Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(8): 1280-1297.e11, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36924766

RESUMO

RNA polymerase II (RNA Pol II) has been recognized as a passively regulated multi-subunit holoenzyme. However, the extent to which RNA Pol II subunits might be important beyond the RNA Pol II complex remains unclear. Here, fractions containing disassociated RPB3 (dRPB3) were identified by size exclusion chromatography in various cells. Through a unique strategy, i.e., "specific degradation of disassociated subunits (SDDS)," we demonstrated that dRPB3 functions as a regulatory component of RNA Pol II to enable the preferential control of 3' end processing of ribosomal protein genes directly through its N-terminal domain. Machine learning analysis of large-scale genomic features revealed that the little elongation complex (LEC) helps to specialize the functions of dRPB3. Mechanistically, dRPB3 facilitates CBC-PCF11 axis activity to increase the efficiency of 3' end processing. Furthermore, RPB3 is dynamically regulated during development and diseases. These findings suggest that RNA Pol II gains specific regulatory functions by trapping disassociated subunits in mammalian cells.


Assuntos
RNA Polimerase II , Transcrição Gênica , Animais , RNA Polimerase II/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Subunidades Proteicas/genética , Mamíferos/metabolismo
2.
Blood Cells Mol Dis ; 106: 102838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413287

RESUMO

Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.


Assuntos
Anemia de Diamond-Blackfan , Anemia Diseritropoética Congênita , Anemia Macrocítica , Humanos , Anemia de Diamond-Blackfan/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Células Precursoras Eritroides/metabolismo , Mutação
3.
Genes Dev ; 28(14): 1550-5, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958592

RESUMO

The TCT core promoter element is present in most ribosomal protein (RP) genes in Drosophila and humans. Here we show that TBP (TATA box-binding protein)-related factor TRF2, but not TBP, is required for transcription of the TCT-dependent RP genes. In cells, TCT-dependent transcription, but not TATA-dependent transcription, increases or decreases upon overexpression or depletion of TRF2. In vitro, purified TRF2 activates TCT but not TATA promoters. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) experiments revealed the preferential localization of TRF2 at TCT versus TATA promoters. Hence, a specialized TRF2-based RNA polymerase II system functions in the synthesis of RPs and complements the RNA polymerase I and III systems.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Transcrição Gênica/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Expressão Gênica , Regiões Promotoras Genéticas , Transporte Proteico , TATA Box/genética , Proteína de Ligação a TATA-Box/metabolismo
4.
Curr Genet ; 67(3): 383-388, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33438053

RESUMO

In this review, we have summarized the information from a study on FKBP12 (FK506 binding protein 12 kDa) with a view to understand its drug-free, physiological roles in transcription of ribosomal protein gene in Saccharomyces cerevisiae. FKBP12 with peptidyl-prolylisomerase (PPIase) activity is widely conserved among many eukaryotes. FKBP12 is a primary target for the two structurally related drugs, FK506 and rapamycin. FKBP12 bound with FK506 or rapamycin inhibits calcineurin and target of rapamycin complex 1 (TORC1), respectively. The molecular mechanisms of the effect of FKBP12 in the presence of these drugs have been elucidated. Conversely, the physiological role of FKBP12 has been unclear, especially in yeast. Our study revealed that the deletion of FPR1 (FK506-sensitive prolinerotamase 1 gene), which encodes yeast FKBP12, induced severe growth defect synthetically with deletion of HMO1 (high mobility group family 1). HMO1 encodes an HMGB family protein involved in transcription of ribosomal component genes. Fpr1 was shown to bind specifically to the promoters of ribosomal protein genes (RPGs) dependent on Rap1 (repressor/activator binding protein 1). Importantly, Fpr1 and Hmo1 promote the binding of Fhl1/Ifh1 (forkhead-like 1/interacts with forkhead 1), key regulators of RPG transcription, to certain RPG promoters independently and/or cooperatively with each other. Taken together, we conclude that Fpr1 physiologically functions as transcription factor of RPGs in S. cerevisiae. To our knowledge, this is the first study to demonstrate that FKBP12 participates in ribosome synthesis independently of drugs, and it may also provide a clue to the unidentified function of other PPIase proteins.


Assuntos
Fatores de Transcrição Forkhead/genética , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína 1A de Ligação a Tacrolimo/genética , Transcrição Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Sirolimo/metabolismo , Tacrolimo/metabolismo , Proteínas de Ligação a Telômeros/genética
5.
Curr Genomics ; 22(2): 98-110, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34220297

RESUMO

BACKGROUND: Our previous studies have revealed the roles of ribosomal protein (RP) genes in the abiotic stress responses of rice. METHODS: In the current investigation, we examine the possible involvement of these genes in insect stress responses. We have characterized the RP genes that included both Ribosomal Protein Large (RPL) and Ribosomal Protein Small (RPS) subunit genes in response to infestation by two economically important insect pests, the brown planthopper (BPH) and the Asian rice gall midge (GM) in rice. Differential transcript patterns of seventy selected RP genes were studied in a susceptible and a resistant genotype of indica rice: BPT5204 and RPNF05, respectively. An in silico analyses of the upstream regions of these genes also revealed the presence of cis-elements that are associated with wound signaling. RESULTS: We identified the genes that were up or downregulated in either one of the genotypes, or both of them after pest infestation. The transcript patterns of a majority of the genes were found to be temporally-regulated by both the pests. In the resistant RPNF05, BPH infestation activated RPL15, L51 and RPS5a genes while GM infestation induced RPL15, L18a, L22, L36.2, L38, RPS5, S9.2 and S25a at a certain point of time. These genes that were particularly upregulated in the resistant genotype, RPNF05, but not in BPT5204 suggest their potential involvement in plant resistance against either of the two pests studied. CONCLUSION: Taken together, RPL15, L51, L18a, RPS5, S5a, S9.2, and S25a appear to be the genes with possible roles in insect resistance in rice.

6.
Genomics ; 112(4): 2886-2893, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32240723

RESUMO

To identify the potential distal regulatory regions of human ribosomal protein genes (RPGs) and to understand their characteristics, we studied the chromatin interactions in seven cell lines and four primary cell types. We identified 22,797 putative regulatory regions that directly or indirectly interact with human RPG promoters. A large proportion of these regions are only present in one cell line or one cell type, implying that RPGs may be differentially regulated across experimental conditions. We also noticed that groups of RPGs, which are the same groups across cell lines and cell types, share common regulatory regions. These shared regulatory regions by RPGs may contribute to their coordinated regulation. By studying the overrepresented motifs in the identified regulatory regions, we showed that there are about two dozen motifs in these regions shared across cell lines and cell types. Our study shed new light on the coordinated transcriptional regulation of human RPGs.


Assuntos
Elementos Reguladores de Transcrição , Proteínas Ribossômicas/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Motivos de Nucleotídeos
7.
Plant Cell Rep ; 39(12): 1743-1753, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32959125

RESUMO

KEY MESSAGE: Genetic analysis identifies multiple, potential protein binding sites important for insulator function in Arabidopsis thaliana: Rap1 site in UASrpg, Su(Hw) site in UASrpg, and CTCF site in BEAD1c. Three non-plant insulators UASrpg, BEAD1c, and gypsy isolated from Ashbya gossypii, Homo sapiens and Drosophila melanogaster gypsy retrotransposon, respectively, demonstrate insulator function in transgenic Arabidopsis thaliana. Here, the hypothesis that DNA sequences functional in A. thaliana are the same as those in the original host as previously assumed, was tested. Genetic analyses of the cloned fragments in an enhancer blocking assay system was performed through deletions and mutations to identify more precisely which sequences within the cloned fragments function as insulators. Significant loss of insulator activity was observed when the UASrpg Rap1 binding site R2 was mutated but not R1. Cloned fragments containing BEAD1c are effective insulators in our assay system and the previously investigated gypsy insulator is non-functional. Further analyses identified potential Su(Hw) and CTCF sites within UASrpg, of which only the Su(Hw) site was functional. Thus, the activity of non-plant insulators in A. thaliana is context dependent. These results support the hypothesis that insulator function is conserved across kingdoms.


Assuntos
Arabidopsis/genética , Elementos Isolantes/genética , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Humanos , Plantas Geneticamente Modificadas , Retroelementos , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética
8.
Genomics ; 108(2): 47-55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27449197

RESUMO

Within two years of their discovery in 1977, introns were found to have a positive effect on gene expression. Our result shows that introns can achieve gene expression and regulation through interaction with corresponding mRNA sequences. On the base of Smith-Waterman method, local comparing helps us get the optimal matched segments between intron sequences and mRNA sequences. Studying the distribution regulation of the optimal matching region on intron sequences of ribosomal protein genes about 27 species, we find that the intron length evolution processes beginning from 5' end to 3' end and increasing one by one structural unit, which comes up with a possible mechanism for the intron length evolution. The intron of structure units is conservative with about 60bp length, but the length of linker sequence between structure units changes a lot. Interestingly, distributions of the length and matching rate of optimal matched segments are consistent with sequence features of miRNA and siRNA. These results indicate that the interaction between intron sequences and mRNA sequences is a kind of functional RNA-RNA interaction. Meanwhile, the two kinds of sequences above are co-evolved and interactive to play their functions.


Assuntos
Íntrons , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Bases de Dados Genéticas , Evolução Molecular , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
9.
Curr Genet ; 62(1): 173-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26281979

RESUMO

Ferns are a large and evolutionarily critical group of vascular land plants for which quite limited mitochondrial gene content and genome organization data are, currently, available. This study reports that the gene for the ribosomal protein S3 (rps3) is preserved and physically clustered to an upstream rps19 and a downstream overlapping rpl16 locus in the mitochondrial DNA of the true fern Adiantum capillus-veneris L. Sequence analysis also revealed that the rps3 gene is interrupted by two cis-splicing group II introns, like the counterpart in lycopod and gymnosperm representatives. A preliminary polymerase chain reaction (PCR) survey confirmed a scattered distribution pattern of both the rps3 introns also in other fern lineages. Northern blot and reverse transcription (RT)-PCR analyses demonstrated that the three ribosomal protein genes are co-transcribed as a polycistronic mRNA and modified by RNA editing. Particularly, the U-to-C type editing amends numerous genomic stop codons in the A. capillus-veneris rps19, rps3 and rpl16 sequences, thus, assuring the synthesis of complete and functional polypeptides. Collectively, the findings from this study further expand our knowledge of the mitochondrial rps3 architecture and evolution, also, bridging the significant molecular data gaps across the so far underrepresented ferns and all land plants.


Assuntos
Adiantum/genética , Evolução Molecular , Genes Mitocondriais , Íntrons , Família Multigênica , Proteínas Ribossômicas/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Genoma Mitocondrial , Dados de Sequência Molecular , Filogenia , Proteínas Ribossômicas/química , Alinhamento de Sequência
10.
J Theor Biol ; 392: 113-21, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26707402

RESUMO

Introns after splicing still play an important role. Introns can accomplish gene expression and regulation by interaction with corresponding mRNA sequences. Based on the Smith-Waterman method, local comparing makes us get the optimal matched segments between intron sequences and mRNA sequences. Analyzing the distribution regulation of the optimal matching region on mRNA sequences of ribosomal protein genes about 27 species, we find a strong interaction between UTR region sequences and introns. There are a lot of the optimal matching regions and low matching ones, and the latter are supposed to be the combined regions of protein complexes. The optimal matching frequency distributions have obvious differences nearby the mRNA functional sites such as translation initiation and termination sites, exon-exon joints and EJC regions. This conclusion shows that intron sequences and mature mRNA sequences are co-evolved and interactive to play their functions.


Assuntos
Íntrons , Splicing de RNA , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Análise de Sequência de RNA/métodos , Animais , Humanos , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/biossíntese
11.
Mar Drugs ; 13(7): 4179-96, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26198235

RESUMO

Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed (FAU) gene is down-regulated in human prostate, breast and ovarian cancers. Moreover, its dysregulation is associated with poor prognosis in breast cancer. Sponges (Porifera) are animals without tissues which branched off first from the common ancestor of all metazoans. A large majority of genes implicated in human cancers have their homologues in the sponge genome. Our study suggests that FAU gene from the sponge Suberites domuncula reflects characteristics of the FAU gene from the metazoan ancestor, which have changed only slightly during the course of animal evolution. We found pro-apoptotic activity of sponge FAU protein. The same as its human homologue, sponge FAU increases apoptosis in human HEK293T cells. This indicates that the biological functions of FAU, usually associated with "higher" metazoans, particularly in cancer etiology, possess a biochemical background established early in metazoan evolution. The ancestor of all animals possibly possessed FAU protein with the structure and function similar to evolutionarily more recent versions of the protein, even before the appearance of true tissues and the origin of tumors and metastasis. It provides an opportunity to use pre-bilaterian animals as a simpler model for studying complex interactions in human cancerogenesis.


Assuntos
Proteínas Ribossômicas/isolamento & purificação , Suberites/genética , Animais , Apoptose/efeitos dos fármacos , Evolução Biológica , DNA/genética , DNA/isolamento & purificação , Células HEK293/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Humanos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/isolamento & purificação , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/farmacologia , Alinhamento de Sequência , Frações Subcelulares/química , Suberites/química
12.
J Nematol ; 46(1): 60-74, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24644372

RESUMO

Two new species of Pristionchus, P. lucani n. sp. and P. bulgaricus n. sp., are described from France and Bulgaria, respectively. Additionally, new morphological and morphometric data are provided for two previously described species from Europe, P. brevicauda (Kotlán, 1928) Paramonov, 1952 and P. clavus (von Linstow, 1901) Sudhaus and Fürst von Lieven, 2003. A phylogeny including these four species was inferred from a dataset including 26 ribosomal protein-coding genes, sequences of which are original for P. bulgaricus n. sp. and P. clavus. Relationships support a radiation of all sequenced European Pristionchus species from a single, gonochoristic common ancestor, and current knowledge of species ranges supports "western" and "eastern" clades. Similar diagnostic morphologies reflect the close relationships among the new and recharacterized species, especially P. bulgaricus n. sp., P. brevicauda, and P. clavus, although mating tests as well as genetic and phylogenetic separation support their identities as unique species. Our results show that Pristionchus species in Europe are more diverse than typological characters suggest, and thus biological and molecular profiling will be essential for future delimitation of Pristionchus species from the region.

13.
Sci Rep ; 14(1): 13246, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853173

RESUMO

Although alternative splicing (AS) is a major mechanism that adds diversity to gene expression patterns, its precise role in generating variability in ribosomal proteins, known as ribosomal heterogeneity, remains unclear. The ribosomal protein S24 (RPS24) gene, encoding a ribosomal component, undergoes AS; however, in-depth studies have been challenging because of three microexons between exons 4 and 6. We conducted a detailed analysis of RPS24 AS isoforms using a direct approach to investigate the splicing junctions related to these microexons, focusing on four AS isoforms. Each of these isoforms showed tissue specificity and relative differences in expression among cancer types. Significant differences in the proportions of these RPS24 AS isoforms between cancerous and normal tissues across diverse cancer types were also observed. Our study highlighted a significant correlation between the expression levels of a specific RPS24 AS isoform and the epithelial-mesenchymal transition process in lung and breast cancers. Our research contributes to a better understanding of the intricate regulatory mechanisms governing AS of ribosomal protein genes and highlights the biological implications of RPS24 AS isoforms in tissue development and tumorigenesis.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas Ribossômicas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transição Epitelial-Mesenquimal/genética , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Progressão da Doença , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Linhagem Celular Tumoral , Éxons/genética
14.
Philos Trans R Soc Lond B Biol Sci ; 379(1900): 20230052, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38432321

RESUMO

Transcriptional noise is proposed to participate in cell fate changes, but contributions to mammalian cell differentiation systems, including cancer, remain associative. Cancer evolution is driven by genetic variability, with modulatory or contributory participation of epigenetic variants. Accumulation of epigenetic variants enhances transcriptional noise, which can facilitate cancer cell fate transitions. Acute myeloid leukaemia (AML) is an aggressive cancer with strong epigenetic dependencies, characterized by blocked differentiation. It constitutes an attractive model to probe links between transcriptional noise and malignant cell fate regulation. Gcn5/KAT2A is a classical epigenetic transcriptional noise regulator. Its loss increases transcriptional noise and modifies cell fates in stem and AML cells. By reviewing the analysis of KAT2A-depleted pre-leukaemia and leukaemia models, I discuss that the net result of transcriptional noise is diversification of cell fates secondary to alternative transcriptional programmes. Cellular diversification can enable or hinder AML progression, respectively, by differentiation of cell types responsive to mutations, or by maladaptation of leukaemia stem cells. KAT2A-dependent noise-responsive genes participate in ribosome biogenesis and KAT2A loss destabilizes translational activity. I discuss putative contributions of perturbed translation to AML biology, and propose KAT2A loss as a model for mechanistic integration of transcriptional and translational control of noise and fate decisions. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.


Assuntos
Epigenômica , Leucemia Mieloide Aguda , Animais , Diferenciação Celular , Mutação , Leucemia Mieloide Aguda/genética , Mamíferos
15.
Cells ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891052

RESUMO

Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.


Assuntos
Anemia de Diamond-Blackfan , Terapia Genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Terapia Genética/métodos , Humanos , Sistemas CRISPR-Cas/genética , Vetores Genéticos , Lentivirus/genética , Animais , Proteínas Ribossômicas/genética , Mutação/genética , Edição de Genes/métodos
16.
World J Biol Chem ; 15(1): 97938, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39156122

RESUMO

Eukaryotic chromatin consisting of nucleosomes connected by linker DNA is organized into higher order structures, which is facilitated by linker histone H1. Formation of chromatin compacts and protects the genome, but also hinders DNA transactions. Cells have evolved mechanisms to modify/remodel chromatin resulting in chromatin states suitable for genome functions. The high mobility group box (HMGB) proteins are non-histone chromatin architectural factors characterized by one or more HMGB motifs that bind DNA in a sequence nonspecific fashion. They play a major role in chromatin dynamics. The Saccharomyces cerevisiae (yeast hereafter) HMGB protein Hmo1 contains two HMGB motifs. However, unlike a canonical HMGB protein that has an acidic C-terminus, Hmo1 ends with a lysine rich, basic, C-terminus, resembling linker histone H1. Hmo1 exhibits characteristics of both HMGB proteins and linker histones in its multiple functions. For instance, Hmo1 promotes transcription by RNA polymerases I and II like canonical HMGB proteins but makes chromatin more compact/stable like linker histones. Recent studies have demonstrated that Hmo1 destabilizes/disrupts nucleosome similarly as other HMGB proteins in vitro and acts to maintain a common topological architecture of genes in yeast genome. This minireview reviews the functions of Hmo1 and the underlying mechanisms, highlighting recent discoveries.

17.
J Nematol ; 45(1): 78-86, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23589663

RESUMO

Pristionchus bucculentus n. sp. was isolated from a shining mushroom beetle, Episcapha gorhami, associated with white rot on a decaying log in Hokkaido, Japan. The new species is distinguished by its stomatal morphology, which includes three regularly shaped, conical left subventral denticles and a vacuolated cheilostom with weak internal sclerotization. Also distinguishing P. bucculentus n. sp. are male sexual characters, including arrangement of genital papillae, a rounded and ventrally skewed manubrium, and a gubernaculum with a large, deep posterior curvature and a short, shallow anterior curvature. Morphological and molecular evidence support the new species as being close to P. elegans, which was previously the most basal known species of the genus. Comparative morphology of basal Pristionchus species is supported by a molecular phylogeny inferred from a partial small subunit ribosomal rRNA gene and 25 ribosomal protein-coding genes. Description of P. bucculentus n. sp. provides a new point of comparison for reconstructing the evolution of stomatal characters in the comparative model system of Pristionchus.

18.
Int J Parasitol ; 53(11-12): 637-649, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37355197

RESUMO

Eggs laid by mature female schistosomes are primarily responsible for the pathogenesis of schistosomiasis and critical for transmission. Consequently, elucidating the mechanism of sexual maturation as well as egg production may lead to new strategies for the control of schistosomiasis. MicroRNAs (miRNAs) are involved in multiple biological processes including reproduction in many organisms, yet their roles have not been well characterized in schistosomes. Here, we investigated microRNA-1 (miR-1), which was downregulated gradually in both male and female Schistosoma japonicum after they reached sexually maturity. The expression of miR-1, as shown with quantitative reverse transcription PCR (qRT-PCR), was lower in the reproductive organs of adult females compared with the somatic tissues. Overexpression of miR-1 in adult worms destroyed the morphological architecture of reproductive organs and reduced the subsequent oviposition, which may be due to the activation of apoptosis pathways. Through in silico analysis, 34 potential target genes of miR-1 were identified, including five ribosomal protein genes, called rp-s13, rp-l7ae, rp-l14, rp-l11 and rp-s24e. In vitro dual-luciferase reporter gene assays and miRNA overexpression experiments further validated that these ribosomal protein genes were directly regulated by miR-1. In contrast to the gene expression of miR-1, qRT-PCR and in situ hybridization experiments demonstrated these ribosomal protein genes were enriched in the sexual organs of adult females. Using RNA interference to silence the ribosomal protein genes in different developmental stages in a mouse model system, we demonstrated that these miR-1 target genes not only participated in the reproductive development of S. japonicum, but also were required for the growth and survival of the parasite in the early developmental stages. Taken together, our data suggested that miR-1 may affect the growth, reproduction and oviposition of S. japonicum by targeting the ribosomal protein genes, which provides insights for exploration of new anti-schistosome strategies.


Assuntos
Fenômenos Biológicos , MicroRNAs , Schistosoma japonicum , Esquistossomose Japônica , Esquistossomose , Camundongos , Animais , Feminino , Masculino , MicroRNAs/genética , Proteínas Ribossômicas/genética , Reprodução , Esquistossomose Japônica/parasitologia
19.
Essays Biochem ; 67(5): 893-901, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655454

RESUMO

The unicellular yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are widely used eukaryotic model organisms. Research exploiting the tractability of these model systems has contributed significantly to our understanding of a wide range of fundamental processes. In this article, we outline the features of yeast that have similarly been exploited for undergraduate research training. We selected examples from published literature that demonstrate the utility of the yeast system for research-based learning embedded in the curriculum. We further describe a project which we designed for the team-based final-year dissertation projects module on our transnational joint programme, which investigates whether the expression and functions of the budding yeast RPL36 ribosomal protein paralogs are influenced by the overlapping long non-coding RNA genes. Students carry out the experimental procedures in a 2-week timetabled teaching block and exercise widely applicable biochemical techniques, including aseptic yeast cell culture and sample collection, RNA isolation, qRT-PCR quantitation, protein extraction and Western blot analysis, and cell cycle progression patterns using light microscopy and flow cytometry. It is challenging to design training programmes for undergraduates that are meaningful as well as practical and economical, but it is possible to transform active research projects into authentic research experiences. We consider yeast to be an ideal model organism for such projects. These can be adapted to the constraints of course schedules and explore fundamental biochemical topics which are evolutionarily conserved from yeast to mammals.


Assuntos
RNA Longo não Codificante , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Proteínas Ribossômicas/genética , Estudantes , Envelhecimento , Mamíferos
20.
Front Microbiol ; 13: 1091698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569058

RESUMO

It is realized that the first intron plays a key role in regulating gene expression, and the interactions between the first introns and other introns must be related to the regulation of gene expression. In this paper, the sequences of mitochondrial ribosomal protein genes were selected as the samples, based on the Smith-Waterman method, the optimal matched segments between the first intron and the reverse complementary sequences of other introns of each gene were obtained, and the characteristics of the optimal matched segments were analyzed. The results showed that the lengths and the ranges of length distributions of the optimal matched segments are increased along with the evolution of eukaryotes. For the distributions of the optimal matched segments with different GC contents, the peak values are decreased along with the evolution of eukaryotes, but the corresponding GC content of the peak values are increased along with the evolution of eukaryotes, it means most introns of higher organisms interact with each other though weak bonds binding. By comparing the lengths and matching rates of optimal matched segments with those of siRNA and miRNA, it is found that some optimal matched segments may be related to non-coding RNA with special biological functions, just like siRNA and miRNA, they may play an important role in the process of gene expression and regulation. For the relative position of the optimal matched segments, the peaks of relative position distributions of optimal matched segments are increased during the evolution of eukaryotes, and the positions of the first two peaks exhibit significant conservatism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA