Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33333550

RESUMO

Plant transcriptome encompasses numerous endogenous, regulatory non-coding RNAs (ncRNAs) that play a major biological role in regulating key physiological mechanisms. While studies have shown that ncRNAs are extremely diverse and ubiquitous, the functions of the vast majority of ncRNAs are still unknown. With ever-increasing ncRNAs under study, it is essential to identify, categorize and annotate these ncRNAs on a genome-wide scale. The use of high-throughput RNA sequencing (RNA-seq) technologies provides a broader picture of the non-coding component of transcriptome, enabling the comprehensive identification and annotation of all major ncRNAs across samples. However, the detection of known and emerging class of ncRNAs from RNA-seq data demands complex computational methods owing to their unique as well as similar characteristics. Here, we discuss major plant endogenous, regulatory ncRNAs in an RNA sample followed by computational strategies applied to discover each class of ncRNAs using RNA-seq. We also provide a collection of relevant software packages and databases to present a comprehensive bioinformatics toolbox for plant ncRNA researchers. We assume that the discussions in this review will provide a rationale for the discovery of all major categories of plant ncRNAs.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica de Plantas , Plantas , RNA de Plantas , RNA não Traduzido , RNA-Seq , Software , Plantas/genética , Plantas/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , RNA não Traduzido/biossíntese , RNA não Traduzido/genética
2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834103

RESUMO

Masson pine (Pinus massoniana Lamb.) is a major fast-growing woody tree species and pioneer species for afforestation in barren sites in southern China. However, the regulatory mechanism of gene expression in P. massoniana under drought remains unclear. To uncover candidate microRNAs, their expression profiles, and microRNA-mRNA interactions, small RNA-seq was used to investigate the transcriptome from seedling roots under drought and rewatering in P. massoniana. A total of 421 plant microRNAs were identified. Pairwise differential expression analysis between treatment and control groups unveiled 134, 156, and 96 differential expressed microRNAs at three stages. These constitute 248 unique microRNAs, which were subsequently categorized into six clusters based on their expression profiles. Degradome sequencing revealed that these 248 differentially expressed microRNAs targeted 2069 genes. Gene Ontology enrichment analysis suggested that these target genes were related to translational and posttranslational regulation, cell wall modification, and reactive oxygen species scavenging. miRNAs such as miR482, miR398, miR11571, miR396, miR166, miRN88, and miRN74, along with their target genes annotated as F-box/kelch-repeat protein, 60S ribosomal protein, copper-zinc superoxide dismutase, luminal-binding protein, S-adenosylmethionine synthase, and Early Responsive to Dehydration Stress may play critical roles in drought response. This study provides insights into microRNA responsive to drought and rewatering in Masson pine and advances the understanding of drought tolerance mechanisms in Pinus.


Assuntos
MicroRNAs , Pinus , MicroRNAs/genética , MicroRNAs/metabolismo , Pinus/genética , Pinus/metabolismo , Secas , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética
3.
BMC Genomics ; 23(1): 168, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232381

RESUMO

BACKGROUND: Head of fish species, an exquisitely complex anatomical system, is important not only for studying fish evolution and development, but also for economic values. Currently, although some studies have been made on fish growth and body shapes, very limited information is available on the molecular mechanism of head development. RESULTS: In this study, RNA sequencing (RNA-Seq) and small RNA sequencing (sRNA-Seq) technologies were used to conduct integrated analysis for the head of bighead carp at different development stages, including 1, 3, 5, 15 and 30 Dph (days post hatch). By RNA-Seq data, 26 pathways related to growth and bone formation were identified as the main physiological processes during early development. Coupling this to sRNA-Seq data, we picked out six key pathways that may be responsible for head development, namely ECM receptor interaction, TNF signaling pathway, osteoclast differentiation, PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction and Jak-STAT signaling pathway. Totally, 114 important candidate genes from the six pathways were obtained. Then we found the top 20 key genes according to the degree value by cytohubba, which regulated cell growth, skeletal formation and blood homeostasis, such as pik3ca, pik3r1, egfr, vegfa, igf1 and itga2b. Finally, we also acquired 19 key miRNAs playing multiple roles in the perfection of various tissues in the head (such as brain, eye and mouth) and mineralization of head bone system, such as let-7e, miR-142a-5p, miR-144-3p, miR-23a-3p and miR-223. CONCLUSIONS: Results of this study will be informative for genetic mechanisms of head development and also provide potential candidate targets for the interaction regulation during early growth in bighead carp.


Assuntos
Carpas , Cyprinidae , MicroRNAs , Animais , Carpas/genética , Cyprinidae/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases , RNA Mensageiro
4.
J Exp Bot ; 73(18): 6068-6077, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35762882

RESUMO

Non-coding RNAs (ncRNAs) play important roles in regulating expression of protein-coding genes. Although gene expression databases have emerged in a timely manner, a comprehensive expression database for ncRNAs is still lacking. Herein, we constructed a rice ncRNA co-expression atlas (RiceNCexp), based on 491 RNA-seq and 274 small RNA (sRNA)-seq datasets. RiceNCexp hosts four types of ncRNAs, namely lncRNAs, PHAS genes, miRNAs, and phasiRNAs. RiceNCexp provides comprehensive expression information for rice ncRNAs in 22 tissues/organs, an efficient tau-based mining tool for tissue-specific ncRNAs, and the robust co-expression analysis among ncRNAs or between ncRNAs and protein-coding genes, based on 116 pairs of RNA-seq and sRNA-seq libraries from the same experiments. In summary, RiceNCexp is a user-friendly and comprehensive rice ncRNA co-expression atlas and can be freely accessed at https://cbi.njau.edu.cn/RiceNCexp/.


Assuntos
MicroRNAs , Oryza , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Oryza/genética , Oryza/metabolismo , Análise de Sequência de RNA , RNA-Seq , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886954

RESUMO

Internode starch biosynthesis is one of the most important traits in lotus rhizome because of its relation to crop productivity. Understanding the microRNA (miRNA) and mRNA expression profiles related to lotus internode starch biosynthesis would help develop molecular improvement strategies, but they are not yet well-investigated. To identify genes and miRNAs involved in internode starch biosynthesis, the cDNA and small RNA libraries of Z6-1, Z6-2, and Z6-3 were sequenced, and their expression were further studied. Through combined analyses of transcriptome data and small RNA sequencing data, a complex co-expression regulatory network was constructed, in which 20 miRNAs could modulate starch biosynthesis in different internodes by tuning the expression of 10 target genes. QRT-PCR analysis, transient co-expression experiment and dual luciferase assay comprehensively confirmed that NnumiR396a down-regulated the expression of NnSS2 and ultimately prevents the synthesis of amylopectin, and NnumiR396b down-regulated the expression of NnPGM2 and ultimately prevents the synthesis of total starch. Our results suggest that miRNAs play a critical role in starch biosynthesis in lotus rhizome, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing lotus rhizome.


Assuntos
Lotus , MicroRNAs , Nelumbo , Perfilação da Expressão Gênica/métodos , Lotus/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Nelumbo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rizoma/genética , Rizoma/metabolismo , Análise de Sequência de RNA , Amido/metabolismo
6.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457133

RESUMO

The role of miRNAs in connection with the phenomenon of somaclonal variation, which occurs during plant in vitro culture, remains uncertain. This study aims to investigate the possible role of miRNAs in multi-omics regulatory pathways in cucumber somaclonal lines. For this purpose, we performed sRNA sequencing (sRNA-seq) from cucumber fruit samples identified 8, 10 and 44 miRNAs that are differentially expressed between somaclones (S1, S2, S3 lines) and the reference B10 line of Cucumis sativus. For miRNA identification, we use ShortStack software designed to filter miRNAs from sRNAs according to specific program criteria. The identification of predicted in-silico targets revealed 2,886 mRNAs encoded by 644 genes. The functional annotation of miRNA's target genes and gene ontology classification revealed their association with metabolic processes, response to stress, multicellular organism development, biosynthetic process and catalytic activity. We checked with bioinformatic analyses for possible interactions at the level of target proteins, differentially expressed genes (DEGs) and genes affected by genomic polymorphisms. We assume that miRNAs can indirectly influence molecular networks and play a role in many different regulatory pathways, leading to somaclonal variation. This regulation is supposed to occur through the process of the target gene cleavage or translation inhibition, which in turn affects the proteome, as we have shown in the example of molecular networks. This is a new approach combining levels from DNA-seq through mRNA-seq, sRNA-seq and in silico PPI in the area of plants' somaclonal variation.


Assuntos
Cucumis sativus , MicroRNAs , Biologia Computacional , Cucumis sativus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética
7.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409340

RESUMO

Plant small RNAs (sRNAs) are a heterogeneous group of noncoding RNAs with a length of 20-24 nucleotides that are widely studied due to their importance as major regulators in various biological processes. sRNAs are divided into two main classes-microRNAs (miRNAs) and small interfering RNAs (siRNAs)-which differ in their biogenesis and functional pathways. Their identification and enrichment with new structural variants would not be possible without the use of various high-throughput sequencing (NGS) techniques, allowing for the detection of the total population of sRNAs in plants. Classifying sRNAs and predicting their functional role based on such high-performance datasets is a nontrivial bioinformatics task, as plants can generate millions of sRNAs from a variety of biosynthetic pathways. Over the years, many computing tools have been developed to meet this challenge. Here, we review more than 35 tools developed specifically for plant sRNAs over the past few years and explore some of their basic algorithms for performing tasks related to predicting, identifying, categorizing, and quantifying individual sRNAs in plant samples, as well as visualizing the results of these analyzes. We believe that this review will be practical for biologists who want to analyze their plant sRNA datasets but are overwhelmed by the number of tools available, thus answering the basic question of how to choose the right one for a particular study.


Assuntos
Biologia Computacional , MicroRNAs , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Plantas/genética , Plantas/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo
8.
BMC Genomics ; 22(1): 577, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315409

RESUMO

BACKGROUND: miRNA is one of the crucial roles in the complex and dynamic network that regulates the development of skeletal muscle. The landscape of skeletal muscle miRNAs from fetus to adult in New Zealand rabbits has not been revealed yet. RESULTS: In this study, nine RNA-seq libraries of fetus, child and adult rabbits' leg muscles were constructed. A total of 278 differentially expressed miRNAs (DEmiRNAs) were identified. In the fetus vs. child group, the main functional enrichments were involved in membrane and transport. Pathway enriched terms of up-regulated DEmiRNAs were connected with the differentiation and hypertrophy of skeletal muscle, and down-regulated ones were related to muscle structure and metabolic capacity. In the child vs. adult group, functions were associated to positioning and transportation, and pathways were relevant to ECM, muscle structure and hypertrophy. Finally, ocu-miR-185-3p and ocu-miR-370-3p, which had the most target genes, were identified as hub-miRNAs in these two groups. CONCLUSIONS: In short, we summarized the highly expressed and uniquely expressed DEmiRNAs of fetus, child and adult rabbits' leg muscles. Besides, the potential functional changes of miRNAs in two consecutive stages have been explored. Among them, the ocu-miR-185-3p and ocu-miR-370-3p with the most target genes were selected as hub-miRNAs. These data improved the understanding of the regulatory molecules of meat rabbit development, and provided a novel perspective for molecular breeding of meat rabbits.


Assuntos
MicroRNAs , Animais , Perfilação da Expressão Gênica , MicroRNAs/genética , Desenvolvimento Muscular/genética , Músculo Esquelético , RNA-Seq , Coelhos
9.
Plant Dis ; 105(4): 758-763, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33151814

RESUMO

In North America, uncultivated, free-living grapevines (Vitis spp.) frequently grow alongside their cultivated counterparts, thus increasing the potential for exchange of microbiota. For this study, we used high-throughput sequencing (HTS) of small RNAs to survey for virus populations in free-living grapevines of the Finger Lakes region of New York State. Of 32 grapevines analyzed, 23 were free-living vines, while the remaining 9 were commercially grown Vitis vinifera plants from the same region. In total, 18 (78.3%) of the free-living grapevines tested were positive for grapevine asteroid mosaic-associated virus (GAMaV) infection by HTS, with detection confirmed by seminested reverse-transcription PCR and sequencing of nine isolates. Phylogenetic analyses of an ungapped alignment of the New York GAMaV sequences (length: 2,334 nucleotides) with the five known full-length or close to full-length global sequences showed that the New York isolates were broadly grouped. Of the nine cultivated plants, eight were infected with both hop stunt viroid and grapevine yellow speckle viroid 1, three were singly infected with grapevine leafroll-associated virus 3, and one harbored GAMaV. This limited survey of free-living grapevines, one of the first to use HTS, has highlighted the high incidence of a virus associated with disease in commercial V. vinifera.


Assuntos
Doenças das Plantas , RNA Viral , New York , América do Norte , Filogenia , RNA Viral/genética , Vírus Satélites
10.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681826

RESUMO

PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs (sncRNAs) that perform crucial biological functions in metazoans and defend against transposable elements (TEs) in germ lines. Recently, ubiquitously expressed piRNAs were discovered in soma and germ lines using small RNA sequencing (sRNA-seq) in humans and animals, providing new insights into the diverse functions of piRNAs. However, the role of piRNAs has not yet been fully elucidated, and sRNA-seq studies continue to reveal different piRNA activities in the genome. In this review, we summarize a set of simplified processes for piRNA analysis in order to provide a useful guide for researchers to perform piRNA research suitable for their study objectives. These processes can help expand the functional research on piRNAs from previously reported sRNA-seq results in metazoans. Ubiquitously expressed piRNAs have been discovered in the soma and germ lines in Annelida, Cnidaria, Echinodermata, Crustacea, Arthropoda, and Mollusca, but they are limited to germ lines in Chordata. The roles of piRNAs in TE silencing, gene expression regulation, epigenetic regulation, embryonic development, immune response, and associated diseases will continue to be discovered via sRNA-seq.


Assuntos
Carisoprodol/metabolismo , Elementos de DNA Transponíveis , Epigênese Genética , Regulação da Expressão Gênica , Células Germinativas/metabolismo , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/fisiologia , Animais , Doença/genética , Humanos , Imunidade , Análise de Sequência de RNA
11.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805429

RESUMO

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with 'Candidatus Phytoplasma solani', but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for finding new cross-talks among pathways involved in infection of grapevine cv. Zweigelt with 'Ca. P. solani' in early and late growing seasons. While the early growing season was very dynamic at the transcriptional level in asymptomatic grapevines, the regulation at the level of small RNAs was more pronounced later in the season when symptoms developed in infected grapevines. Most differentially expressed small RNAs were associated with biotic stress. Our study also exposes the less-studied role of hormones in disease development and shows that hormonal balance was already perturbed before symptoms development in infected grapevines. Analysis at the level of communities of genes and mRNA-microRNA interaction networks revealed several new genes (e.g., expansins and cryptdin) that have not been associated with phytoplasma pathogenicity previously. These novel actors may present a new reference framework for research and diagnostics of phytoplasma diseases of grapevine.


Assuntos
Interações Hospedeiro-Patógeno/genética , Phytoplasma/patogenicidade , RNA Mensageiro/genética , Vitis/genética , Vitis/microbiologia , Parede Celular/genética , Parede Celular/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA de Plantas , Análise de Sequência de RNA , Estresse Fisiológico/genética , Vitis/crescimento & desenvolvimento
12.
Plant J ; 94(6): 1051-1063, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29654642

RESUMO

Plant small RNAs (sRNAs) modulate key physiological mechanisms through post-transcriptional and transcriptional silencing of gene expression. Small RNAs fall into two major categories: those are reliant on RNA-dependent RNA polymerases (RDRs) for biogenesis and those that are not. Known RDR1/2/6-dependent sRNAs include phased and repeat-associated short interfering RNAs, while known RDR1/2/6-independent sRNAs are primarily microRNAs (miRNA) and other hairpin-derived sRNAs. In this study we produced and analyzed sRNA-seq libraries from rdr1/rdr2/rdr6 triple mutant plants. We found 58 previously annotated miRNA loci that were reliant on RDR1, -2, or -6 function, casting doubt on their classification. We also found 38 RDR1/2/6-independent sRNA loci that are not MIRNAs or otherwise hairpin-derived, and did not fit into other known paradigms for sRNA biogenesis. These 38 sRNA-producing loci have as-yet-undescribed biogenesis mechanisms, and are frequently located in the vicinity of protein-coding genes. Altogether, our analysis suggests that these 38 loci represent one or more undescribed types of sRNA in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Loci Gênicos/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/genética , Anotação de Sequência Molecular , RNA Polimerase Dependente de RNA/metabolismo
13.
RNA Biol ; 16(6): 830-837, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30870076

RESUMO

In this study, we used a small RNA sequencing (sRNA-seq) based method to annotate the mitochondrial genome of the insect Erthesina fullo Thunberg at 1 bp resolution. The high-resolution annotations cover both entire strands of the mitochondrial genome without any gaps or overlaps. Most of the new annotations were consistent with the previous annotations which had been obtained using PacBio full-length transcripts. Two important findings were that animals transcribe both entire strands of mitochondrial genomes and the tandem repeats in the control region of the E. fullo mitochondrial genome contains the repeated Transcription Initiation Sites (TISs) of the heavy strand. In addition, we found that the copy numbers of tandem repeats showed a great diversity within an individual, suggesting that mitochondrial DNA recombination occurs in an individual. In conclusion, the sRNA-seq based method uses 5' and 3' end small RNAs to annotate nuclear non-coding and mitochondrial genes at 1 bp resolution, and can be used to identify new steady RNAs, particularly long non-coding RNAs (lncRNAs). The high-resolution annotations of mitochondrial genomes can also be used to study the molecular phylogenetics and evolution of animals or to investigate mitochondrial gene transcription, RNA processing, RNA maturation and several other related topics. The complete mitochondrial genome sequence of E. fullo with the new annotations using the sRNA-seq based method is available at the NCBI GenBank database under the accession number MK374364. We publish our theories, methods, the high quality sRNA-seq and RNA-seq data (SRA: SRP174926) for extensive use.


Assuntos
DNA Mitocondrial/química , Genoma Mitocondrial , Heterópteros/genética , Anotação de Sequência Molecular , Sequências de Repetição em Tandem , Animais , Genes de Insetos , RNA Mitocondrial/química , Pequeno RNA não Traduzido/química , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
14.
Plant J ; 90(1): 37-47, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28002617

RESUMO

In plants, 24 nucleotide long heterochromatic siRNAs (het-siRNAs) transcriptionally regulate gene expression by RNA-directed DNA methylation (RdDM). The biogenesis of most het-siRNAs depends on the plant-specific RNA polymerase IV (Pol IV), and ARGONAUTE4 (AGO4) is a major het-siRNA effector protein. Through genome-wide analysis of sRNA-seq data sets, we found that AGO4 is required for the accumulation of a small subset of het-siRNAs. The accumulation of AGO4-dependent het-siRNAs also requires several factors known to participate in the effector portion of the RdDM pathway, including RNA POLYMERASE V (POL V), DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and SAWADEE HOMEODOMAIN HOMOLOGUE 1 (SHH1). Like many AGO proteins, AGO4 is an endonuclease that can 'slice' RNAs. We found that a slicing-defective AGO4 was unable to fully recover AGO4-dependent het-siRNA accumulation from ago4 mutant plants. Collectively, our data suggest that AGO4-dependent siRNAs are secondary siRNAs dependent on the prior activity of the RdDM pathway at certain loci.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Proteínas Argonautas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Inativação Gênica/fisiologia , Heterocromatina/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia
15.
Plant Cell Physiol ; 59(1): e1, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145635

RESUMO

tRNA-derived fragments (tRFs) constitute a new class of short regulatory RNAs that are a product of nascent or mature tRNA processing. tRF sequences have been identified in all domains of life; however, most published research pertains to human, yeast and some bacterial organisms. Despite growing interest in plant tRFs and accumulating evidence of their function in plant development and stress responses, no public, web-based repository dedicated to these molecules is currently available. Here, we introduce tRex (http://combio.pl/trex)-the first comprehensive data-driven online resource specifically dedicated to tRFs in the model plant Arabidopsis thaliana. The portal is based on verified Arabidopsis tRNA annotation and includes in-house-generated and publicly available small RNA sequencing experiments from various tissues, ecotypes, genotypes and stress conditions. The provided web-based tools are designed in a user-friendly manner and allow for seamless exploration of the data that are presented in the form of dynamic tables and cumulative coverage profiles. The tRex database is connected to external genomic and citation resources, which makes it a one-stop solution for Arabidopsis tRF-related research.


Assuntos
Arabidopsis/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , RNA de Plantas/genética , RNA de Transferência/genética , Sequência de Bases , Internet , Conformação de Ácido Nucleico , RNA de Plantas/química , RNA de Transferência/química , Análise de Sequência de RNA/métodos , Homologia de Sequência do Ácido Nucleico
16.
BMC Genomics ; 18(1): 416, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558690

RESUMO

BACKGROUND: Mycoviruses are viruses that naturally infect and replicate in fungi. Aspergillus fumigatus, an opportunistic pathogen causing fungal lung diseases in humans and animals, was recently shown to harbour several different types of mycoviruses. A well-characterised defence against virus infection is RNA silencing. The A. fumigatus genome encodes essential components of the RNA silencing machinery, including Dicer, Argonaute and RNA-dependent RNA polymerase (RdRP) homologues. Active silencing of double-stranded (ds)RNA and the generation of small RNAs (sRNAs) has been shown for several mycoviruses and it is anticipated that a similar mechanism will be activated in A. fumigatus isolates infected with mycoviruses. RESULTS: To investigate the existence and nature of A. fumigatus sRNAs, sRNA-seq libraries of virus-free and virus-infected isolates were created using Scriptminer adapters and compared. Three dsRNA viruses were investigated: Aspergillus fumigatus partitivirus-1 (AfuPV-1, PV), Aspergillus fumigatus chrysovirus (AfuCV, CV) and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1, NK) which were selected because they induce phenotypic changes such as coloration and sectoring. The dsRNAs of all three viruses, which included two conventionally encapsidated ones PV and CV and one unencapsidated example NK, were silenced and yielded characteristic vsiRNAs together with co-incidental silencing of host fungal genes which shared sequence homology with the viral genomes. CONCLUSIONS: Virus-derived sRNAs were detected and characterised in the presence of virus infection. Differentially expressed A. fumigatus microRNA-like (miRNA-like) sRNAs and small interfering RNAs (siRNAs) were detected and validated. Host sRNA loci which were differentially expressed as a result of virus infection were also identified. To our knowledge, this is the first study reporting the sRNA profiles of A. fumigatus isolates.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/virologia , Micovírus/fisiologia , Vírus de RNA/fisiologia , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA , Loci Gênicos/genética , Sequenciamento de Nucleotídeos em Larga Escala
17.
BMC Genomics ; 17(1): 831, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782799

RESUMO

BACKGROUND: MiRNAs regulate multiple genes at the post-transcriptional level and therefore play an important role in many biological processes. It has been suggested that miRNA exported outside the cells contribute to inter-cellular communication. Consequently, circulating miRNAs are of particular interest and are promising biomarkers for many diseases. The number of miRNAs annotated in the horse genome is much lower compared to model organisms like human and mouse. We therefore aimed to identify novel equine miRNAs for tissue types and breed in serum. RESULTS: We analysed 71 small RNA-seq libraries derived from nine tissues (gluteus medius, platysma, masseter muscle, heart, liver, cartilage, bone, total blood and serum) using miRDeep2 and miRdentify tools. Known miRNAs represented between 2.3 and 62.9 % of the reads in 71 libraries. A total of 683 novel miRNAs were identified. Breed and tissue type affected the number of miRNAs detected and interestingly, affected its average intensity. A total of 50 miRNAs in serum proved to be potential biomarkers to differentiate specific breed types, of which miR-122, miR-200, miR-483 were over-expressed and miR-328 was under-expressed in ponies compared to Warmbloods. The different miRNAs profiles, as well as the differences in their expression levels provide a foundation for more hypotheses based on the novel miRNAs discovered. CONCLUSIONS: We identified 683 novel equine miRNAs expressed in seven solid tissues, blood and serum. Additionally, our approach evidenced that such data supported identification of specific miRNAs as markers of functions related to breeds or disease tissues.


Assuntos
Cruzamento , Cavalos/genética , MicroRNAs/genética , Animais , Sequência de Bases , Biomarcadores , Mapeamento Cromossômico , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos/sangue , MicroRNAs/sangue , Conformação de Ácido Nucleico , Especificidade de Órgãos/genética , Fluxo de Trabalho
18.
BMC Genomics ; 17: 230, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976036

RESUMO

BACKGROUND: In woody perennial plants, including deciduous fruit trees, such as pear, endodormancy is a strategy for surviving the cold winter. A better understanding of the mechanism underlying the endodormancy phase transition is necessary for developing countermeasures against the effects of global warming. In this study, we analyzed the sRNAome of Japanese pear flower buds in endodormant and ecodormant stages over two seasons by implementing of RNA-seq and degradome-sequencing. RESULTS: We identified 137 conserved or less conserved miRNAs and 50 pear-specific miRNAs. However, none of the conserved microRNAs or pear-specific miRNAs was differentially expressed between endodormancy and ecodormancy stages. On the contrast, 1540 of 218,050 loci that produced sRNAs were differentially expressed between endodormancy and ecodormancy, suggesting their potential roles on the phase transition from endodormancy to ecodomancy. We also characterized a multifunctional miRNA precursor MIR168, which produces two functional miR168 transcripts, namely miR168.1 and miR168.2; cleavage events were predominantly mediated by the non-conserved variant miR168.2 rather than the conserved variant miR168.1. Finally, we showed that a TAS3 trans-acting siRNA triggered phased siRNA within the ORF of one of its target genes, AUXIN RESPONSE FACTOR 4, via the analysis of phased siRNA loci, indicating that siRNAs are able to trigger phased siRNAs in pear. CONCLUSION: We analyzed the sRNAome of pear flower bud during dormant phase transition. Our work described the sRNA profiles of pear winter buds during dormant phase transition, showing that dormancy release is a highly coordinated physiological process involving the regulation of sRNAs.


Assuntos
Flores/genética , MicroRNAs/genética , Dormência de Plantas/genética , Pyrus/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Pyrus/crescimento & desenvolvimento , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Análise de Sequência de RNA
19.
Mol Cancer ; 15(1): 56, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27590724

RESUMO

Over the past few years, microRNAs (miRNAs) have not only emerged as integral regulators of gene expression at the post-transcriptional level but also respond to signalling molecules to affect cell function(s). miRNAs crosstalk with a variety of the key cellular signalling networks such as Wnt, transforming growth factor-ß and Notch, control stem cell activity in maintaining tissue homeostasis, while if dysregulated contributes to the initiation and progression of cancer. Herein, we overview the molecular mechanism(s) underlying the crosstalk between Wnt-signalling components (canonical and non-canonical) and miRNAs, as well as changes in the miRNA/Wnt-signalling components observed in the different forms of cancer. Furthermore, the fundamental understanding of miRNA-mediated regulation of Wnt-signalling pathway and vice versa has been significantly improved by high-throughput genomics and bioinformatics technologies. Whilst, these approaches have identified a number of specific miRNA(s) that function as oncogenes or tumour suppressors, additional analyses will be necessary to fully unravel the links among conserved cellular signalling pathways and miRNAs and their potential associated components in cancer, thereby creating therapeutic avenues against tumours. Hence, we also discuss the current challenges associated with Wnt-signalling/miRNAs complex and the analysis using the biomedical experimental and bioinformatics approaches.


Assuntos
Carcinogênese/genética , Biologia Computacional/métodos , MicroRNAs/genética , Via de Sinalização Wnt , Animais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos
20.
BMC Plant Biol ; 16: 97, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27098368

RESUMO

BACKGROUND: Microspore embryogenesis describes a stress-induced reprogramming of immature male plant gametophytes to develop into embryo-like structures, which can be regenerated into doubled haploid plants after whole genome reduplication. This mechanism is of high interest for both research as well as plant breeding. The objective of this study was to characterize transcriptional changes and regulatory relationships in early stages of cold stress-induced wheat microspore embryogenesis by transcriptome and small RNA sequencing using a highly responsive cultivar. RESULTS: Transcriptome and small RNA sequencing was performed in a staged time-course to analyze wheat microspore embryogenesis induction. The analyzed stages were freshly harvested, untreated uninucleate microspores and the two following stages from in vitro anther culture: directly after induction by cold-stress treatment and microspores undergoing the first nuclear divisions. A de novo transcriptome assembly resulted in 29,388 contigs distributing to 20,224 putative transcripts of which 9,305 are not covered by public wheat cDNAs. Differentially expressed transcripts and small RNAs were identified for the stage transitions highlighting various processes as well as specific genes to be involved in microspore embryogenesis induction. CONCLUSION: This study establishes a comprehensive functional genomics resource for wheat microspore embryogenesis induction and initial understanding of molecular mechanisms involved. A large set of putative transcripts presumably specific for microspore embryogenesis induction as well as contributing processes and specific genes were identified. The results allow for a first insight in regulatory roles of small RNAs in the reprogramming of microspores towards an embryogenic cell fate.


Assuntos
Pólen/genética , Pequeno RNA não Traduzido/genética , Transcriptoma , Triticum/genética , Análise por Conglomerados , Temperatura Baixa , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , MicroRNAs/genética , Proteínas de Plantas/genética , Pólen/embriologia , Precursores de RNA/genética , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , Triticum/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA