Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Small ; 20(20): e2306956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100256

RESUMO

Porous frameworks that display dynamic responsiveness are of interest in the fields of smart materials, information technology, etc. In this work, a novel copper-based dynamic metal-organic framework [Cu3TTBPE6(H2O)2] (H4TTBPE = 1,1,2,2-tetrakis(4″-(1H-tetrazol-5-yl)-[1,1″-biphenyl]-4-yl)ethane), denoted as HNU-1, is reported which exhibits modulable photoelectromagnetic properties. Due to the synergetic effect of flexible tetraarylethylene-backboned ligands and diverse copper-tetrazole coordination chemistries, a complex 3D tunneling network is established in this MOF by the layer-by-layer staggered assembly of triplicate monolayers, showing a porosity of 59%. These features further make it possible to achieve dynamic transitions, in which the aggregate-state MOF can be transferred to different structural states by changing the chemical environment or upon heating while displaying sensitive responsiveness in terms of light absorption, photoluminescence, and magnetic properties.

2.
Chemistry ; : e202402011, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024522

RESUMO

Non-covalent chalcogen bond (ChB) interactions have found utility in many fields, including catalysis, organic semiconductors, and crystal engineering. In this study, the kinetic effects of ChB interactions of oxygen and sulfur were experimentally measured using a series of molecular rotors. The rotors were designed to form ChB interactions in the bond rotation transition states. This enabled their kinetic influences to be assessed by monitoring changes in rotational barriers. Despite forming weaker ChB interactions, the smaller chalcogens were able to stabilize transition states and had measurable kinetic effects. Sulfur stabilized the bond rotation transition state by as much as -7.2 kcal/mol without electron-withdrawing groups. The key was to design a system where the sulfur ðœŽ-hole was aligned with the lone pairs of the chalcogen bond acceptor. Oxygen rotors also could form transition state stabilizing ChB interactions but required electron-withdrawing groups. For both oxygen and sulfur ChB interactions, a strong correlation was observed between transition state stabilizing abilities and electrostatic potential (ESP) of the chalcogen, providing a useful predictive parameter for the rational design of future ChB systems.

3.
Chemistry ; 30(20): e202303933, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311598

RESUMO

Our study focuses on molecular rotors with fast-moving rotators and their potential applications in the development of new amphidynamic crystals. Steroidal molecular rotors with a dipolar fluorine-substituted phenyl group as the rotator were synthesized and characterized. Three different rotors were investigated with varying numbers of fluorine atoms. A comprehensive analysis was performed using vibrational spectroscopy (Raman, FT-IR), electronic circular dichroism (ECD), and dielectric response to understand the behavior of the investigated model rotors. The results were supported by theoretical calculations using Density Functional Theory (DFT) methods. The angle-dependent polarized Raman spectra confirmed the crystallinity of the samples. Nearly frequency and temperature-independent permittivity suggest low-frequency librational motion of stators. An in-depth analysis of ECD spectra revealed high conformational flexibility in solution, resulting in low ECD effects, while in the solid-state with restricted rotation, significant ECD effects were observed. These findings shed light on the conformational behavior and potential applications of the studied steroidal molecular rotors.

4.
Chemphyschem ; 25(6): e202300793, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38259120

RESUMO

In this paper, we report a new generation of polymeric networks as potential functional material based on changes in molecular dynamics in the solid state. The material is obtained by free radical polymerization of a diacrylate derivative bearing a steroid (stator) and a 1,4-diethynyl-phenylene-d4 fragment (rotator). Polymer research using the PALS technique complements the knowledge about nanostructural changes occurring in the system in the temperature range -115 °C - +190 °C. It indicates the presence of two types of free nanovolumes in the system and the occurrence of phase transitions. The polymer is characterized using 1 H NMR, 2 H Solid Echo NMR, ATR-FTIR and Raman spectroscopies, thermal analysis, and porosimetry. It is proved that the applied procedure leads to the formation of a novel porous organic material containing multiple molecular rotors.

5.
Angew Chem Int Ed Engl ; 63(6): e202311233, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37856157

RESUMO

The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.


Assuntos
Corantes Fluorescentes , Sondas Moleculares , Viscosidade , Corantes Fluorescentes/química , Sondas Moleculares/química , Conformação Molecular , Proteínas
6.
Angew Chem Int Ed Engl ; 63(31): e202406204, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38758302

RESUMO

Fluorescent flippers have been introduced as small-molecule probes to image membrane tension in living systems. This study describes the design, synthesis, spectroscopic and imaging properties of flippers that are elongated by one and two alkynes inserted between the push and the pull dithienothiophene domains. The resulting mechanophores combine characteristics of flippers, reporting on physical compression in the ground state, and molecular rotors, reporting on torsional motion in the excited state, to take their photophysics to new level of sophistication. Intensity ratios in broadened excitation bands from differently twisted conformers of core-alkynylated flippers thus report on mechanical compression. Lifetime boosts from ultrafast excited-state planarization and lifetime drops from competitive intersystem crossing into triplet states report on viscosity. In standard lipid bilayer membranes, core-alkynylated flippers are too long for one leaflet and tilt or extend into disordered interleaflet space, which preserves rotor-like torsional disorder and thus weak, blue-shifted fluorescence. Flipper-like planarization occurs only in highly ordered membranes of matching leaflet thickness, where they light up and selectively report on these thick membranes with red-shifted, sharpened excitation maxima, high intensity and long lifetime.

7.
J Comput Chem ; 44(3): 240-247, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35470906

RESUMO

Multi-layer molecular rotors represent a class of unique combination of topology and bonding, featuring a barrier-free rotation of one layer with respect to other layers. This emerging fluxional behavior has been found in a few doped boron clusters. Herein, we strongly enrich this intriguing family followed by an effective design strategy, summarized as essential factors: i) considerable electrostatic interactions originated from a strong charge transfer between layers; ii) the absence of strong covalent bonds between layers; and iii) fully delocalized σ/π electrons from at least one layer. We found that planar hypercoordinate motifs consisting of monocyclic boron rings and metals with σ + π dual aromaticity can be regarded as one promising layer, which can support the suspended X2 (X = Zn, Cd, Hg) dimers. By detailed investigations of thermodynamic and kinetic stabilities of 60 species, eventually, MB7 X2 - and MB8 X2 (X = Zn, Cd; M = Be, Ru, Os; Be works only for Zn-based cases) clusters were verified to be the global-minimum two-layer molecular rotors. Especially, their electronic structure analyses vividly confirm the practicability of the electronic structure requirements mentioned above for designing multi-layer molecular rotors.

8.
Chemistry ; 29(57): e202301591, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37476914

RESUMO

Some organic dyes and photosensitizers with strong visible absorption can behave as photo-responsive oxidase mimics. However, the relationship between the photo-oxidase activity and molecular structure remains unclear to date. In this work, a new type of photosensitizer with the characteristics of molecular rotors, namely DPPy, served as the molecular scaffold for further investigation. To adjust the photocatalytic oxidation ability, DAPy and CBPy were designed and synthesized based on the enhancement and diminishment of the intramolecular charge transfer (ICT) process, respectively. Kinetic studies revealed that DAPy and CBPy both exhibited highly efficient photo-activated oxidase-like activity with 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate, which were in good accordance with their molecular engineering to promote either type I or type II reactive oxygen species (ROS) generation. Impressively a colorimetric method based on the visible light induced oxidase-like activity of molecular rotors was developed to determine the environmental temperature for the first time. Both DAPy and CBPy showed distinct sensitivities toward temperature as compared with several molecular rotors based on the typical fluorimetric detection. This work provides a new strategy for the application of molecular rotors to overcome the non-emissive challenge in temperature sensing.

9.
Chemistry ; 29(57): e202302025, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37459420

RESUMO

In general, due to the lack of efficient specific molecular interactions, achieving host-guest molecular recognition inside large and neutral metal-organic cages (MOCs) is challenging. Preferential molecular recognition of aromatics using the internal binding sites of interlocked icosahedral (i. e., spherical) M12 L8 MOCs within poly-[n]-catenane (1) is reported. The guest absorption was monitored directly in the solid-state by consecutive single-crystal-to-single-crystal (SCSC) reactions in a gas-solid environment, in single-crystal X-ray diffraction (SC-XRD) experiments. The preferential guest uptake was corroborated by density functional theory (DFT) calculations by determining the host-guest interaction energy (Ehost-guest ) with a nitrobenzene (NB)≫p-xylene (p-xy)≫o-dichlorobenzene (o-DCB) trend (i. e., from 44 to 25 kcal mol-1 ), assessing the XRD outcomes. Combining SC-XRD, DFT and solid-state 13 C NMR, the exceptional stability of the M12 L8 cages, together with the guest exchange/release properties were rationalized by considering the presence of mechanical bonds (efficient π-π interactions) and by the pyridine's rotor-like behaviour (with 3 kcal mol-1 rotational energy barrier). The structure-function properties of M12 L8 makes 1 a potential candidate in the field of molecular sensors.

10.
Chemistry ; 29(50): e202301745, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37308699

RESUMO

Macrocycle formation that relies upon trans metal coordination of appropriately placed pyridine ligands within an arylene ethynylene construct provides rapid and reliable access to molecular rotators encapsulated within macrocyclic stators. Showing no significant close contacts to the central rotators, X-ray crystallography of AgI -coordinated macrocycles provides plausibility for unobstructed rotation or wobbling of rotators within the central cavity. Solid-state 13 C NMR of PdII -coordinated macrocycles supports the notion of unobstructed movement of simple arenes in the crystal lattice. Solution 1 H NMR studies indicate complete and immediate macrocycle formation upon the introduction of PdII to the pyridyl-based ligand at room temperature. Moreover, the formed macrocycle is stable in solution; a lack of significant changes in the 1 H NMR spectrum upon cooling to -50 °C is consistent with the absence of dynamic behavior. The synthetic route to these macrocycles is expedient and modular, providing access to rather complex constructs in four simple steps involving Sonogashira coupling and deprotection reactions.

11.
Proc Natl Acad Sci U S A ; 117(30): 18110-18118, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669427

RESUMO

Mechanical patterns control a variety of biological processes in plants. The microviscosity of cellular structures effects the diffusion rate of molecules and organelles, thereby affecting processes such as metabolism and signaling. Spatial variations in local viscosity are also generated during fundamental events in the cell life cycle. While crucial to a complete understanding of plant mechanobiology, resolving subcellular microviscosity patterns in plants has remained an unsolved challenge. We present an imaging microviscosimetry toolbox of molecular rotors that yield complete microviscosity maps of cells and tissues, specifically targeting the cytosol, vacuole, plasma membrane, and wall of plant cells. These boron-dipyrromethene (BODIPY)-based molecular rotors are rigidochromic by means of coupling the rate of an intramolecular rotation, which depends on the mechanics of their direct surroundings, with their fluorescence lifetime. This enables the optical mapping of fluidity and porosity patterns in targeted cellular compartments. We show how apparent viscosity relates to cell function in the root, how the growth of cellular protrusions induces local tension, and how the cell wall is adapted to perform actuation surrounding leaf pores. These results pave the way to the noninvasive micromechanical mapping of complex tissues.


Assuntos
Modelos Biológicos , Células Vegetais , Fenômenos Fisiológicos Vegetais , Viscosidade , Corantes Fluorescentes/química , Proteínas Motores Moleculares/metabolismo , Sondas Moleculares/química , Especificidade de Órgãos , Organelas/metabolismo
12.
Angew Chem Int Ed Engl ; 62(28): e202304960, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37155943

RESUMO

Stabilizing nitrogen pnictogen bond interactions were measured using molecular rotors. Intramolecular C=O⋅⋅⋅N interactions were formed in the bond rotation transition states which lowered the rotational barriers and increased the rates of rotation, as measured by EXSY NMR. The pnictogen interaction energies show a very strong correlation with the positive electrostatic potential on nitrogen, which was consistent with a strong electrostatic component. In contrast, the NBO perturbation and pyramidalization analyses show no correlation, suggesting that the orbital-orbital component is minor. The strongest C=O⋅⋅⋅N pnictogen interactions were comparable to C=O⋅⋅⋅C=O interactions and were stronger than C=O⋅⋅⋅Ph interactions, when measured using the same N-phenylimide rotor system. The ability of the nitrogen pnictogen interactions to stabilize transition states and enhance kinetic processes demonstrates their potential in catalysis and reaction design.

13.
Angew Chem Int Ed Engl ; 62(47): e202309694, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37652896

RESUMO

Molecular motion in the solid state is typically precluded by the highly dense environment, and only molecules with a limited range of sizes show such dynamics. Here, we demonstrate the solid-state rotational motion of two giant molecules, i.e., triptycene and pentiptycene, by encapsulating a bulky N-heterocyclic carbene (NHC) Au(I) complex in the crystalline media. To date, triptycene is the largest molecule (surface area: 245 Å2 ; volume: 219 Å3 ) for which rotation has been reported in the solid state, with the largest rotational diameter among reported solid-state molecular rotors (9.5 Å). However, the pentiptycene rotator that is the subject of this study (surface area: 392 Å2 ; volume: 361 Å3 ; rotational diameter: 13.0 Å) surpasses this record. Single-crystal X-ray diffraction analyses of both the developed rotors revealed that these possess sufficient free volume around the rotator. The molecular motion in the solid state was confirmed using variable-temperature solid-state 2 H spin-echo NMR studies. The triptycene rotor exhibited three-fold rotation, while temperature-dependent changes of the rotational angle were observed for the pentiptycene rotor.

14.
Bioorg Med Chem ; 56: 116617, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051812

RESUMO

We developed direct arylated oligonucleotide based molecular rotor (AOMR) to discriminate perfect matched DNA sequence from one base mismatched sequences. Quinolinium salts attached to vinyl aniline would be excellent fluorescent analogs with molecular rotor properties and are suitable for the detection of microenvironment change arising from dynamic motions with match-mismatch DNA base pairs. We applied direct N6 arylation of the adenosine located in natural oligonucleotide as a tool to incorporate the molecular rotor (Quinolinium salts attached vinyl aniline) and used it to discriminate perfect matched DNA sequence from one base mismatch sequences. The fluorescence and quantum yield of arylated oligonucleotide based molecular rotor (AOMR), particulary, RMAQn reveals 28.3 times higher discrimination factor with perfect matched sequence (RMAQn:T) (QY = 0.17) compare to single strand RMAQn (QY = 0.006) and one base mismatched sequence (RMAQn:G, RMAQn:A, and RMAQn:C) at λmax = 600 nm (orange emission), which would be useful for in vivo application. RMAQn:T duplex also showed high brightness (6068), 32.9 times higher than single strand RMAQn (192), as a result of restricted rotation of the Quinolinium salts attached vinyl aniline on adenosine moiety with perfect matched sequence compare to the mismatch sequences. Arylated oligonucleotide based molecular rotor (AOMR) proves to be an unprecedented sensitivity in detecting local dynamics of nucleic acids and also would be simple and cost-effective method to prepare SNP probe.


Assuntos
DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Corantes Fluorescentes , Estrutura Molecular , Oligonucleotídeos , Espectrometria de Fluorescência
15.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015889

RESUMO

A novel output-only crack localization method is proposed for operating rotors based on an enhanced higher-order dynamic mode decomposition (HODMD), in which the nonlinear breathing crack-induced super-harmonic characteristic components from multiple vibration measurement points are simultaneously extracted to compose the corresponding super-harmonic transmissibility damage indexes. Firstly, the theoretical background of the HODMD is briefly reviewed. Secondly, the proposed crack localization method is dedicated which improving the HODMD for multivariate signals by casting the total least square method into standard HODMD and adaptively selecting the order parameter of Koopman approximation by optimizing the super-harmonic frequency vector. In addition, the super-harmonic characteristic components are evaluated and harnessed to derive the damage index based on super-harmonic transmissibility and fractal dimension. Finally, the proposed method is investigated and demonstrated by numerical simulations and experiments. Both numerical and experimental results show that the proposed method is powerful in realizing multi-crack localization for running rotors accurately and robustly in the case of no baseline information on intact rotors. Moreover, the interferences from commonly existing steps and misalignment can also be eliminated.

16.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457044

RESUMO

The maintaining and initiating mechanisms of atrial fibrillation (AF) remain controversial. Deep learning is emerging as a powerful tool to better understand AF and improve its treatment, which remains suboptimal. This paper aims to provide a solution to automatically identify rotational activity drivers in endocardial electrograms (EGMs) with convolutional recurrent neural networks (CRNNs). The CRNN model was compared with two other state-of-the-art methods (SimpleCNN and attention-based time-incremental convolutional neural network (ATI-CNN)) for different input signals (unipolar EGMs, bipolar EGMs, and unipolar local activation times), sampling frequencies, and signal lengths. The proposed CRNN obtained a detection score based on the Matthews correlation coefficient of 0.680, an ATI-CNN score of 0.401, and a SimpleCNN score of 0.118, with bipolar EGMs as input signals exhibiting better overall performance. In terms of signal length and sampling frequency, no significant differences were found. The proposed architecture opens the way for new ablation strategies and driver detection methods to better understand the AF problem and its treatment.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Humanos , Redes Neurais de Computação , Manejo de Espécimes
17.
Int J Mol Sci ; 23(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35628497

RESUMO

BODIPY-based molecular rotors are highly attractive imaging tools for imaging intracellular microviscosity in living cells. In our study, we investigated the ability to detect the microviscosity of biological objects by using BDP-NO2 and BDP-H molecular rotors. We describe in detail the optical properties of BDP-NO2 and BDP-H molecular rotors in aqueous media with and without proteins, together with their accumulation dynamics and localization in live and fixed human breast cancer cells. Furthermore, we investigate the applicability of these molecules to monitor microviscosity in the organelles of human breast cancer cells by fluorescence lifetime imaging microscopy (FLIM). We demonstrate that the BDP-NO2 molecular rotor aggregates in aqueous media and is incompatible with live cell imaging. The opposite effect is observed with BDP-H which preserves its stability in aqueous media, diffuses through the plasma membrane and accumulates in lipid droplets (LDs) and the cytosol of both live and fixed MCF-7 and MDA-MB-231 cancer cells. Finally, by utilizing BDP-H we demonstrate that LD microviscosity is significantly elevated in more malignant MDA-MB-231 human breast cancer cells, as compared to MCF-7 breast cancer cells. Our findings demonstrate that BDP-H is a water-compatible probe that can be successfully applied to measure microviscosity in the LDs of living cells.


Assuntos
Neoplasias da Mama , Compostos de Boro , Neoplasias da Mama/diagnóstico por imagem , Feminino , Corantes Fluorescentes , Humanos , Dióxido de Nitrogênio
18.
Angew Chem Int Ed Engl ; 61(24): e202202193, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343025

RESUMO

Herein, we expose how the antagonistic relationship between solid-state luminescence and photocyclization of oligoaryl alkene chromophores is modulated by the conjugation length of their alkenyl backbones. Heptaaryl cycloheptatriene molecular rotors exhibit aggregation-induced emission characteristics. We show that their emission is turned off upon breaking the conjugation of the cycloheptatriene by epoxide formation. While this modification is deleterious to photoluminescence, it enables formation of extended polycyclic frameworks by Mallory reactions. We exploit this dichotomy (i) to manipulate emission properties in a controlled manner and (ii) as a synthetic tool to link together pairs of phenyl rings in a specific sequence. This method to alter the tendency of oligoaryl alkenes to undergo photocyclization can inform the design of solid-state emitters that avoid this quenching mechanism, while also allowing selective cyclization in syntheses of polycyclic aromatic hydrocarbons.

19.
Angew Chem Int Ed Engl ; 61(40): e202206631, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35852813

RESUMO

Molecular machines are at the frontier of biology and chemistry. The ability to control molecular motion and emulating the movement of biological systems are major steps towards the development of responsive and adaptive materials. Amazing progress has been seen for the design of molecular machines including light-induced unidirectional rotation of overcrowded alkenes. However, the feasibility of inducing unidirectional rotation about a single bond as a result of chemical conversion has been a challenging task. In this Review, an overview of approaches towards the design, synthesis, and dynamic properties of different classes of atropisomers which can undergo controlled switching or rotation under the influence of a chemical stimulus is presented. They are categorized as molecular switches, rotors, motors, and autonomous motors according to their type of response. Furthermore, we provide a future perspective and challenges focusing on building sophisticated molecular machines.


Assuntos
Alcenos , Materiais Inteligentes , Alcenos/química , Rotação
20.
Neuroimage ; 224: 117372, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979526

RESUMO

Spatio-temporal patterns in electroencephalography (EEG) can be described by microstate analysis, a discrete approximation of the continuous electric field patterns produced by the cerebral cortex. Resting-state EEG microstates are largely determined by alpha frequencies (8-12 Hz) and we recently demonstrated that microstates occur periodically with twice the alpha frequency. To understand the origin of microstate periodicity, we analyzed the analytic amplitude and the analytic phase of resting-state alpha oscillations independently. In continuous EEG data we found rotating phase patterns organized around a small number of phase singularities which varied in number and location. The spatial rotation of phase patterns occurred with the underlying alpha frequency. Phase rotors coincided with periodic microstate motifs involving the four canonical microstate maps. The analytic amplitude showed no oscillatory behaviour and was almost static across time intervals of 1-2 alpha cycles, resulting in the global pattern of a standing wave. In n=23 healthy adults, time-lagged mutual information analysis of microstate sequences derived from amplitude and phase signals of awake eyes-closed EEG records showed that only the phase component contributed to the periodicity of microstate sequences. Phase sequences showed mutual information peaks at multiples of 50 ms and the group average had a main peak at 100 ms (10 Hz), whereas amplitude sequences had a slow and monotonous information decay. This result was confirmed by an independent approach combining temporal principal component analysis (tPCA) and autocorrelation analysis. We reproduced our observations in a generic model of EEG oscillations composed of coupled non-linear oscillators (Stuart-Landau model). Phase-amplitude dynamics similar to experimental EEG occurred when the oscillators underwent a supercritical Hopf bifurcation, a common feature of many computational models of the alpha rhythm. These findings explain our previous description of periodic microstate recurrence and its relation to the time scale of alpha oscillations. Moreover, our results corroborate the predictions of computational models and connect experimentally observed EEG patterns to properties of critical oscillator networks.


Assuntos
Ritmo alfa/fisiologia , Encéfalo/fisiologia , Eletroencefalografia , Vigília/fisiologia , Adulto , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Humanos , Masculino , Descanso/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA