Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Biol Chem ; 295(44): 14855-14865, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32817343

RESUMO

The in vitro formation of stable G-quadruplexes (G4s) in human rRNA was recently reported. However, their formation in cells and their cellular roles were not resolved. Here, by taking a chemical biology approach that integrates results from immunofluorescence, G4 ligands, heme-affinity reagents, and a genetically encoded fluorescent heme sensor, we report that human ribosomes can form G4s in vivo that regulate heme bioavailability. Immunofluorescence experiments indicate that the vast majority of extra-nuclear G4s are associated with rRNA. Moreover, titrating human cells with a G4 ligand alters the ability of ribosomes to bind heme and disrupts cellular heme bioavailability as measured by a genetically encoded fluorescent heme sensor. Overall, these results suggest that ribosomes play a role in regulating heme homeostasis.


Assuntos
Quadruplex G , Ribossomos/metabolismo , Imunofluorescência , Células HEK293 , Heme/metabolismo , Homeostase , Humanos , Ligantes , Ligação Proteica , RNA Ribossômico/metabolismo
2.
J Biol Chem ; 295(15): 4782-4795, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32060094

RESUMO

RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I-associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I-specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.


Assuntos
Cromatina/metabolismo , Nucleossomos/metabolismo , RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Cromatina/genética , Replicação do DNA , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Polimerase I/química , RNA Polimerase I/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase III/química , RNA Polimerase III/genética , Ribossomos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
J Biol Chem ; 295(24): 8214-8226, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350115

RESUMO

Epithelial cell-transforming sequence 2 (ECT2) is a guanine nucleotide exchange factor for Rho GTPases that is overexpressed in many cancers and involved in signal transduction pathways that promote cancer cell proliferation, invasion, and tumorigenesis. Recently, we demonstrated that a significant pool of ECT2 localizes to the nucleolus of non-small-cell lung cancer (NSCLC) cells, where it binds the transcription factor upstream binding factor 1 (UBF1) on the promoter regions of ribosomal DNA (rDNA) and activates rDNA transcription, transformed cell growth, and tumor formation. Here, we investigated the mechanism by which ECT2 engages UBF1 on rDNA promoters. Results from ECT2 mutagenesis indicated that the tandem BRCT domain of ECT2 mediates binding to UBF1. Biochemical and MS-based analyses revealed that protein kinase Cι (PKCι) directly phosphorylates UBF1 at Ser-412, thereby generating a phosphopeptide-binding epitope that binds the ECT2 BRCT domain. Lentiviral shRNA knockdown and reconstitution experiments revealed that both a functional ECT2 BRCT domain and the UBF1 Ser-412 phosphorylation site are required for UBF1-mediated ECT2 recruitment to rDNA, elevated rRNA synthesis, and transformed growth. Our findings provide critical molecular insight into ECT2-mediated regulation of rDNA transcription in cancer cells and offer a rationale for therapeutic targeting of UBF1- and ECT2-stimulated rDNA transcription for the management of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transformação Celular Neoplásica/metabolismo , DNA Ribossômico/metabolismo , Isoenzimas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Ribossômico/metabolismo , Motivos de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias Pulmonares/patologia , Modelos Biológicos , Fosfopeptídeos/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas/química
4.
J Biol Chem ; 295(25): 8505-8513, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371392

RESUMO

Mitochondrial DNA gene expression is coordinately regulated both pre- and post-transcriptionally, and its perturbation can lead to human pathologies. Mitochondrial rRNAs (mt-rRNAs) undergo a series of nucleotide modifications after release from polycistronic mitochondrial RNA precursors, which is essential for mitochondrial ribosomal biogenesis. Cytosine N4-methylation (m4C) at position 839 (m4C839) of the 12S small subunit mt-rRNA was identified decades ago; however, its biogenesis and function have not been elucidated in detail. Here, using several approaches, including immunofluorescence, RNA immunoprecipitation and methylation assays, and bisulfite mapping, we demonstrate that human methyltransferase-like 15 (METTL15), encoded by a nuclear gene, is responsible for 12S mt-rRNA methylation at m4C839 both in vivo and in vitro We tracked the evolutionary history of RNA m4C methyltransferases and identified a difference in substrate preference between METTL15 and its bacterial ortholog rsmH. Additionally, unlike the very modest impact of a loss of m4C methylation in bacterial small subunit rRNA on the ribosome, we found that METTL15 depletion results in impaired translation of mitochondrial protein-coding mRNAs and decreases mitochondrial respiration capacity. Our findings reveal that human METTL15 is required for mitochondrial function, delineate the evolution of methyltransferase substrate specificities and modification patterns in rRNA, and highlight a differential impact of m4C methylation on prokaryotic ribosomes and eukaryotic mitochondrial ribosomes.


Assuntos
Metiltransferases/metabolismo , Mitocôndrias/metabolismo , RNA Ribossômico/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Edição de Genes , Genoma Mitocondrial , Glicólise , Humanos , Cinética , Metilação , Metiltransferases/genética , Microscopia de Fluorescência , Mitocôndrias/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial/metabolismo , RNA Ribossômico/genética , Especificidade por Substrato
5.
J Biol Chem ; 294(52): 19907-19922, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31727736

RESUMO

Our knowledge of the mechanism of rDNA transcription has benefited from the combined application of genetic and biochemical techniques in yeast. Nomura's laboratory (Nogi, Y., Vu, L., and Nomura, M. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 7026-7030 and Nogi, Y., Yano, R., and Nomura, M. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3962-3966) developed a system in yeast to identify genes essential for ribosome biogenesis. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in both the structures and components of the transcription apparatus and the patterns of regulation between mammals and yeast. Thus, there are significant deficits in our understanding of mammalian rDNA transcription. We have developed a system combining CRISPR/Cas9 and an auxin-inducible degron that enables combining a "genetics-like"approach with biochemistry to study mammalian rDNA transcription. We now show that the mammalian orthologue of yeast RPA49, PAF53, is required for rDNA transcription and mitotic growth. We have studied the domains of the protein required for activity. We have found that the C-terminal, DNA-binding domain (tandem-winged helix), the heterodimerization, and the linker domain were essential. Analysis of the linker identified a putative helix-turn-helix (HTH) DNA-binding domain. This HTH constitutes a second DNA-binding domain within PAF53. The HTH of the yeast and mammalian orthologues is essential for function. In summary, we show that an auxin-dependent degron system can be used to rapidly deplete nucleolar proteins in mammalian cells, that PAF53 is necessary for rDNA transcription and cell growth, and that all three PAF53 domains are necessary for its function.


Assuntos
Mitose , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas/genética , DNA Ribossômico/metabolismo , Dimerização , Sequências Hélice-Volta-Hélice , Ácidos Indolacéticos/metabolismo , Camundongos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase I/química , RNA Polimerase I/genética , RNA Guia de Cinetoplastídeos/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
6.
J Biol Chem ; 294(50): 19155-19166, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31694914

RESUMO

Ribosome biogenesis is critical for proliferating cells and requires the coordinated activities of three eukaryotic RNA polymerases. We recently showed that the small ubiquitin-like modifier (SUMO) system controls the global level of RNA polymerase II (Pol II)-controlled transcription in mammalian cells by regulating cyclin-dependent kinase 9 activity. Here, we present evidence that the SUMO system also plays a critical role in the control of Pol I transcription. Using an siRNA-based knockdown approach, we found that multiple SUMO E3 ligases of the PIAS (protein inhibitor of activated STAT) family are involved in SUMO-mediated repression of ribosomal DNA (rDNA) gene transcription. We demonstrate that endogenous SUMO represses rDNA transcription primarily by repressing upstream-binding factor and proto-oncogene c-Myc expression and that ectopic overexpression of SUMO-associated enzymes additionally represses rDNA transcription via c-Myc SUMOylation and its subsequent degradation. The results of our study reveal a critical role of SUMOylation in the control of rDNA transcription, uncover the underlying mechanisms involved, and indicate that the SUMO system coordinates Pol I- and Pol II-mediated transcription in mammalian cells.


Assuntos
DNA Ribossômico/genética , Regulação para Baixo/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Proto-Oncogênicas c-myc/genética , DNA Ribossômico/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sumoilação , Ativação Transcricional/genética
7.
J Biol Chem ; 294(46): 17642-17653, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594862

RESUMO

Methylation of the small ribosome subunit rRNA in the ribosomal decoding center results in exceptionally high-level aminoglycoside resistance in bacteria. Enzymes that methylate 16S rRNA on N7 of nucleotide G1405 (m7G1405) have been identified in both aminoglycoside-producing and clinically drug-resistant pathogenic bacteria. Using a fluorescence polarization 30S-binding assay and a new crystal structure of the methyltransferase RmtC at 3.14 Å resolution, here we report a structure-guided functional study of 30S substrate recognition by the aminoglycoside resistance-associated 16S rRNA (m7G1405) methyltransferases. We found that the binding site for these enzymes in the 30S subunit directly overlaps with that of a second family of aminoglycoside resistance-associated 16S rRNA (m1A1408) methyltransferases, suggesting that both groups of enzymes may exploit the same conserved rRNA tertiary surface for docking to the 30S. Within RmtC, we defined an N-terminal domain surface, comprising basic residues from both the N1 and N2 subdomains, that directly contributes to 30S-binding affinity. In contrast, additional residues lining a contiguous adjacent surface on the C-terminal domain were critical for 16S rRNA modification but did not directly contribute to the binding affinity. The results from our experiments define the critical features of m7G1405 methyltransferase-substrate recognition and distinguish at least two distinct, functionally critical contributions of the tested enzyme residues: 30S-binding affinity and stabilizing a binding-induced 16S rRNA conformation necessary for G1405 modification. Our study sets the scene for future high-resolution structural studies of the 30S-methyltransferase complex and for potential exploitation of unique aspects of substrate recognition in future therapeutic strategies.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Metiltransferases/metabolismo , Proteus mirabilis/enzimologia , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Cristalografia por Raios X , Humanos , Metiltransferases/química , Modelos Moleculares , Conformação Proteica , Infecções por Proteus/tratamento farmacológico , Infecções por Proteus/microbiologia , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/metabolismo , RNA Ribossômico 16S/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Especificidade por Substrato
8.
J Biol Chem ; 294(28): 10746-10757, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31076509

RESUMO

In eukaryotes, ribosome assembly is a rate-limiting step in ribosomal biogenesis that takes place in a distinctive subnuclear organelle, the nucleolus. How ribosomes get assembled at the nucleolar site by forming initial preribosomal complexes remains poorly characterized. In this study, using several human and murine cell lines, we developed a method for isolation of native mammalian preribosomal complexes by lysing cell nuclei through mild sonication. A sucrose gradient fractionation of the nuclear lysate resolved several ribonucleoprotein (RNP) complexes containing rRNAs and ribosomal proteins. Characterization of the RNP complexes with MS-based protein identification and Northern blotting-based rRNA detection approaches identified two types of preribosomes we named here as intermediate preribosomes (IPRibs) and composed preribosome (CPRib). IPRib complexes comprised large preribosomes (105S to 125S in size) containing the rRNA modification factors and premature rRNAs. We further observed that a distinctive CPRib complex consists of an 85S preribosome assembled with mature rRNAs and a ribosomal biogenesis factor, Ly1 antibody-reactive (LYAR), that does not associate with premature rRNAs and rRNA modification factors. rRNA-labeling experiments uncovered that IPRib assembly precedes CPRib complex formation. We also found that formation of the preribosomal complexes is nutrient-dependent because the abundances of IPRib and CPRib decreased substantially when cells were either deprived of amino acids or exposed to an mTOR kinase inhibitor. These findings indicate that preribosomes form via dynamic and nutrient-dependent processing events and progress from an intermediate to a composed state during ribosome maturation.


Assuntos
Precursores de RNA/metabolismo , Ribossomos/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Acetiltransferases N-Terminal/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
9.
J Biol Chem ; 294(47): 17848-17862, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31624149

RESUMO

Ricin undergoes retrograde transport to the endoplasmic reticulum (ER), and ricin toxin A chain (RTA) enters the cytosol from the ER. Previous reports indicated that RTA inhibits activation of the unfolded protein response (UPR) in yeast and in mammalian cells. Both precursor (preRTA) and mature form of RTA (mRTA) inhibited splicing of HAC1u (u for uninduced) mRNA, suggesting that UPR inhibition occurred on the cytosolic face of the ER. Here, we examined the role of ribosome binding and depurination activity on inhibition of the UPR using mRTA mutants. An active-site mutant with very low depurination activity, which bound ribosomes as WT RTA, did not inhibit HAC1u mRNA splicing. A ribosome-binding mutant, which showed reduced binding to ribosomes but retained depurination activity, inhibited HAC1u mRNA splicing. This mutant allowed separation of the UPR inhibition by RTA from cytotoxicity because it reduced the rate of depurination. The ribosome-binding mutant inhibited the UPR without affecting IRE1 oligomerization or cleavage of HAC1u mRNA at the splice site junctions. Inhibition of the UPR correlated with the depurination level, suggesting that ribosomes play a role in splicing of HAC1u mRNA. We show that HAC1u mRNA is associated with ribosomes and does not get processed on depurinated ribosomes, thereby inhibiting the UPR. These results demonstrate that RTA inhibits HAC1u mRNA splicing through its depurination activity on the ribosome without directly affecting IRE1 oligomerization or the splicing reaction and provide evidence that IRE1 recognizes HAC1u mRNA that is associated with ribosomes.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Purinas/metabolismo , Splicing de RNA/genética , Proteínas Repressoras/metabolismo , Ribossomos/metabolismo , Ricina/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse do Retículo Endoplasmático/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Multimerização Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
10.
J Biol Chem ; 293(7): 2358-2369, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29301938

RESUMO

The nucleoli accumulate rRNA genes and are the sites of rRNA synthesis and rRNA assembly into ribosomes. During mitosis, nucleoli dissociate, but nucleolar remnants remain on the rRNA gene loci, forming distinct nucleolar organizer regions (NORs). Little is known about the composition and structure of NORs, but upstream binding factor (UBF) has been established as its master organizer. In this study, we sought to establish new proteins in NORs. Using UBF-Sepharose to isolate UBF-binding proteins, we identified histone H1.2 as a candidate partner but were puzzled by this observation, given that UBF is known to be located predominantly in nucleoli, whereas H1.2 distributed broadly among the chromatins in interphase nuclei. We then examined cells undergoing mitosis and saw that both H1.2 and UBF were recruited into NORs in this state, reconciling the results of our UBF pulldowns. Inhibiting rRNA synthesis in interphase nuclei also induced NOR-like structures containing both UBF and H1.2. When chromosomes were isolated and spread on coverslips, NORs appeared separated from the chromosomes containing both UBF and H1.2. After chromosomes were fragmented by homogenization, intact NORs remained visible. Results collectively suggest that NORs are independent structures and that the linker histone H1.2 is a novel component of this structure.


Assuntos
Histonas/metabolismo , Região Organizadora do Nucléolo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Humanos , Mitose , Região Organizadora do Nucléolo/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Transcrição Gênica
11.
J Biol Chem ; 293(23): 9006-9016, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29678883

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a significant human pathogen that colonizes humans and its reservoir host, cattle. Colonization requires the expression of a type 3 secretion (T3S) system that injects a mixture of effector proteins into host cells to promote bacterial attachment and disease progression. The T3S system is tightly regulated by a complex network of transcriptional and post-transcriptional regulators. Using transposon mutagenesis, here we identified the ybeZYX-Int operon as being required for normal T3S levels. Deletion analyses localized the regulation to the endoribonuclease YbeY, previously linked to 16S rRNA maturation and small RNA (sRNA) function. Loss of ybeY in EHEC had pleiotropic effects on EHEC cells, including reduced motility and growth and cold sensitivity. Using UV cross-linking and RNA-Seq (CRAC) analysis, we identified YbeY-binding sites throughout the transcriptome and discovered specific binding of YbeY to the "neck" and "beak" regions of 16S rRNA but identified no significant association of YbeY with sRNA, suggesting that YbeY modulates T3S by depleting mature ribosomes. In E. coli, translation is strongly linked to mRNA stabilization, and subinhibitory concentrations of the translation-initiation inhibitor kasugamycin provoked rapid degradation of a polycistronic mRNA encoding needle filament and needle tip proteins of the T3S system. We conclude that T3S is particularly sensitive to depletion of initiating ribosomes, explaining the inhibition of T3S in the ΔybeY strain. Accessory virulence transcripts may be preferentially degraded in cells with reduced translational capacity, potentially reflecting prioritization in protein production.


Assuntos
Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Metaloproteínas/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Humanos , Metaloproteínas/genética , Modelos Moleculares , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transcriptoma , Sistemas de Secreção Tipo III/genética
12.
J Biol Chem ; 293(9): 3321-3334, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348176

RESUMO

The 1555A→G mutation in mitochondrial 12S rRNA has been associated with aminoglycoside-induced and non-syndromic deafness in many individuals worldwide. Mitochondrial genetic modifiers are proposed to influence the phenotypic expression of m.1555A→G mutation. Here, we report that a deafness-susceptibility allele (m.4317A→G) in the tRNAIle gene modulates the phenotype expression of m.1555A→G mutation. Strikingly, a large Han Chinese pedigree carrying both m.4317A→G and m.1555A→G mutations exhibited much higher penetrance of deafness than those carrying only the m.1555A→G mutation. The m.4317A→G mutation affected a highly conserved adenine at position 59 in the T-loop of tRNAIle We therefore hypothesized that the m.4317A→G mutation alters both structure and function of tRNAIle Using lymphoblastoid cell lines derived from members of Chinese families (three carrying both m.1555A→G and m.4317A→G mutations, three harboring only m.1555A→G mutation, and three controls lacking these mutations), we found that the cell lines bearing both m.4317A→G and m.1555A→G mutations exhibited more severe mitochondrial dysfunctions than those carrying only the m.1555A→G mutation. We also found that the m.4317A→G mutation perturbed the conformation, stability, and aminoacylation efficiency of tRNAIle These m.4317A→G mutation-induced alterations in tRNAIle structure and function aggravated the defective mitochondrial translation and respiratory phenotypes associated with the m.1555A→G mutation. Furthermore, mutant cell lines bearing both m.4317A→G and m.1555A→G mutations exhibited greater reductions in the mitochondrial ATP levels and membrane potentials and increasing production of reactive oxygen species than those carrying only the m.1555A→G mutation. Our findings provide new insights into the pathophysiology of maternally inherited deafness arising from the synergy between mitochondrial 12S rRNA and tRNA mutations.


Assuntos
Surdez/genética , Mutação , Fenótipo , RNA Mitocondrial/genética , RNA Ribossômico/genética , RNA de Transferência de Isoleucina/genética , Trifosfato de Adenosina/biossíntese , Alelos , Estudos de Casos e Controles , Respiração Celular/genética , Estudos de Coortes , Surdez/metabolismo , Surdez/patologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
13.
J Biol Chem ; 292(19): 7718-7726, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28298445

RESUMO

Toxin-antitoxin systems are ubiquitous in prokaryotic and archaeal genomes and regulate growth in response to stress. Escherichia coli contains at least 36 putative toxin-antitoxin gene pairs, and some pathogens such as Mycobacterium tuberculosis have over 90 toxin-antitoxin operons. E. coli MazF cleaves free mRNA after encountering stress, and nine M. tuberculosis MazF family members cleave mRNA, tRNA, or rRNA. Moreover, M. tuberculosis MazF-mt6 cleaves 23S rRNA Helix 70 to inhibit protein synthesis. The overall tertiary folds of these MazFs are predicted to be similar, and therefore, it is unclear how they recognize structurally distinct RNAs. Here we report the 2.7-Å X-ray crystal structure of MazF-mt6. MazF-mt6 adopts a PemK-like fold but lacks an elongated ß1-ß2 linker, a region that typically acts as a gate to direct RNA or antitoxin binding. In the absence of an elongated ß1-ß2 linker, MazF-mt6 is unable to transition between open and closed states, suggesting that the regulation of RNA or antitoxin selection may be distinct from other canonical MazFs. Additionally, a shortened ß1-ß2 linker allows for the formation of a deep, solvent-accessible, active-site pocket, which may allow recognition of specific, structured RNAs like Helix 70. Structure-based mutagenesis and bacterial growth assays demonstrate that MazF-mt6 residues Asp-10, Arg-13, and Thr-36 are critical for RNase activity and likely catalyze the proton-relay mechanism for RNA cleavage. These results provide further critical insights into how MazF secondary structural elements adapt to recognize diverse RNA substrates.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Endorribonucleases/metabolismo , Mycobacterium tuberculosis/enzimologia , Antitoxinas/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Óperon , Multimerização Proteica , Estrutura Secundária de Proteína , RNA Mensageiro/metabolismo , RNA Ribossômico 23S/química , Especificidade por Substrato
14.
J Biol Chem ; 292(45): 18469-18485, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28939771

RESUMO

The ability to detect and respond to oxidative stress is crucial to the survival of living organisms. In cells, sensing of increased levels of reactive oxygen species (ROS) activates many defensive mechanisms that limit or repair damage to cell components. The ROS-signaling responses necessary for cell survival under oxidative stress conditions remain incompletely understood, especially for the translational machinery. Here, we found that drug treatments or a genetic deficiency in the thioredoxin system that increase levels of endogenous hydrogen peroxide in the yeast Saccharomyces cerevisiae promote site-specific endonucleolytic cleavage in 25S ribosomal RNA (rRNA) adjacent to the c loop of the expansion segment 7 (ES7), a putative regulatory region located on the surface of the 60S ribosomal subunit. Our data also show that ES7c is cleaved at early stages of the gene expression program that enables cells to successfully counteract oxidative stress and is not a prerequisite or consequence of apoptosis. Moreover, the 60S subunits containing ES7c-cleaved rRNA cofractionate with intact subunits in sucrose gradients and repopulate polysomes after a short starvation-induced translational block, indicating their active role in translation. These results demonstrate that ES7c cleavage in rRNA is an early and sensitive marker of increased ROS levels in yeast cells and suggest that changes in ribosomes may be involved in the adaptive response to oxidative stress.


Assuntos
Regulação Fúngica da Expressão Gênica , Estresse Oxidativo , Polirribossomos/enzimologia , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hormese , Cinética , Conformação de Ácido Nucleico , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/genética , Peroxidases/metabolismo , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Clivagem do RNA/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , RNA Fúngico/química , RNA Ribossômico/química , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Substâncias Redutoras/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esferoplastos/efeitos dos fármacos , Esferoplastos/enzimologia , Esferoplastos/crescimento & desenvolvimento , Esferoplastos/fisiologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
15.
J Biol Chem ; 292(7): 2881-2892, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049726

RESUMO

Nuclear modifier gene(s) was proposed to modulate the phenotypic expression of mitochondrial DNA mutation(s). Our previous investigations revealed that a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to tRNA modification interacts with 12S rRNA 1555A→G mutation to cause deafness. The A10S mutation resided at a highly conserved residue of the N-terminal sequence. It was hypothesized that the A10S mutation altered the structure and function of TRMU, thereby causing mitochondrial dysfunction. Using molecular dynamics simulations, we showed that the A10S mutation introduced the Ser10 dynamic electrostatic interaction with the Lys106 residue of helix 4 within the catalytic domain of TRMU. The Western blotting analysis displayed the reduced levels of TRMU in mutant cells carrying the A10S mutation. The thermal shift assay revealed the Tm value of mutant TRMU protein, lower than that of the wild-type counterpart. The A10S mutation caused marked decreases in 2-thiouridine modification of U34 of tRNALys, tRNAGlu and tRNAGln However, the A10S mutation mildly increased the aminoacylated efficiency of tRNAs. The altered 2-thiouridine modification worsened the impairment of mitochondrial translation associated with the m.1555A→G mutation. The defective translation resulted in the reduced activities of mitochondrial respiration chains. The respiratory deficiency caused the reduction of mitochondrial ATP production and elevated the production of reactive oxidative species. As a result, mutated TRMU worsened mitochondrial dysfunctions associated with m.1555A→G mutation, exceeding the threshold for expressing a deafness phenotype. Our findings provided new insights into the pathophysiology of maternally inherited deafness that was manifested by interaction between mtDNA mutation and nuclear modifier gene.


Assuntos
Alelos , Surdez/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Fenótipo , RNA Ribossômico/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Aminoacilação , Estabilidade Enzimática , Fluorometria , Humanos , Proteínas Mitocondriais/genética , Simulação de Dinâmica Molecular , tRNA Metiltransferases/genética
16.
J Biol Chem ; 291(34): 17919-28, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27288410

RESUMO

The primary role of the RNAi machinery is to promote mRNA degradation within the cytoplasm in a microRNA-dependent manner. However, both Dicer and the Argonaute protein family have expanded roles in gene regulation within the nucleus. To further our understanding of this role, we have identified chromatin binding sites for AGO2 throughout the 45S region of the human rRNA gene. The location of these sites was mirrored by the positions of AGO2 cross-linking sites identified via PAR-CLIP-seq. AGO2 binding to the rRNA within the nucleus was confirmed by RNA immunoprecipitation and quantitative-PCR. To explore a possible mechanism by which AGO2 could be recruited to the rRNA, we identified 1174 regions within the 45S rRNA transcript that have the ability to form a perfect duplex with position 2-6 (seed sequence) of each microRNA expressed in HEK293T cells. Of these potential AGO2 binding sites, 479 occurred within experimentally verified AGO2-rRNA cross-linking sites. The ability of AGO2 to cross-link to rRNA was almost completely lost in a DICER knock-out cell line. The transfection of miR-92a-2-3p into the noDICE cell line facilitated AGO2 cross-linking at a region of the rRNA that has a perfect seed match at positions 3-8, including a single G-U base pair. Knockdown of AGO2 within HEK293T cells causes a slight, but statistically significant increase in the overall rRNA synthesis rate but did not impact the ratio of processing intermediates or the recruitment of the Pol I transcription factor UBTF.


Assuntos
Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Proteínas Argonautas/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Células K562 , MicroRNAs/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , RNA Polimerase I/genética , RNA Ribossômico/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
17.
J Biol Chem ; 291(18): 9438-43, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27022019

RESUMO

RNase R is a 3' to 5' hydrolytic exoribonuclease that has the unusual ability to digest highly structured RNA. The enzyme possesses an intrinsic, ATP-dependent RNA helicase activity that is essential in vitro for efficient nuclease activity against double-stranded RNA substrates, particularly at lower temperatures, with more stable RNA duplexes, and for duplexes with short 3' overhangs. Here, we inquired whether the helicase activity was also important for RNase R function in vivo and for RNA metabolism. We find that strains containing a helicase-deficient RNase R due to mutations in its ATP-binding Walker motifs exhibit growth defects at low temperatures. Most importantly, cells also lacking polynucleotide phosphorylase (PNPase), and dependent for growth on RNase R, grow extremely poorly at 34, 37, and 42 °C and do not grow at all at 31 °C. Northern analysis revealed that in these cells, fragments of 16S and 23S rRNA accumulate to high levels, leading to interference with ribosome maturation and ultimately to cell death. These findings indicate that the intrinsic helicase activity of RNase R is required for its proper functioning in vivo and for effective RNA metabolism.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Exorribonucleases , RNA Helicases , RNA Bacteriano , RNA Ribossômico 23S , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Exorribonucleases/química , Exorribonucleases/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo
18.
J Biol Chem ; 290(31): 19273-86, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26060252

RESUMO

Aminoglycosides are a well known antibiotic family used to treat bacterial infections in humans and animals, but which can be toxic. By binding to the decoding site of helix44 of the small subunit RNA of the bacterial ribosome, the aminoglycoside antibiotics inhibit protein synthesis, cause misreading, or obstruct peptidyl-tRNA translocation. Although aminoglycosides bind helix69 of the bacterial large subunit RNA as well, little is known about their interaction with the homologous human helix69. To probe the role this binding event plays in toxicity, changes to thermal stability, base stacking, and conformation upon aminoglycoside binding to the human cytoplasmic helix69 were compared with those of the human mitochondrial and Escherichia coli helix69. Surprisingly, binding of gentamicin and kanamycin A to the chemically synthesized terminal hairpins of the human cytoplasmic, human mitochondrial, and E. coli helix69 revealed similar dissociation constants (1.3-1.7 and 4.0-5.4 µM, respectively). In addition, aminoglycoside binding enhanced conformational stability of the human mitochondrial helix69 by increasing base stacking. Proton one-dimensional and two-dimensional NMR suggested significant and specific conformational changes of human mitochondrial and E. coli helix69 upon aminoglycoside binding, as compared with human cytoplasmic helix69. The conformational changes and similar aminoglycoside binding affinities observed for human mitochondrial helix69 and E. coli helix69, as well as the increase in structural stability shown for the former, suggest that this binding event is important to understanding aminoglycoside toxicity.


Assuntos
Antibacterianos/química , Gentamicinas/química , Canamicina/química , RNA Ribossômico/química , RNA/química , Escherichia coli , Humanos , Sequências Repetidas Invertidas , Estabilidade de RNA , RNA Bacteriano/química , RNA Mitocondrial
19.
J Biol Chem ; 290(7): 3995-4002, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25477520

RESUMO

Radical S-adenosylmethionine (SAM) enzymes use the oxidizing power of a 5'-deoxyadenosyl 5'-radical to initiate an amazing array of transformations, usually through the abstraction of a target substrate hydrogen atom. A common reaction of radical SAM (RS) enzymes is the methylation of unactivated carbon or phosphorous atoms found in numerous primary and secondary metabolites, as well as in proteins, sugars, lipids, and RNA. However, neither the chemical mechanisms by which these unactivated atoms obtain methyl groups nor the actual methyl donors are conserved. In fact, RS methylases have been grouped into three classes based on protein architecture, cofactor requirement, and predicted mechanism of catalysis. Class A methylases use two cysteine residues to methylate sp(2)-hybridized carbon centers. Class B methylases require a cobalamin cofactor to methylate both sp(2)-hybridized and sp(3)-hybridized carbon centers as well as phosphinate phosphorous atoms. Class C methylases share significant sequence homology with the RS enzyme, HemN, and may bind two SAM molecules simultaneously to methylate sp(2)-hybridized carbon centers. Lastly, we describe a new class of recently discovered RS methylases. These Class D methylases, unlike Class A, B, and C enzymes, which use SAM as the source of the donated methyl carbon, are proposed to methylate sp(2)-hybridized carbon centers using methylenetetrahydrofolate as the source of the appended methyl carbon.


Assuntos
Radicais Livres/química , Proteínas Metiltransferases/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Animais , Humanos , Metilação
20.
J Biol Chem ; 289(43): 29691-700, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25204660

RESUMO

Regulation of rDNA transcription is central to cell growth and proliferation. PHF2 and PHF8 belong to a subfamily of histone demethylases that also possess a PHD domain-dependent di-/trimethylated histone 3 lysine 4 (H3K4me2/3) binding activity and are known to be enriched in the nucleolus. In this study, we show that, unlike PHF8 that activates rDNA transcription, PHF2 inhibits rDNA transcription. Depletion of PHF2 by RNA interference increases and overexpression of PHF2 decreases rDNA transcription, respectively, whereas simultaneous depletion of PHF8 and PHF2 restores the level of rDNA transcription. The inhibition of rDNA transcription by PHF2 depends on its H3K4me2/3 binding activity that is also required for PHF2 association with the promoter of rDNA genes but not its demethylase activity. We provide evidence that PHF2 is likely to repress rDNA transcription by competing with PHF8 for binding of rDNA promoter and by recruiting H3K9me2/3 methyltransferase SUV39H1. We also provide evidence that, whereas PHF8 promotes, PHF2 represses the transcriptional activity of RARα, Oct4, and KLF4 and a few PHF8 target genes tested. Taken together, our study demonstrates a repressive role for PHF2 in transcription by RNA polymerase I and II.


Assuntos
Genes de RNAr , Histona Desmetilases/metabolismo , Proteínas de Homeodomínio/metabolismo , Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Nucléolo Celular/metabolismo , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Lisina , Metilação , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA