RESUMO
Migration is essential for the laminar stratification and connectivity of neurons in the central nervous system. In the retina, photoreceptors (PRs) migrate to positions according to birthdate, with early-born cells localizing to the basal-most side of the outer nuclear layer. It was proposed that apical progenitor mitoses physically drive these basal translocations non-cell autonomously, but direct evidence is lacking, and whether other mechanisms participate is unknown. Here, combining loss- or gain-of-function assays to manipulate cell cycle regulators (Sonic hedgehog, Cdkn1a/p21) with an in vivo lentiviral labelling strategy, we demonstrate that progenitor division is one of two forces driving basal translocation of rod soma. Indeed, replacing Shh activity rescues abnormal rod translocation in retinal explants. Unexpectedly, we show that rod differentiation also promotes rod soma translocation. While outer segment function or formation is dispensable, Crx and SNARE-dependent synaptic function are essential. Thus, both non-cell and cell autonomous mechanisms underpin PR soma sublaminar positioning in the mammalian retina.
Assuntos
Neurossecreção , Células Fotorreceptoras Retinianas Bastonetes , Animais , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Proteínas Hedgehog/metabolismo , Retina/metabolismo , Diferenciação Celular , MamíferosRESUMO
Vertebrate vision begins with light absorption by rod and cone photoreceptors, which transmit signals from their synaptic terminals to second-order neurons: bipolar and horizontal cells. In mouse rods, there is a single presynaptic ribbon-type active zone at which the release of glutamate occurs tonically in the dark. This tonic glutamatergic signaling requires continuous exo- and endocytosis of synaptic vesicles. At conventional synapses, endocytosis commonly requires dynamins: GTPases encoded by three genes (Dnm1-3), which perform membrane scission. Disrupting endocytosis by dynamin deletions impairs transmission at conventional synapses, but the impact of disrupting endocytosis and the role(s) of specific dynamin isoforms at rod ribbon synapses are understood incompletely. Here, we used cell-specific knock-outs (KOs) of the neuron-specific Dnm1 and Dnm3 to investigate the functional roles of dynamin isoforms in rod photoreceptors in mice of either sex. Analysis of synaptic protein expression, synapse ultrastructure, and retinal function via electroretinograms (ERGs) showed that dynamins 1 and 3 act redundantly and are essential for supporting the structural and functional integrity of rod ribbon synapses. Single Dnm3 KO showed no phenotype, and single Dnm1 KO only modestly reduced synaptic vesicle density without affecting vesicle size and overall synapse integrity, whereas double Dnm1/Dnm3 KO impaired vesicle endocytosis profoundly, causing enlarged vesicles, reduced vesicle density, reduced ERG responses, synaptic terminal degeneration, and disassembly and degeneration of postsynaptic processes. Concurrently, cone function remained intact. These results show the fundamental redundancy of dynamins 1 and 3 in regulating the structure and function of rod ribbon synapses.
Assuntos
Dinamina III , Dinamina I , Eletrorretinografia , Camundongos Knockout , Células Fotorreceptoras Retinianas Bastonetes , Sinapses , Animais , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Camundongos , Sinapses/fisiologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Masculino , Feminino , Dinamina I/metabolismo , Dinamina I/genética , Dinamina III/genética , Dinamina III/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Rhodopsin and cone opsins are essential for light detection in vertebrate rods and cones, respectively. It is well established that rhodopsin is required for rod phototransduction, outer segment disk morphogenesis, and rod viability. However, the roles of cone opsins are less well understood. In this study, we adopted a loss-of-function approach to investigate the physiological roles of cone opsins in mice. We showed that cones lacking cone opsins do not form normal outer segments due to the lack of disk morphogenesis. Surprisingly, cone opsin-deficient cones survive for at least 12 mo, which is in stark contrast to the rapid rod degeneration observed in rhodopsin-deficient mice, suggesting that cone opsins are dispensable for cone viability. Although the mutant cones do not respond to light directly, they maintain a normal dark current and continue to mediate visual signaling by relaying the rod signal through rod-cone gap junctions. Our work reveals a striking difference between the role of rhodopsin and cone opsins in photoreceptor viability.
Assuntos
Células Fotorreceptoras Retinianas Cones/metabolismo , Pigmentos da Retina/metabolismo , Transdução de Sinais , Animais , Opsinas dos Cones/genética , Eletrorretinografia , Transdução de Sinal Luminoso , Mutação com Perda de Função , CamundongosRESUMO
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-Cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Assuntos
Eletrorretinografia , Camundongos Knockout , Retina , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Sinaptotagminas , Animais , Sinaptotagminas/metabolismo , Sinaptotagminas/genética , Retina/metabolismo , Retina/fisiologia , Camundongos , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Estimulação Luminosa , Camundongos Endogâmicos C57BLRESUMO
The high sensitivity of night vision requires that rod photoreceptors reliably and reproducibly signal the absorption of single photons, a process that depends on tight regulation of intracellular cGMP concentration through the phototransduction cascade. Here in the mouse (Mus musculus), we studied a single-site D167A mutation of the gene for the α subunit of rod photoreceptor phosphodiesterase (PDEA), made with the aim of removing a noncatalytic binding site for cGMP. This mutation unexpectedly eliminated nearly all PDEA expression and reduced expression of the ß subunit (PDEB) to â¼5%-10% of WT. The remaining PDE had nearly normal specific activity; degeneration was slow, with 50%-60% of rods remaining after 6 months. Responses were larger and more sensitive than normal but slower in rise and decay, probably from slower dark turnover of cGMP. Remarkably, responses became much less reproducible than WT, with response variance increasing for amplitude by over 10-fold, and for latency and time-to-peak by >100-fold. We hypothesize that the increase in variance is the result of greater variability in the dark-resting concentration of cGMP, produced by spatial and temporal nonuniformity in spontaneous PDE activity. This variability decreased as stimuli were made brighter, presumably because of greater spatial uniformity of phototransduction and the approach to saturation. We conclude that the constancy of the rod response depends critically on PDE expression to maintain adequate spontaneous PDE activity, so that the concentration of second messenger is relatively uniform throughout the outer segment.SIGNIFICANCE STATEMENT Rod photoreceptors in the vertebrate retina reliably signal the absorption of single photons of light by generating responses that are remarkably reproducible in amplitude and waveform. We show that this reproducibility depends critically on the concentration of the effector enzyme phosphodiesterase (PDE), which metabolizes the second messenger cGMP and generates rod light responses. In rods with the D167A mutation of the α subunit of PDE, only 5%-10% of PDE is expressed. Single-photon responses then become much more variable than in WT rods. We think this variability is caused by spatial and temporal inhomogeneity in the concentration of cGMP in darkness, so that photons absorbed in different parts of the cell produce responses of greatly varying amplitude and waveform.
Assuntos
GMP Cíclico , Diester Fosfórico Hidrolases , Animais , GMP Cíclico/metabolismo , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Reprodutibilidade dos Testes , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismoRESUMO
Most vertebrates have one layer of the dim-light active rod photoreceptors. However, multiple rod layers, known as a multibank retina, can be found in over 100 species of fish, including several deep-sea species and one family of nocturnally active reef fish, the Holocentridae. Although seemingly associated with increased photon catch, the function of multibank retinas remained unknown. We used an integrative approach, combining histology, electrophysiology and amino acid sequence analysis, applied to three species of nocturnal reef fishes, two holocentrids with a multibank retina (Neoniphon sammara and Myripristis violacea) and an apogonid with a single rod bank (Ostorhinchus compressus), to determine the sensory advantage of multiple rod layers. Our results showed that fish with multibank retinas have both faster vision and enhanced responses to bright- and dim-light intensities. Faster vision was indicated by higher flicker fusion frequencies during temporal resolution electroretinography as well as faster retinal release rates estimated from their rhodopsin proteins. Enhanced sensitivity was demonstrated by broadened intensity-response curves derived from luminous sensitivity electroretinography. Overall, our findings provide the first functional evidence for enhanced dim-light sensitivity using a multibank retina while also suggesting novel roles for the adaptation in enhancing bright-light sensitivity and the speed of vision.
Assuntos
Fotofobia , Visão Ocular , Animais , Retina/fisiologia , Peixes/fisiologia , LuzRESUMO
The precise specification of cellular fate is thought to ensure the production of the correct number of neurons within a population. Programmed cell death may be an additional mechanism controlling cell number, believed to refine the proper ratio of pre- to post-synaptic neurons for a given species. Here, we consider the size of three different neuronal populations in the rod pathway of the mouse retina: rod photoreceptors, rod bipolar cells, and AII amacrine cells. Across a collection of 28 different strains of mice, large variation in the numbers of all three cell types is present. The variation in their numbers is not correlated, so that the ratio of rods to rod bipolar cells, as well as rod bipolar cells to AII amacrine cells, varies as well. Establishing connectivity between such variable pre- and post-synaptic populations relies upon plasticity that modulates process outgrowth and morphological differentiation, which we explore experimentally for both rod bipolar and AII amacrine cells in a mouse retina with elevated numbers of each cell type. While both rod bipolar dendritic and axonal arbors, along with AII lobular arbors, modulate their areal size in relation to local homotypic cell densities, the dendritic appendages of the AII amacrine cells do not. Rather, these processes exhibit a different form of plasticity, regulating the branching density of their overlapping arbors. Each form of plasticity should ensure uniformity in retinal coverage in the presence of the independent specification of afferent and target cell number.
Assuntos
Dendritos , Retina , Camundongos , Animais , Dendritos/fisiologia , Células Amácrinas/fisiologia , AxôniosRESUMO
INTRODUCTION: The photopic ON pathway defect is associated with nocturnal vision loss. However, the measurement of ON function to detect a rod-dominated disease (rods affected more than cones) has not been explored. We evaluated whether the psychophysical evaluation of ON/OFF pathways can be used to distinguish cone-dominated from rod-dominated diseases. METHODS: Thirty-seven patients with inherited retinal diseases were tested using the 'EyeSpeed' [iOS application] on an iPad. The test displayed a random number (1-3) of light or dark targets on a black-and-white noise background. Participants responded on a touch screen indicating the correct number of targets displayed. The outcome variables-reaction time, accuracy and performance index (speed [1/reaction time] * accuracy) to both light and dark targets were assessed for diagnostic ability using standard receiver-operating characteristic (ROC) analysis. RESULTS: Mean ± standard deviation age and visual acuity for the cone- and rod-dominated groups were 25.15 ± 11.74 years, 0.80 ± 0.25 logMAR and 28.3 ± 14.29 years, 0.48 ± 0.26 logMAR, respectively. The median reaction time to light targets in rod-dominated disease [interquartile range] was 5.28 s [3.17], significantly greater than for patients with cone-dominated disease (2.07 s [0.93]; Mann-Whitney U test, p < 0.001). Amongst all of the outcome variables evaluated, the reaction time to light targets (criterion of ≥2.98 s) exhibited the highest area under the ROC curve (area = 0.89 ± 0.11; p < 0.001), with a sensitivity and specificity of 82.4% and 85% respectively. CONCLUSIONS: Reaction time to light targets using the ON/OFF pathway paradigm is a valid marker to differentiate between rod- and cone-dominated retinal dystrophies. ON pathway function measured using a tablet-based test could act as a supplemental test in the diagnosis of challenging photoreceptor-specific inherited retinal diseases.
Assuntos
Doenças Retinianas , Células Fotorreceptoras Retinianas Bastonetes , Humanos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Cones , Retina , Acuidade Visual , EletrorretinografiaRESUMO
Epigenetic modifiers are increasingly being investigated as potential therapeutics to modify and overcome disease phenotypes. Diseases of the nervous system present a particular problem as neurons are postmitotic and demonstrate relatively stable gene expression patterns and chromatin organization. We have explored the ability of epigenetic modifiers to prevent degeneration of rod photoreceptors in a mouse model of retinitis pigmentosa (RP), using rd10 mice of both sexes. The histone modification eraser enzymes lysine demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1) are known to have dramatic effects on the development of rod photoreceptors. In the RP mouse model, inhibitors of these enzymes blocked rod degeneration, preserved vision, and affected the expression of multiple genes including maintenance of rod-specific transcripts and downregulation of those involved in inflammation, gliosis, and cell death. The neuroprotective activity of LSD1 inhibitors includes two pathways. First, through targeting histone modifications, they increase accessibility of chromatin and upregulate neuroprotective genes, such as from the Wnt pathway. We propose that this process is going in rod photoreceptors. Second, through nonhistone targets, they inhibit transcription of inflammatory genes and inflammation. This process is going in microglia, and lack of inflammation keeps rod photoreceptors alive.SIGNIFICANCE STATEMENT Retinal degenerations are a leading cause of vision loss. RP is genetically very heterogeneous, and the multiple pathways leading to cell death are one reason for the slow progress in identifying suitable treatments for patients. Here we demonstrate that inhibition of LSD1and HDAC1 in a mouse model of RP leads to preservation of rod photoreceptors and visual function, retaining of expression of rod-specific genes, and with decreased inflammation, cell death, and Müller cell gliosis. We propose that these epigenetic inhibitors cause more open and accessible chromatin, allowing expression of neuroprotective genes. A second mechanism that allows rod photoreceptor survival is suppression of inflammation by epigenetic inhibitors in microglia. Manipulation of epigenetic modifiers is a new strategy to fight neurodegeneration in RP.
Assuntos
Histona Desacetilase 1/antagonistas & inibidores , Histona Desmetilases/antagonistas & inibidores , Degeneração Neural/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/patologia , Tranilcipromina/farmacologiaRESUMO
Rod photoreceptors can be saturated by exposure to bright background light, so that no flash superimposed on the background can elicit a detectable response. This phenomenon, called increment saturation, was first demonstrated psychophysically by Aguilar and Stiles and has since been shown in many studies to occur in single rods. Recent experiments indicate, however, that rods may be able to avoid saturation under some conditions of illumination. We now show in ex vivo electroretinogram and single-cell recordings that in continuous and prolonged exposure even to very bright light, the rods of mice from both sexes recover as much as 15% of their dark current and that responses can persist for hours. In parallel to recovery of outer segment current is an â¼10-fold increase in the sensitivity of rod photoresponses. This recovery is decreased in transgenic mice with reduced light-dependent translocation of the G protein transducin. The reduction in outer-segment transducin together with a novel mechanism of visual-pigment regeneration within the rod itself enable rods to remain responsive over the whole of the physiological range of vision. In this way, rods are able to avoid an extended period of transduction channel closure, which is known to cause photoreceptor degeneration.SIGNIFICANCE STATEMENT Rods are initially saturated in bright light so that no flash superimposed on the background can elicit a detectable response. Frederiksen and colleagues show in whole retina and single-cell recordings that, if the background light is prolonged, rods slowly recover and can continue to produce significant responses over the entire physiological range of vision. Response recovery occurs by translocation of the G protein transducin from the rod outer to the inner segment, together with a novel mechanism of visual-pigment regeneration within the rod itself. Avoidance of saturation in bright light may be one of the principal mechanisms the retina uses to keep rod outer-segment channels from ever closing for too long a time, which is known to produce photoreceptor degeneration.
Assuntos
Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/metabolismo , Animais , Eletrorretinografia , Feminino , Luz , Masculino , Camundongos , Transporte Proteico , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos da radiação , Análise de Célula Única , Transducina/genética , Visão OcularRESUMO
The great evolutionary biologist, Theodosius Dobzhansky, once said, "Nothing in biology makes sense except in the light of evolution." Vision, no doubt, is a poster child for the work of evolution. If it has not already been said, I would humbly add that "Nothing in biology makes sense except in the context of metabolism." Marrying these two thoughts together, when one chooses an animal model for vision research, the ground squirrel jumps out immediately for its unique cone dominant retina, which has evolved for its diurnal lifestyle, and for hibernation-an adaptation to unique metabolic challenges encountered during its winter sojourn.
Assuntos
Visão Ocular/fisiologia , Animais , SciuridaeRESUMO
The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim-light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth-related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep-water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.
Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Evolução Molecular , Peixes , Lagos , Filogenia , Rodopsina/genética , Tanzânia , ÁguaRESUMO
Rod and cone photoreceptors are light-sensing cells in the human retina. Rods are dominant in the peripheral retina, whereas cones are enriched in the macula, which is responsible for central vision and visual acuity. Macular degenerations affect vision the most and are currently incurable. Here we report the generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids differentiated from hESCs using an improved retinal differentiation system. Induced by extracellular matrix, aggregates of hESCs formed single-lumen cysts composed of epithelial cells with anterior neuroectodermal/ectodermal fates, including retinal cell fate. Then, the cysts were en bloc-passaged, attached to culture surface, and grew, forming colonies in which retinal progenitor cell patches were found. Following gentle cell detachment, retinal progenitor cells self-assembled into retinal epithelium-retinal organoid-that differentiated into stratified cone-rich retinal tissue in agitated cultures. Electron microscopy revealed differentiating outer segments of photoreceptor cells. Bulk RNA-sequencing profiling of time-course retinal organoids demonstrated that retinal differentiation in vitro recapitulated in vivo retinogenesis in temporal expression of cell differentiation markers and retinal disease genes, as well as in mRNA alternative splicing. Single-cell RNA-sequencing profiling of 8-mo retinal organoids identified cone and rod cell clusters and confirmed the cone enrichment initially revealed by quantitative microscopy. Notably, cones from retinal organoids and human macula had similar single-cell transcriptomes, and so did rods. Cones in retinal organoids exhibited electrophysiological functions. Collectively, we have established cone-rich retinal organoids and a reference of transcriptomes that are valuable resources for retinal studies.
Assuntos
Organoides , Células Fotorreceptoras Retinianas Cones , Transcriptoma/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Células-Tronco Embrionárias , Humanos , Organoides/química , Organoides/citologia , Organoides/metabolismo , Organoides/fisiologia , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/química , Retina/citologia , Retina/metabolismo , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/química , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Análise de Célula ÚnicaRESUMO
KEY POINTS: Although cone and rod photoreceptor cells in the retina have a type of cannabinoid receptor called a CB1 receptor, little is known about how cannabinoids, the active component in marijuana, affect retinal function. Studies have shown that a circadian (24-h) clock in the retina uses dopamine receptors, which are also on photoreceptors, to regulate gap junctions (a type of cell-to-cell communication) between rods and cones, so that they are functional (open) at night but closed in the day. We show that CB1 receptors have opposite effects on rod-cone gap junctions in day and night, decreasing communication in the day when dopamine receptors are active and increasing communication when dopamine receptors are inactive. CB1 and dopamine receptors thus work together to enhance the day/night difference in rod-cone gap junction communication. The increased rod-cone communication at night due to cannabinoid CB1 receptors may help improve night vision. ABSTRACT: Cannabinoid CB1 receptors and dopamine D4 receptors in the brain form receptor complexes that interact but the physiological function of these interactions in intact tissue remains unclear. In vertebrate retina, rods and cones, which are connected by gap junctions, express both CB1 and D4 receptors. Because the retinal circadian clock uses cone D4 receptors to decrease rod-cone gap junction coupling in the day and to increase it at night, we studied whether an interaction between cone CB1 and D4 receptors increases the day/night difference in rod-cone coupling compared to D4 receptors acting alone. Using electrical recording and injections of Neurobiotin tracer into individual cones in intact goldfish retinas, we found that SR141716A (a CB1 receptor antagonist) application alone in the day increased both the extent of rod-cone tracer coupling and rod input to cones, which reaches cones via open gap junctions. Conversely, SR141716A application alone at night or SR141716A application in the day following 30-min spiperone (a D4 receptor antagonist) application decreased both rod-cone tracer coupling and rod input to cones. These results show that endogenous activation of cone CB1 receptors decreases rod-cone coupling in the day when D4 receptors are activated but increases it at night when D4 receptors are not activated. Therefore, the D4 receptor-dependent day/night switch in the effects of CB1 receptor activation results in an enhancement of the day/night difference in rod-cone coupling. This synergistic interaction increases detection of very dim large objects at night and fine spatial details in the day.
Assuntos
Canabinoides , Carpa Dourada , Animais , Canabinoides/farmacologia , Junções Comunicantes , Receptores de Dopamina D4 , Retina , Células Fotorreceptoras Retinianas ConesRESUMO
Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to-and relieves inhibition of-PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9-1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.
Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Visão Ocular/fisiologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Células Fotorreceptoras Retinianas Cones/química , Células Fotorreceptoras Retinianas Bastonetes/químicaRESUMO
The Tet-ON system is an important molecular tool for temporally and spatially-controlled inducible gene expression. Here, we developed a Tet-ON system to induce transgene expression specifically in the rod photoreceptors of medaka fish. Our modified reverse tetracycline-controlled transcriptional transactivator (rtTAm) with 5 amino acid substitutions dramatically improved the leakiness of the transgene in medaka fish. We generated a transgenic line carrying a self-reporting vector with the rtTAm gene driven by the Xenopus rhodopsin promoter and a tetracycline response element (TRE) followed by the green fluorescent protein (GFP) gene. We demonstrated that GFP fluorescence was restricted to the rod photoreceptors in the presence of doxycycline in larval fish (9 days post-fertilization). The GFP fluorescence intensity was enhanced with longer durations of doxycycline treatment up to 72 h and in a dose-dependent manner (5-45 µg/ml). These findings demonstrate that the Tet-ON system using rtTAm allows for spatiotemporal control of transgene expression, at least in the rod photoreceptors, in medaka fish.
Assuntos
Oryzias , Animais , Animais Geneticamente Modificados , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Oryzias/genética , Transativadores/genética , TransgenesRESUMO
Retinitis pigmentosa (RP) is an inherited form of retinal degeneration characterized by primary rod photoreceptor cell death followed by cone loss. Mutations in several genes linked to the disease cause increased levels of cyclic guanosine monophosphate (cGMP) and calcium ion influxes. The purpose of this project was to develop a new in vitro photoreceptor degeneration model for molecular studies of RP. 661W cells were genetically modified to stably express the neural retina leucine zipper (NRL) transcription factor. One clone (661W-A11) was selected based on the expression of Nrl target genes. 661W-A11 showed a significant increase in expression of rod-specific genes but not of cone-specific genes, compared with 661W cells. Zaprinast was used to inhibit phosphodiesterase 6 (PDE6) activity to mimic photoreceptor degeneration in vitro. The activation of cell death pathways resulting from PDE6 inhibition was confirmed by detection of decreased viability and increased intracellular cGMP and calcium, as well as activation of protein kinase G (PKG) and calpains. In this new in vitro system, we validated the effects of previously published neuroprotective drugs. The 661W-A11 cells may serve as a new model for molecular studies of RP and for high-throughput drug screening.
Assuntos
Retinose Pigmentar/etiologia , Retinose Pigmentar/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Biomarcadores , Linhagem Celular , Células Cultivadas , Clonagem Molecular , Suscetibilidade a Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Citometria de Fluxo , Imunofluorescência , Expressão Gênica , Humanos , Camundongos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/patologiaRESUMO
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models. We previously reported alterations of photoreceptor ribbon synapses in the experimental auto-immune encephalomyelitis (EAE) mouse model of MS. In the present study, we found that the previously observed decreased imunosignals of photoreceptor ribbons in early EAE resulted from a decrease in synaptic ribbon size, whereas the number/density of ribbons in photoreceptor synapses remained unchanged. Smaller photoreceptor ribbons are associated with fewer docked and ribbon-associated vesicles. At a functional level, depolarization-evoked exocytosis as monitored by optical recording was diminished even as early as on day 7 after EAE induction. Moreover compensatory, post-depolarization endocytosis was decreased. Decreased post-depolarization endocytosis in early EAE correlated with diminished synaptic enrichment of dynamin3. In contrast, basal endocytosis in photoreceptor synapses of resting non-depolarized retinal slices was increased in early EAE. Increased basal endocytosis correlated with increased de-phosphorylation of dynamin1. Thus, multiple endocytic pathways in photoreceptor synapse are differentially affected in early EAE and likely contribute to the observed synapse pathology in early EAE.
Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Endocitose , Exocitose , Esclerose Múltipla/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Sinapses/patologia , Animais , Dinaminas/metabolismo , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Fosforilação , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologiaRESUMO
Rhodopsin mislocalization is frequently observed in retinitis pigmentosa (RP) patients. For example, class I mutant rhodopsin is deficient in the VxPx trafficking signal, mislocalizes to the plasma membrane (PM) of rod photoreceptor inner segments (ISs), and causes autosomal dominant RP. Mislocalized rhodopsin causes photoreceptor degeneration in a manner independent of light-activation. In this manuscript, we took advantage of Xenopus laevis models of both sexes expressing wild-type human rhodopsin or its class I Q344ter mutant fused to Dendra2 fluorescent protein to characterize a novel light-independent mechanism of photoreceptor degeneration caused by mislocalized rhodopsin. We found that rhodopsin mislocalized to the PM is actively internalized and transported to lysosomes where it is degraded. This degradation process results in the downregulation of a crucial component of the photoreceptor IS PM: the sodium-potassium ATPase α-subunit (NKAα). The downregulation of NKAα is not because of decreased NKAα mRNA, but due to cotransport of mislocalized rhodopsin and NKAα to lysosomes or autophagolysosomes. In a separate set of experiments, we found that class I mutant rhodopsin, which causes NKAα downregulation, also causes shortening and loss of rod outer segments (OSs); the symptoms frequently observed in the early stages of human RP. Likewise, pharmacological inhibition of NKAα led to shortening and loss of rod OSs. These combined studies suggest that mislocalized rhodopsin leads to photoreceptor dysfunction through disruption of the PM protein homeostasis and compromised NKAα function. This study unveiled a novel role of lysosome-mediated degradation in causing inherited disorders manifested by mislocalization of ciliary receptors.SIGNIFICANCE STATEMENT Retinal ciliopathy is the most common form of inherited blinding disorder frequently manifesting rhodopsin mislocalization. Our understanding of the relationships between rhodopsin mislocalization and photoreceptor dysfunction/degeneration has been far from complete. This study uncovers a hitherto uncharacterized consequence of rhodopsin mislocalization: the activation of the lysosomal pathway, which negatively regulates the amount of the sodium-potassium ATPase (NKAα) on the inner segment plasma membrane. On the plasma membrane, mislocalized rhodopsin extracts NKAα and sends it to lysosomes where they are co-degraded. Compromised NKAα function leads to shortening and loss of the photoreceptor outer segments as observed for various inherited blinding disorders. In summary, this study revealed a novel pathogenic mechanism applicable to various forms of blinding disorders caused by rhodopsin mislocalization.
Assuntos
Membrana Celular/metabolismo , Homeostase , Retinose Pigmentar/metabolismo , Rodopsina/metabolismo , Animais , Autofagossomos/metabolismo , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/metabolismo , Masculino , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/patologia , Rodopsina/genética , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Xenopus laevisRESUMO
During embryonic retinal development, the bHLH factor Neurog2 regulates the temporal progression of neurogenesis, but no role has been assigned for this gene in the postnatal retina. Using Neurog2 conditional mutants, we found that Neurog2 is necessary for the development of an early, embryonic cohort of rod photoreceptors, but also required by both a subset of cone bipolar subtypes, and rod bipolars. Using transcriptomics, we identified a subset of downregulated genes in P2 Neurog2 mutants, which act during rod differentiation, outer segment morphogenesis or visual processing. We also uncovered defects in neuronal cell culling, which suggests that the rod and bipolar cell phenotypes may arise via more complex mechanisms rather than a simple cell fate shift. However, given an overall phenotypic resemblance between Neurog2 and Blimp1 mutants, we explored the relationship between these two factors. We found that Blimp1 is downregulated between E12-birth in Neurog2 mutants, which probably reflects a dependence on Neurog2 in embryonic progenitor cells. Overall, we conclude that the Neurog2 gene is expressed and active prior to birth, but also exerts an influence on postnatal retinal neuron differentiation.