Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Cell Int ; 21(1): 581, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717622

RESUMO

BACKGROUND: IL-6 plays a pivotal role in resistance to chemotherapeutics, including lobaplatin. However, the underlying mechanisms are still unclear. This study was to investigate the changes in phosphoproteins and their related signaling pathways in the process of IL-6-induced chemoresistance to lobaplain in osteosarcoma cells. METHODS: We performed a quantitative phosphoproteomic analysis of the response of SaOS-2 osteosarcoma cells to recombinant human IL-6 (rhIL-6) intervention prior to lobaplatin treatment. The cells were divided into the control group (Con), the lobaplatin group (Lob), and the rhIL-6-and-lobaplatin group (IL-6). Three biological replicates of each group were included. The differentially expressed phosphoproteins were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Netphos 3.1 was used for the prediction of kinases, and STRING was used for the visualization of protein-protein interactions. The conserved motifs surrounding the phosphorylated residues were analyzed using the motif-x algorithm. Western blot analysis was performed to verify the differential expression of p-FLNC, its predicted kinase and the related signaling pathway. The results of the bioinformatic analysis were validated by immunohistochemical staining of clinical specimens. RESULTS: In total, 3373 proteins and 12,183 peptides, including 3232 phosphorylated proteins and 11,358 phosphorylated peptides, were identified and quantified. Twenty-three significantly differentially expressed phosphoproteins were identified in the comparison between the IL-6 and Lob groups, and p-FLNC ranked second among these phosphoproteins. GO and KEGG analyses revealed the pivotal role of mitogen-activated protein kinase signaling in drug resistance induced by rhIL-6. Four motifs, namely, -SPxxK-, -RxxSP-, -SP-, and -SPK-, demonstrated higher expression in the IL-6 group than in the Lob group. The western blot analysis results verified the higher expression of p-FLNC, AKT1, and p-ERK and the lower expression of p-JNK in the IL-6 group than in the Con and Lob groups. The immunohistochemical staining results showed that p-FLNC, AKT1 and p-ERK1/2 were highly expressed in platinum-resistant clinical specimens but weakly expressed in platinum-sensitive specimens, and platinum-resistant osteosarcoma specimens demonstrated weak expression of p-JNK. CONCLUSIONS: This phosphoproteomic study is the first to reveal the signature associated with rhIL-6 intervention before lobaplatin treatment in human osteosarcoma cells. p-FLNC, AKT1, and MAPK signaling contributes to resistance to lobaplatin in osteosarcoma SaOS-2 cells and may represent molecular targets to overcome osteosarcoma chemoresistance.

2.
Biotechnol Appl Biochem ; 65(3): 490-496, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28833557

RESUMO

Interleukin-6 a pleiotropic cytokine involved in a wide range of biological activities. So the large-scale production of biologically active recombinant human interleukin-6 is important for its structural and functional studies. Here, we report an optimized method for shake flask fermentation and a simplified high-yield purification procedure for the recombinant interleukin-6. This high-yield expression method not only involves the optimization of the fermentation condition but also the single step purification method as well as a two-step denaturing and one-step refolding process. This approach replaces the more conventional procedure of protein solubilization and refolding. Through applying these strategies, the final cell density and overall product yield of the recombinant human interleukin-6 were obtained as 20.4 g as cell biomass and 150 mg as purified active protein from the I-L of the culture. The purified protein was characterized by HPLC and SDS-PAGE. The results of the current work demonstrate that the described method may be used to develop the process for industrial-scale production of the biologically active recombinant interleukin-6 protein.


Assuntos
Fermentação , Interleucina-6/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Humanos , Interleucina-6/isolamento & purificação , Interleucina-6/metabolismo , Redobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
3.
Front Oncol ; 11: 602712, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791202

RESUMO

Lobaplatin is a third-generation platinum-based antineoplastic agent and is widely used for osteosarcoma treatment before and after tumor removal. However, treatment failure often results from lobaplatin drug resistance. In our study, we found that SaOS-2 and SOSP-9607 osteosarcoma cells became less sensitive to lobaplatin after treatment with exogenous interleukin (IL)-6. Quantitative proteomic analysis was performed to elucidate the underlying mechanism in SaOS-2 osteosarcoma cells. Cells were divided into a control group (CG), a lobaplatin treatment group (LG), a recombinant human IL-6 (rhIL-6), and a lobaplatin treatment group (rhILG). We performed three biological replicates in each group to compare the differential protein expression between groups using a tandem mass tag (TMT) labeling technology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1,313 proteins with significant differential expression was identified and quantified. The general characteristics of the significantly enriched proteins were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and protein-protein interaction (PPI) analysis was conducted using IntAct and STRING. In total, 31 proteins were further verified by parallel reaction monitoring (PRM), among which ras GTPase-activating protein-binding protein 1 (G3BP1), fragile X mental retardation syndrome-related protein 1 (hFXR1p), and far upstream element-binding protein 1 (FUBP1) were significantly differentially expressed. Immunohistochemistry results showed that these three proteins are highly expressed in specimens from platinum-resistant osteosarcoma patients, while the proteins are negatively or weakly expressed in specimens from platinum-sensitive osteosarcoma patients. The immunofluorescence staining results were in accord with the immunohistochemistry staining results. siRNA knockdown of FUBP1 showed a strikingly decreased IC50 value for lobaplatin in FUBP1-silenced cells, which verified the role of FUBP1 in the drug susceptibility of osteosarcoma and the potential therapeutic value for increasing the sensitivity to lobaplatin. This is the first proteomic study on a rhIL-6 intervention before lobaplatin treatment in osteosarcoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA