novel effective and immunogenic antigen is capable for protection against shigellosis.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Humanos , Criança , Animais , Camundongos , Pré-Escolar , Shigella flexneri/genética , Vacinas de Subunidades Proteicas , Vacinas contra Shigella/genética , Proteoma , Disenteria Bacilar/prevenção & controle , Proteínas Recombinantes/genética , Vacinas Sintéticas/genética , Proteínas de Membrana , Anticorpos Antibacterianos
6.
Microb Pathog ; 193: 106775, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960216

RESUMO

Rotavirus, a primary contributor to severe cases of infantile gastroenteritis on a global scale, results in significant morbidity and mortality in the under-five population, particularly in middle to low-income countries, including India. WHO-approved live-attenuated vaccines are linked to a heightened susceptibility to intussusception and exhibit low efficacy, primarily attributed to the high genetic diversity of rotavirus, varying over time and across different geographic regions. Herein, molecular data on Indian rotavirus A (RVA) has been reviewed through phylogenetic analysis, revealing G1P[8] to be the prevalent strain of RVA in India. The conserved capsid protein sequences of VP7, VP4 and VP6 were used to examine helper T lymphocyte, cytotoxic T lymphocyte and linear B-cell epitopes. Twenty epitopes were identified after evaluation of factors such as antigenicity, non-allergenicity, non-toxicity, and stability. These epitopes were then interconnected using suitable linkers and an N-terminal beta defensin adjuvant. The in silico designed vaccine exhibited structural stability and interactions with integrins (αvß3 and αIIbß3) and toll-like receptors (TLR2 and TLR4) indicated by docking and normal mode analyses. The immune simulation profile of the designed RVA multiepitope vaccine exhibited its potential to trigger humoral as well as cell-mediated immunity, indicating that it is a promising immunogen. These computational findings indicate potential efficacy of the designed vaccine against rotavirus infection.


Assuntos
Antígenos Virais , Proteínas do Capsídeo , Epitopos de Linfócito T , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Rotavirus/imunologia , Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Vacinas contra Rotavirus/genética , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Antígenos Virais/imunologia , Antígenos Virais/genética , Humanos , Índia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Vacinologia/métodos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Filogenia , Simulação de Acoplamento Molecular , Epitopos/imunologia , Epitopos/genética , Desenvolvimento de Vacinas
7.
Microb Pathog ; 195: 106909, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218373

RESUMO

Brucellosis is a zoonotic disease caused by Brucella, which is difficult to eliminate by conventional drugs. Therefore, a novel multi-epitope vaccine (MEV) was designed to prevent human Brucella infection. Based on the method of "reverse vaccinology", cytotoxic T lymphocyte epitopes (CTLEs), helper T lymphocyte epitopes (HTLEs), linear B-cell epitopes (LBEs) and conformational B-cell epitopes (CBEs) of four Brucella proteins (VirB9, VirB10, Omp 19 and Omp 25) were obtained. In order to keep the correct protein folding, the multiple epitopes was constructed by connecting epitopes through linkers. In view of the significant connection between human leukocyte antigen CTLA-4 and B7 molecules found on antigen presenting cells (APCs), a new vaccine (V_C4MEV) for preventing brucellosis was created by combining CTLA-4 immunoglobulin variable region (IgV_CTLA-4) with MEV protein. Immunoinformatics analysis showed that V_C4MEV has a good secondary and tertiary structure. Additionally, molecular docking and molecular dynamics simulation (MD) revealed a robust binding affinity between IgV_ CTLA-4 and the B7 molecule. Notably, the vaccine V_C4MEV was demonstrated favorable immunogenicity and antigenicity in both in vitro and in vivo experiments. V_C4MEV had the potential to activate defensive cells and immune responses, offering a hopeful approach for developing vaccines against Brucella in the upcoming years.


Assuntos
Vacina contra Brucelose , Brucella , Brucelose , Antígeno CTLA-4 , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Brucelose/prevenção & controle , Brucelose/imunologia , Epitopos de Linfócito B/imunologia , Antígeno CTLA-4/imunologia , Epitopos de Linfócito T/imunologia , Vacina contra Brucelose/imunologia , Animais , Humanos , Brucella/imunologia , Brucella/genética , Camundongos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Imunoinformática , Lipoproteínas
8.
Trends Immunol ; 42(3): 186-197, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33514459

RESUMO

'Reverse vaccinology 2.0' aims to rationally reproduce template antibody responses, such as broadly neutralizing antibodies against human immunodeficiency virus-1. While observations of antibody convergence across individuals support the assumption that responses may be replicated, the diversity of humoral immunity and the process of antibody selection are rooted in stochasticity. Drawing from experience with in vitro antibody engineering by directed evolution, we consider how antibody selection may be driven, as in germline-targeting vaccine approaches to elicit broadly neutralizing antibodies and illustrate the potential consequences of over-defining a template antibody response. We posit that the prospective definition of template antibody responses and the odds of replicating them must be considered within the randomness of humoral immunity.


Assuntos
Anticorpos Neutralizantes , HIV-1 , Formação de Anticorpos , Anticorpos Anti-HIV , Humanos , Estudos Prospectivos
9.
Arch Microbiol ; 206(5): 217, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619666

RESUMO

The rodent-borne Arenavirus in humans has led to the emergence of regional endemic situations and has deeply emerged into pandemic-causing viruses. Arenavirus have a bisegmented ambisense RNA that produces four proteins: glycoprotein, nucleocapsid, RdRp and Z protein. The peptide-based vaccine targets the glycoprotein of the virus encountered by the immune system. Screening of B-Cell and T-Cell epitopes was done based on their immunological properties like antigenicity, allergenicity, toxicity and anti-inflammatory properties were performed. Selected epitopes were then clustered and epitopes were stitched using linker sequences. The immunological and physico-chemical properties of the vaccine construct was checked and modelled structure was validated by a 2-step MD simulation. The thermostability of the vaccine was checked followed by the immune simulation to test the immunogenicity of the vaccine upon introduction into the body over the course of the next 100 days and codon optimization was performed. Finally a 443 amino acid long peptide vaccine was designed which could provide protection against several members of the mammarenavirus family in a variety of population worldwide as denoted by the epitope conservancy and population coverage analysis. This study of designing a peptide vaccine targeting the glycoprotein of mammarenavirues may help develop novel therapeutics in near future.


Assuntos
Arenaviridae , Vacinas , Humanos , Arenaviridae/genética , Vacinologia , Peptídeos , Epitopos/genética , Glicoproteínas
10.
Fish Shellfish Immunol ; 151: 109688, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857817

RESUMO

This study marks the first utilization of reverse vaccinology to develop recombinant subunit vaccines against Pseudomonas koreensis infection in Empurau (Tor tambroides). The proteome (5538 proteins) was screened against various filters to prioritize proteins based on features that are associated with virulence, subcellular localization, transmembrane helical structure, antigenicity, essentiality, non-homology with the host proteome, molecular weight, and stability, which led to the identification of eight potential vaccine candidates. These potential vaccine candidates were cloned and expressed, with six achieving successful expression and purification. The antigens were formulated into two distinct vaccine mixtures, Vac A and Vac B, and their protective efficacy was assessed through in vivo challenge experiments. Vac A and Vac B demonstrated high protective efficacies of 100 % and 81.2 %, respectively. Histological analyses revealed reduced tissue damage in vaccinated fish after experimental infection, with Vac A showing no adverse effects, whereas Vac B exhibited mild degenerative changes. Quantitative real-time PCR results showed a significant upregulation of TNF-α and downregulation of IL-1ß in the kidneys, spleen, gills, and intestine in both Vac A- and Vac B-immunized fish after challenged with P. koreensis. Additionally, IL-8 exhibits tissue-specific differential expression, with significant upregulation in the kidney, gills, and intestine, and downregulation in the spleen, particularly notable in Vac A-immunized fish. The research underscores the effectiveness of the reverse vaccinology approach in fish and demonstrates the promising potential of Vac A and Vac B as recombinant subunit vaccines.


Assuntos
Doenças dos Peixes , Infecções por Pseudomonas , Pseudomonas , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Pseudomonas/imunologia , Infecções por Pseudomonas/veterinária , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinologia , Vacinas Sintéticas/imunologia , Cyprinidae/imunologia , Vacinas contra Pseudomonas/imunologia , Proteoma/imunologia
11.
BMC Vet Res ; 20(1): 144, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641595

RESUMO

BACKGROUND: Bovine Genital Campylobacteriosis (BGC), a worldwide distributed venereal disease caused by Campylobacter fetus subsp. venerealis (Cfv), has a relevant negative economic impact in cattle herds. The control of BGC is hampered by the inexistence of globally available effective vaccines. The present in silico study aimed to develop a multi-epitope vaccine candidate against Cfv through reverse vaccinology. RESULTS: The analysis of Cfv strain NCTC 10354 proteome allowed the identification of 9 proteins suitable for vaccine development. From these, an outer membrane protein, OmpA, and a flagellar protein, FliK, were selected for prediction of B-cell and T-cell epitopes. The top-ranked epitopes conservancy was assessed in 31 Cfv strains. The selected epitopes were integrated to form a multi-epitope fragment of 241 amino acids, which included 2 epitopes from OmpA and 13 epitopes from FliK linked by GPGPG linkers and connected to the cholera toxin subunit B by an EAAAK linker. The vaccine candidate was predicted to be antigenic, non-toxic, non-allergenic, and soluble upon overexpression. The protein structure was predicted and optimized, and the sequence was successfully cloned in silico into a plasmid vector. Additionally, immunological simulations demonstrated the vaccine candidate's ability to stimulate an immune response. CONCLUSIONS: This study developed a novel vaccine candidate suitable for further in vitro and in vivo experimental validation, which may become a useful tool for the control of BGC.


Assuntos
Infecções por Campylobacter , Doenças dos Bovinos , Vacinas , Animais , Bovinos , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Vacinologia , Epitopos de Linfócito T/química , Genitália , Biologia Computacional , Doenças dos Bovinos/prevenção & controle
12.
Curr Genomics ; 25(5): 323-333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323620

RESUMO

Fungal infections are considered a great threat to human life and are associated with high mortality and morbidity, especially in immunocompromised individuals. Fungal pathogens employ various defense mechanisms to evade the host immune system, which causes severe infections. The available repertoire of drugs for the treatment of fungal infections includes azoles, allylamines, polyenes, echinocandins, and antimetabolites. However, the development of multidrug and pandrug resistance to available antimycotic drugs increases the need to develop better treatment approaches. In this new era of -omics, bioinformatics has expanded options for treating fungal infections. This review emphasizes how bioinformatics complements the emerging strategies, including advancements in drug delivery systems, combination therapies, drug repurposing, epitope-based vaccine design, RNA-based therapeutics, and the role of gut-microbiome interactions to combat anti-fungal resistance. In particular, we focused on computational methods that can be useful to obtain potent hits, and that too in a short period.

13.
Biologicals ; 85: 101740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217963

RESUMO

Whooping cough is a disease caused by Bordetella pertussis, whose morbidity has increased, motivating the improvement of current vaccines. Reverse vaccinology is a strategy that helps identify proteins with good characteristics fast and with fewer resources. In this work, we applied reverse vaccinology to study the B. pertussis proteome and pangenome with several in-silico tools. We analyzed the B. pertussis Tohama I proteome with NERVE software and compared 234 proteins with B. parapertussis, B. bronchiseptica, and B. holmessi. VaxiJen was used to calculate an antigenicity value; our threshold was 0.6, selecting 84 proteins. The candidates were depurated and grouped in eight family proteins to select representative candidates, according to bibliographic information and their immunological response predicted with ABCpred, Bcepred, IgPred, and C-ImmSim. Additionally, a pangenome study was conducted with 603 B. pertussis strains and PanRV software, identifying 3421 core proteins that were analyzed to select the best candidates. Finally, we selected 15 proteins from the proteome study and seven proteins from the pangenome analysis as good vaccine candidates.


Assuntos
Bordetella parapertussis , Coqueluche , Humanos , Bordetella pertussis/genética , Coqueluche/prevenção & controle , Proteoma/metabolismo , Vacinologia , Bordetella parapertussis/metabolismo , Vacina contra Coqueluche
14.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39337325

RESUMO

Despite its medical relevance, there is no commercial vaccine that protects the population at risk from multidrug-resistant (MDR) Klebsiella pneumoniae infections. The availability of massive omic data and novel algorithms may improve antigen selection to develop effective prophylactic strategies. Up to 133 exposed proteins in the core proteomes, between 516 and 8666 genome samples, of the six most relevant MDR clonal groups (CGs) carried conserved B-cell epitopes, suggesting minimized future evasion if utilized for vaccination. Antigens showed a range of epitopicity, functional constraints, and potential side effects. Eleven antigens, including three sugar porins, were represented in all MDR-CGs, constitutively expressed, and showed limited reactivity with gut microbiota. Some of these antigens had important interactomic interactions and may elicit adhesion-neutralizing antibodies. Synergistic bivalent to pentavalent combinations that address expression conditions, interactome location, virulence activities, and clone-specific proteins may overcome the limiting protection of univalent vaccines. The combination of five central antigens accounted for 41% of all non-redundant interacting partners of the antigen dataset. Specific antigen mixtures represented in a few or just one MDR-CG further reduced the chance of microbiota interference. Rational antigen selection schemes facilitate the design of high-coverage and "magic bullet" multivalent vaccines against recalcitrant K. pneumoniae lineages.


Assuntos
Vacinas Bacterianas , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/genética , Vacinas Bacterianas/imunologia , Humanos , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/imunologia , Farmacorresistência Bacteriana Múltipla/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Desenvolvimento de Vacinas , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Epitopos de Linfócito B/imunologia
15.
BMC Bioinformatics ; 24(1): 231, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37271819

RESUMO

When it was first introduced in 2000, reverse vaccinology was defined as an in silico approach that begins with the pathogen's genomic sequence. It concludes with a list of potential proteins with a possible, but not necessarily, list of peptide candidates that need to be experimentally confirmed for vaccine production. During the subsequent years, reverse vaccinology has dramatically changed: now it consists of a large number of bioinformatics tools and processes, namely subtractive proteomics, computational vaccinology, immunoinformatics, and in silico related procedures. However, the state of the art of reverse vaccinology still misses the ability to predict the efficacy of the proposed vaccine formulation. Here, we describe how to fill the gap by introducing an advanced immune system simulator that tests the efficacy of a vaccine formulation against the disease for which it has been designed. As a working example, we entirely apply this advanced reverse vaccinology approach to design and predict the efficacy of a potential vaccine formulation against influenza H5N1. Climate change and melting glaciers are critical due to reactivating frozen viruses and emerging new pandemics. H5N1 is one of the potential strains present in icy lakes that can raise a pandemic. Investigating structural antigen protein is the most profitable therapeutic pipeline to generate an effective vaccine against H5N1. In particular, we designed a multi-epitope vaccine based on predicted epitopes of hemagglutinin and neuraminidase proteins that potentially trigger B-cells, CD4, and CD8 T-cell immune responses. Antigenicity and toxicity of all predicted CTL, Helper T-lymphocytes, and B-cells epitopes were evaluated, and both antigenic and non-allergenic epitopes were selected. From the perspective of advanced reverse vaccinology, the Universal Immune System Simulator, an in silico trial computational framework, was applied to estimate vaccine efficacy using a cohort of 100 digital patients.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Vacinologia/métodos , Eficácia de Vacinas , Epitopos de Linfócito B , Proteínas , Biologia Computacional/métodos , Sistema Imunitário , Epitopos de Linfócito T/química , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética
16.
BMC Immunol ; 24(1): 46, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980458

RESUMO

Multi-epitope polypeptide vaccines, a fusion protein, often have a string-of-beads system composed of various specific peptide epitopes, potential adjuvants, and linkers. When choosing the sequence of various segments and linkers, many alternatives are available. These variables can influence the vaccine's effectiveness through their effects on physicochemical properties and polypeptide tertiary structure.The most conserved antigens were discovered using BLASTn. To forecast the proteins' subcellular distribution, PSORTb 3.0.2 was used. Vaxign was used for the preliminary screening and antigenicity assessment. Protein solubility was also predicted using the ccSOL omics. Using PRED-TMBB, it was anticipated that the protein would localize across membranes. The IEDB and BepiPred-2.0 databases were used to predict the immunogenicity of B cell epitopes. A multi-epitope construct was developed and analyzed to evaluate. Twenty epitopes from A. baumannii's outer membrane protein (omp) were included in the vaccination. TLR4 agonist explosibility was investigated. The physicochemical characteristics, secondary and tertiary structures, and B-cell epitopes of vaccine constructs were assessed. Additionally, docking and MD experiments were used to examine the relationship between TLR4 and its agonist.Thirteen antigens were discovered, and eight of the 13 chosen proteins were predicted to be surface proteins. The 34 kDa outer membrane protein, Omp38, Omp W, CarO, putative porin, OmpA, were chosen as having the right antigenicity (≥0.5). FhuE and CdiA were eliminated from further study because of their low antigenicity. The vaccine design was developed by combining the most effective 10 B-cell and 10 MHC-I/MHCII combined coverage epitopes. The molecular formula of the vaccine was determined to be C1718H2615N507O630S17. The vaccine form has a molecular weight of 40,996.70 Da and 47 negatively charged residues (Asp + Glu), whereas 28 positively charged residues (Arg + Lys). The estimated half-life was 7.2 hours (mammalian reticulocytes, in vitro), > 20 hours (yeast, in vivo) and > 10 hours (Escherichia coli, in vivo) for the vaccine. The multi-epitope vaccine insertion is carried via the expression vector pcDNA3.1 (+).The multi-epitope vaccine may stimulate humoral and cellular immune responses, according to our findings, and it may be a candidate for an A. baumannii vaccine.


Assuntos
Acinetobacter baumannii , Vacinas de DNA , Animais , Receptor 4 Toll-Like , Epitopos de Linfócito B , Peptídeos , Proteínas de Membrana , Epitopos de Linfócito T , Biologia Computacional , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Mamíferos
17.
Appl Environ Microbiol ; 89(1): e0106122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533928

RESUMO

Avian pathogenic Escherichia coli, a causative agent of avian colibacillosis, has been causing serious economic losses in the poultry industry. The increase in multidrug-resistant isolates and the complexity of the serotypes of this pathogen, especially the recently reported emergence of a newly predominant serogroup of O145, make the control of this disease difficult. To address this challenge, a high-throughput screening approach, called Pan-RV (Reverse vaccinology based on pangenome analysis), is proposed to search for universal protective antigens against the three traditional serogroups and the newly emerged O145. Using this approach, a total of 61 proteins regarded as probable antigens against the four important serogroups were screened from the core genome of 127 Avian pathogenic Escherichia coli (APEC) genomes, and six were verified by Western blots using antisera. Overall, our research will provide a foundation for the development of an APEC subunit vaccine against avian colibacillosis. Given the exponential growth of whole-genome sequencing (WGS) data, our Pan-RV pipeline will make screening of bacterial vaccine candidates inexpensive, rapid, and efficient. IMPORTANCE With the emergence of drug resistance and the newly predominant serogroup O145, the control of Avian pathogenic Escherichia coli is facing a serious challenge; an efficient immunological method is urgently needed. Here, for the first time, we propose a high-throughput screening approach to search for universal protective antigens against the three traditional serogroups and the newly emerged O145. Importantly, using this approach, a total of 61 proteins regarded as probable antigens against the four important serogroups were screened, and three were shown to be immunoreactive with all antisera (covering the four serogroups), thereby providing a foundation for the development of APEC subunit vaccines against avian colibacillosis. Further, our Pan-RV pipeline will provide immunological control strategies for pathogens with complex and variable genetic backgrounds such as Escherichia coli and will make screening of bacterial vaccine candidates more inexpensive, rapid, and efficient.


Assuntos
Infecções por Escherichia coli , Vacinas contra Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/genética , Sorogrupo , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Aves Domésticas , Vacinas Bacterianas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Galinhas
18.
Crit Rev Microbiol ; : 1-16, 2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37211625

RESUMO

Acinetobacter baumannii is a Gram-negative, opportunistic pathogen that causes nosocomial infection with a high mortality rate in immunocompromised individuals. With the frequent emergence of multidrug-resistant A. baumannii strains that have rapidly gained resistance to most antibiotics, an extensive search for an effective A. baumannii vaccine is ongoing. Over the decade, many subunit vaccine candidates were identified using reverse vaccinology and in vivo animal studies for validation. Nineteen subunit vaccine candidates with a wide range of efficacy, from 14% to 100% preclinical survival rates, were included in this review. This article provides an updated review of several outer membrane proteins (Omp) that emerged as vaccine candidates with great potential, including OmpA, Omp34, Omp22 and BamA, based on their high conservancy, antigenicity, and immune protection against A. baumannii infection. However, there is still no licenced A. baumannii vaccine currently due to several practical issues that have yet to be resolved, such as inconsistencies between validation studies, antigen variability and insolubility. Moving forward, much investigation and innovation are still required to tackle these challenges for the regulatory approval of an A. baumannii subunit vaccine, including standardisation of immunisation study parameters, improving antigen solubility and the incorporation of nucleic acid vaccine technology.

19.
Microb Pathog ; 185: 106439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944674

RESUMO

Neisseria gonorrhoeae (Ngo) has emerged as a global threat leading to one of the most common sexually transmitted diseases in the world. It has also become one of the leading antimicrobial resistant organisms, resulting in fewer treatment options and an increased morbidity. Therefore, in recent years, there has been an increased focus on the development of new treatments and preventive strategies to combat its infection. In this study, we have combined the most conserved epitopes from the completely assembled strains of Ngo to develop a universal and a thermodynamically stable vaccine candidate. For our vaccine design, the epitopes were selected for their high immunogenicity, non-allergenicity and non-cytotoxicity, making them the ideal candidates for vaccine development. For the screening process, several reverse vaccinology tools were employed to rigorously extract non-homologous and immunogenic epitopes from the selected proteins. Consequently, a total number of 3 B-cell epitopes and 6 T-cell epitopes were selected and joined by multiple immune-modulating adjuvants and linkers to generate a promiscuous immune response. Additionally, the stability and flexible nature of the vaccine construct was confirmed using various molecular dynamic simulation tools. Overall, the vaccine candidate showed promising binding affinity to various HLA alleles and TLR receptors; however, further studies are needed to assess its efficacy in-vivo. In this way, we have designed a multi-subunit vaccine candidate to potentially combat and control the spread of N. gonorrhoeae.


Assuntos
Simulação de Dinâmica Molecular , Neisseria gonorrhoeae , Neisseria gonorrhoeae/genética , Simulação de Acoplamento Molecular , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacinas de Subunidades Antigênicas , Biologia Computacional/métodos
20.
BMC Infect Dis ; 23(1): 902, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129801

RESUMO

BACKGROUND: Coxiella burnetii, an intracellular pathogen, serves as the causative agent of zoonotic Q fever. This pathogen presents a significant threat due to its potential for airborne transmission, environmental persistence, and pathogenicity. The current whole-cell vaccine (WCV) utilized in Australia to combat Q fever exhibits notable limitations, including severe adverse reactions and limited regulatory approval for human use. This research employed the reverse vaccinology (RV) approach to uncover antigenic proteins and epitopes of C. burnetii, facilitating the development of more potent vaccine candidates. METHODS: The potential immunogenic proteins derived from C. burnetii RSA493/Nine Mile phase I (NMI) were extracted through manual, automated RV, and virulence factor database (VFDB) methods. Web tools and bioinformatics were used to evaluate physiochemical attributes, subcellular localization, antigenicity, allergenicity, human homology, B-cell epitopes, MHC I and II binding ratios, functional class scores, adhesion probabilities, protein-protein interactions, and molecular docking. RESULTS: Out of the 1850 proteins encoded by RSA493/NMI, a subset of 178 demonstrated the potential for surface or membrane localization. Following a series of analytical iterations, 14 putative immunogenic proteins emerged. This collection included nine proteins (57.1%) intricately involved in cell wall/membrane/envelope biogenesis processes (CBU_0197 (Q83EW1), CBU_0311 (Q83EK8), CBU_0489 (Q83E43), CBU_0939 (Q83D08), CBU_1190 (P39917), CBU_1829 (Q83AQ2), CBU_1412 (Q83BU0), CBU_1414 (Q83BT8), and CBU_1600 (Q83BB2)). The CBU_1627 (Q83B86 ) (7.1%) implicated in intracellular trafficking, secretion, and vesicular transport, and CBU_0092 (Q83F57) (7.1%) contributing to cell division. Additionally, three proteins (21.4%) displayed uncharacterized functions (CBU_0736 (Q83DJ4), CBU_1095 (Q83CL9), and CBU_2079 (Q83A32)). The congruent results obtained from molecular docking and immune response stimulation lend support to the inclusion of all 14 putative proteins as potential vaccine candidates. Notably, seven proteins with well-defined functions stand out among these candidates. CONCLUSIONS: The outcomes of this study introduce promising proteins and epitopes for the forthcoming formulation of subunit vaccines against Q fever, with a primary emphasis on cellular processes and the virulence factors of C. burnetii.


Assuntos
Coxiella burnetii , Febre Q , Humanos , Febre Q/prevenção & controle , Simulação de Acoplamento Molecular , Vacinas Bacterianas , Fatores de Virulência , Epitopos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA