Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 105049, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451485

RESUMO

Rufomycins constitute a class of cyclic heptapeptides isolated from actinomycetes. They are secondary metabolites that show promising treatment against Mycobacterium tuberculosis infections by inhibiting a novel drug target. Several nonproteinogenic amino acids are integrated into rufomycins, including a conserved 3-nitro-tyrosine. RufO, a cytochrome P450 (CYP)-like enzyme, was proposed to catalyze the formation of 3-nitro-tyrosine in the presence of O2 and NO. To define its biological function, the interaction between RufO and the proposed substrate tyrosine is investigated using various spectroscopic methods that are sensitive to the structural change of a heme center. However, a low- to high-spin state transition and a dramatic increase in the redox potential that are commonly found in CYPs upon ligand binding have not been observed. Furthermore, a 1.89-Å crystal structure of RufO shows that the enzyme has flexible surface regions, a wide-open substrate access tunnel, and the heme center is largely exposed to solvent. Comparison with a closely related nitrating CYP reveals a spacious and hydrophobic distal pocket in RufO, which is incapable of stabilizing a free amino acid. Molecular docking validates the experimental data and proposes a possible substrate. Collectively, our results disfavor tyrosine as the substrate of RufO and point to the possibility that the nitration occurs during or after the assembly of the peptides. This study indicates a new function of the unique nitrating enzyme and provides insights into the biosynthesis of nonribosomal peptides.


Assuntos
Aminoácidos , Sistema Enzimático do Citocromo P-450 , Oligopeptídeos , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , Simulação de Acoplamento Molecular , Nitratos , Tirosina/metabolismo , Actinobacteria , Oligopeptídeos/biossíntese
2.
Artigo em Inglês | MEDLINE | ID: mdl-30602512

RESUMO

ClpC1 is an emerging new target for the treatment of Mycobacterium tuberculosis infections, and several cyclic peptides (ecumicin, cyclomarin A, and lassomycin) are known to act on this target. This study identified another group of peptides, the rufomycins (RUFs), as bactericidal to M. tuberculosis through the inhibition of ClpC1 and subsequent modulation of protein degradation of intracellular proteins. Rufomycin I (RUFI) was found to be a potent and selective lead compound for both M. tuberculosis (MIC, 0.02 µM) and Mycobacterium abscessus (MIC, 0.4 µM). Spontaneously generated mutants resistant to RUFI involved seven unique single nucleotide polymorphism (SNP) mutations at three distinct codons within the N-terminal domain of clpC1 (V13, H77, and F80). RUFI also significantly decreased the proteolytic capabilities of the ClpC1/P1/P2 complex to degrade casein, while having no significant effect on the ATPase activity of ClpC1. This represents a marked difference from ecumicin, which inhibits ClpC1 proteolysis but stimulates the ATPase activity, thereby providing evidence that although these peptides share ClpC1 as a macromolecular target, their downstream effects are distinct, likely due to differences in binding.


Assuntos
Proteases Dependentes de ATP/antagonistas & inibidores , Antituberculosos/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Oligopeptídeos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia
3.
J Biol Chem ; 292(38): 15859-15869, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28774961

RESUMO

Rufomycin is a circular heptapeptide with anti-mycobacterial activity and is produced by Streptomyces atratus ATCC 14046. Its structure contains three non-proteinogenic amino acids, N-dimethylallyltryptophan, trans-2-crotylglycine, and 3-nitrotyrosine (3NTyr). Although the rufomycin structure was already reported in the 1960s, its biosynthesis, including 3NTyr generation, remains unclear. To elucidate the rufomycin biosynthetic pathway, we assembled a draft genome sequence of S. atratus and identified the rufomycin biosynthetic gene cluster (ruf cluster), consisting of 20 ORFs (rufA-rufT). We found a putative heptamodular nonribosomal peptide synthetase encoded by rufT, a putative tryptophan N-dimethylallyltransferase encoded by rufP, and a putative trimodular type I polyketide synthase encoded by rufEF Moreover, the ruf cluster contains an apparent operon harboring putative cytochrome P450 (rufO) and nitric oxide synthase (rufN) genes. A similar operon, txtDE, is responsible for the formation of 4-nitrotryptophan in thaxtomin biosynthesis; the cytochrome P450 TxtE catalyzes the 4-nitration of Trp. Therefore, we hypothesized that RufO should catalyze the Tyr 3-nitration. Disruption of rufO abolished rufomycin production by S. atratus, which was restored when 3NTyr was added to the culture medium of the disruptant. Recombinant RufO protein exhibited Tyr 3-nitration activity both in vitro and in vivo Spectroscopic analysis further revealed that RufO recognizes Tyr as the substrate with a dissociation constant of ∼0.1 µm These results indicate that RufO is an unprecedented cytochrome P450 that catalyzes Tyr nitration. Taken together with the results of an in silico analysis of the ruf cluster, we propose a rufomycin biosynthetic pathway in S. atratus.


Assuntos
Biocatálise , Sistema Enzimático do Citocromo P-450/metabolismo , Nitrocompostos/metabolismo , Oligopeptídeos/biossíntese , Streptomyces/enzimologia , Tirosina/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Genoma Bacteriano/genética , Família Multigênica/genética , Oligopeptídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
4.
Tuberculosis (Edinb) ; 138: 102298, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580851

RESUMO

Ecumicin and rufomycin 4-7 disrupt protein homeostasis in Mycobacterium tuberculosis by inhibiting the proteolytic activity of the ClpC1/ClpP1/ClpP2 complex. Although these compounds target ClpC1, their effects on the ATPase activity of ClpC1 and proteolytic activity of ClpC1/ClpP1/ClpP2 vary. Herein, we explored the ClpC1 molecular dynamics with these compounds through fluorescence correlation spectroscopy. The effect of these compounds on the ATPase activity of ClpC1-cys, the recombinant protein for fluorescence labeling, and proteolytic activity of ClpC1-cys/ClpP1/ClpP2 were identical to those of native ClpC1, whereas the intermolecular dynamics of fluorescence-labelled ClpC1 were different. Treatment with up to 1 nM ecumicin increased the population of slower diffused ClpC1 components compared with ClpC1 without ecumicin. However, this population was considerably reduced when treated with 10 nM ecumicin. Rufomycin 4-7 treatment resulted in a slower diffused component of ClpC1, and the portion of this component increased in a concentration-dependent manner. Ecumicin can generate an abnormal ClpC1 component, which cannot form normal ClpC1/ClpP1/ClpP2, via two different modes. Rufomycin 4-7 only generates slower diffused ClpC1 component that is inadequate to form normal ClpC1/ClpP1/ClpP2. Overall, we demonstrate that ecumicin and rufomycin 4-7 use different action mechanisms to generate abnormal ClpC1 components that cannot couple with ClpP1/ClpP2.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia
5.
Front Microbiol ; 12: 695024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447358

RESUMO

Nontuberculous mycobacterial pulmonary infection is often aggravated due to antibiotic resistance issues. There is a need for development of new drugs inducing both host immune responses and antimicrobial activities. This study shows that the rufomycins 4/5/6/7 (Rufomycin 4-7), which targets ClpC1 as a subunit of caseinolytic protein complex ClpC1/ClpP1/ClpP2 of mycobacteria, exhibits a dual effect in host innate defense and in vivo antimicrobial activities against a rough morphotype of Mycobacterium abscessus (Mabs-R), a clinically severe morphotype that causes hyperinflammation. Rufomycin 4-7 treatment showed antimicrobial effects against Mabs pulmonary infection in vivo and in macrophages. In addition, Rufomycin 4-7 significantly decreased inflammation, but enhanced the autophagy/lysosomal genes through upregulation of the nuclear translocation of transcription factor EB (TFEB). Furthermore, Rufomycin 4-7 treatment effectively inhibited mitochondrial damage and oxidative stresses in macrophages during Mabs-R infection. Collectively, Rufomycin 4-7-mediated dual effects inducing both antimicrobial activities and host immune defense might confer an advantage to treatment against Mabs-R infection.

6.
ACS Infect Dis ; 5(6): 829-840, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30990022

RESUMO

Addressing the urgent need to develop novel drugs against drug-resistant Mycobacterium tuberculosis ( M. tb) strains, ecumicin (ECU) and rufomycin I (RUFI) are being explored as promising new leads targeting cellular proteostasis via the caseinolytic protein ClpC1. Details of the binding topology and chemical mode of (inter)action of these cyclopeptides help drive further development of novel potency-optimized entities as tuberculosis drugs. ClpC1 M. tb protein constructs with mutations driving resistance to ECU and RUFI show reduced binding affinity by surface plasmon resonance (SPR). Despite certain structural similarities, ECU and RUFI resistant mutation sites did not overlap in their SPR binding patterns. SPR competition experiments show ECU prevents RUFI binding, whereas RUFI partially inhibits ECU binding. The X-ray structure of the ClpC1-NTD-RUFI complex reveals distinct differences compared to the previously reported ClpC1-NTD-cyclomarin A structure. Surprisingly, the complex structure revealed that the epoxide moiety of RUFI opened and covalently bound to ClpC1-NTD via the sulfur atom of Met1. Furthermore, RUFI analogues indicate that the epoxy group of RUFI is critical for binding and bactericidal activity. The outcomes demonstrate the significance of ClpC1 as a novel target and the importance of SAR analysis of identified macrocyclic peptides for drug discovery.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/química , Proteínas de Choque Térmico/química , Mycobacterium tuberculosis/efeitos dos fármacos , Oligopeptídeos/química , Antituberculosos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Ligantes , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Oligopeptídeos/farmacologia , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA