Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 146: 107320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569323

RESUMO

Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 µM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 µM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.


Assuntos
Interleucina-4 , Mastócitos , Camundongos , Animais , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Mastócitos/metabolismo , Anafilaxia Cutânea Passiva , Simulação de Acoplamento Molecular , Imunoglobulina E/metabolismo , Imunoglobulina E/farmacologia , Camundongos Endogâmicos ICR , Camundongos Endogâmicos BALB C
2.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611749

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with a high degree of malignancy and poor prognosis. Tumor-associated macrophages (TAMs) have been identified as significant contributors to the growth and metastasis of TNBC through the secretion of various growth factors and chemokines. Salvianolic acid A (SAA) has been shown to have anti-cancer activities. However, the potential activity of SAA on re-polarized TAMs remains unclear. As there is a correlation between the TAMs and TNBC, this study investigates the effect of SAA on TAMs in the TNBC microenvironment. For that purpose, M2 TAM polarization was induced by two kinds of TNBC-conditioned medium (TNBC-TCM) in the absence or presence of SAA. The gene and protein expression of TAM markers were analyzed by qPCR, FCM, IF, ELISA, and Western blot. The protein expression levels of ERK and p-ERK in M2-like TAMs were analyzed by Western blot. The migration and invasion properties of M2-like TAMs were analyzed by Transwell assays. Here, we demonstrated that SAA increased the expression levels of CD86, IL-1ß, and iNOS in M2-like TAMs and, conversely, decreased the expression levels of Arg-1 and CD206. Moreover, SAA inhibited the migration and invasion properties of M2-like TAMs effectively and decreased the protein expression of TGF-ß1 and p-ERK in a concentration-dependent manner, as well as TGF-ß1 gene expression and secretion. Our current findings for the first time demonstrated that SAA inhibits macrophage polarization to M2-like TAMs by inhibiting the ERK pathway and promotes M2-like TAM re-polarization to the M1 TAMs, which may exert its anti-tumor effect by regulating M1/M2 TAM polarization. These findings highlight SAA as a potential regulator of M2 TAMs and the possibility of utilizing SAA to reprogram M2 TAMs offers promising insights for the clinical management of TNBC.


Assuntos
Ácidos Cafeicos , Lactatos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fator de Crescimento Transformador beta1 , Microambiente Tumoral , Macrófagos Associados a Tumor
3.
J Proteome Res ; 22(7): 2450-2459, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347238

RESUMO

Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Bunge (Danshen), displays strong antiproliferative activity against cancer cells. However, their protein targets remain unknown. Here, we deconvoluted the protein targets of SAA using chemoproteomics and phosphoproteomics. By using alkynylated SAA as a probe, we discovered that SAA is a covalent ligand that can modify cellular proteins via its electrophilic α,ß-unsaturated ester moiety. The subsequent chemoproteomics profiling revealed that 46 proteins were covalently modified by SAA, including Raptor, a subunit of mTORC1 for recruiting substrates for mTORC1. Although gene ontology enrichment analysis of these proteins suggested that SAA displays a promiscuous protein interaction, phosphoproteomics profiling revealed that the SAA modulated phosphoproteins were mainly enriched in the signaling pathways of PI3K-Akt-mTOR, which is closely related to cell growth and proliferation. This was confirmed by the biochemical assay with purified mTORC1, a Western blot assay with phospho-specific antibodies, and a cellular thermal shift assay. Our work discovered that SAA is a covalent ligand for protein modification and mTORC1 is one of its targets. Moreover, our work demonstrated that the integrative profiling of chemoproteomics and phosphoproteomics can be a powerful tool for target deconvolution for bioactive natural products.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina , Ligantes , Ácidos Cafeicos/farmacologia
4.
Mol Divers ; 27(5): 2015-2036, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36244040

RESUMO

Breast cancer is a common form of cancer that affects both men and women. One of the most common types of genomic flaws in cancer is the aberrations in the PI3K/AKT/mTOR pathway. The benefit of dual targeting PI3K as well as mTOR is that the kinase-positive feedback loops are more effectively inhibited. Therefore, in the current study, structure-based models like molecular docking, MM-GBSA, Qikprop, induced fit docking, simulated molecular dynamics (MD), and thermal MM-GBSA were used to identify the phytochemicals from the zinc 15 database, which may inhibit PI3K and mTOR. After docking the phytochemicals with PI3K (PDB 4FA6), ten ligands based on the docking score were selected, among which salvianolic acid C had the highest docking score. Hence, salvianolic acid A was also docked. All the ligands taken showed a binding energy of greater than - 30 kcal/mol. The predicted ADME showed that the ligands have druggable properties. By performing MD of the top five ligands and salvianolic acid A, it was found that ZINC000059728582, ZINC000257545754, ZINC000253532301, and salvianolic acid A form a stable complex with PI3K protein, among which ZINC000014690026 showed interaction with Val 882 for more than 89% of the time. Salvianolic acid A is already proven to suppress tumor growth in acute myeloid leukemia by inhibiting PI3K/AKT pathway, but the exact protein target is unknown. Therefore, the present study identifies new molecules and provides evidence for salvianolic acid A for dual inhibition. Further experiments must be performed both in vitro and in vivo to support the predictions of these computational tools.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Feminino , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ligantes , Serina-Treonina Quinases TOR , Neoplasias da Mama/metabolismo , Compostos Fitoquímicos/farmacologia
5.
Phytother Res ; 37(10): 4540-4556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337901

RESUMO

Myofibroblasts activation intensively contributes to cardiac fibrosis with undefined mechanism. Salvianolic acid A (SAA) is a phenolic component derived from Salvia miltiorrhiza with antifibrotic potency. This study aimed to interrogate the inhibitory effects and underlying mechanism of SAA on myofibroblasts activation and cardiac fibrosis. Antifibrotic effects of SAA were evaluated in mouse myocardial infarction (MI) model and in vitro myofibroblasts activation model. Metabolic regulatory effects and mechanism of SAA were determined using bioenergetic analysis and cross-validated by multiple metabolic inhibitors and siRNA or plasmid targeting Ldha. Finally, Akt/GSK-3ß-related upstream regulatory mechanisms were investigated by immunoblot, q-PCR, and cross-validated by specific inhibitors. SAA inhibited cardiac fibroblasts-to-myofibroblasts transition, suppressed collage matrix proteins expression, and effectively attenuated MI-induced collagen deposition and cardiac fibrosis. SAA attenuated myofibroblasts activation and cardiac fibrosis by inhibiting LDHA-driven abnormal aerobic glycolysis. Mechanistically, SAA inhibited Akt/GSK-3ß axis and downregulated HIF-1α expression by promoting its degradation via a noncanonical route, and therefore restrained HIF-1α-triggered Ldha gene expression. SAA is an effective component for treating cardiac fibrosis by diminishing LDHA-driven glycolysis during myofibroblasts activation. Targeting metabolism of myofibroblasts might occupy a potential therapeutic strategy for cardiac fibrosis.


Assuntos
Infarto do Miocárdio , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Miofibroblastos , Transdução de Sinais , Fibrose , Modelos Animais de Doenças , Glicólise
6.
Drug Chem Toxicol ; 46(2): 304-313, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35057680

RESUMO

Salvianolic acid A (SA-A), a water-soluble compound extracted from traditional Chinese herb Radix Salvia miltiorrhiza, has anti-fibrotic effects on carbon tetrachloride (CCl4)-induced liver fibrosis. However, the underlying molecular mechanism remains unclear. Thus, this study aimed to elucidate the molecular mechanism underlying the anti-fibrotic effects of SA-A on CCl4-induced liver fibrosis in mice. All mice (except control group) were intraperitoneally administered CCl4 dissolved in peanut oil to induce liver fibrosis. Treatment groups were then gavaged with SA-A (20 or 40 mg/kg). The liver function index; liver fibrosis index; and superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were determined. Furthermore, histopathological changes in liver tissues were observed via hematoxylin-eosin and Masson's trichrome staining. The expression of α-smooth muscle actin (α-SMA) and collagen I was detected using immunofluorescence, and the mRNA levels of inflammatory factors were determined using quantitative polymerase chain reaction. Finally, western blotting and immunofluorescence were used to determine the expression levels of proteins related to Nrf2/HO-1, NF-κB/IκBα, p38 MAPK, and JAK1/STAT3 signaling pathways. The results showed that SA-A could ameliorate CCl4-induced liver injury and liver fibrosis, improve morphology, and alleviate collagen deposition in the fibrotic liver. Moreover, SA-A could regulate the Nrf2/HO-1, NF-κB/IκBα, p38 MAPK, and JAK1/STAT3 signaling pathways; increase the levels of SOD and GSH-Px; and decrease MDA level in the fibrotic liver. Collectively, our study findings indicate that SA-A is effective in preventing liver fibrosis in mice by inhibiting inflammation and oxidative stress via regulating the Nrf2/HO-1, NF-κB/IκBα, p38 MAPK, and JAK1/STAT3 signaling pathways.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Inibidor de NF-kappaB alfa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Fígado , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Tetracloreto de Carbono/toxicidade
7.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446905

RESUMO

Due to its success in treating cardio-cerebrovascular illnesses, salvianolic acid A (SAA) from Salvia miltiorrhiza is of major importance for effective acquisition. For the adsorption of salvianolic acid, cationic polyelectrolytes, and amino-terminated silane intercalated with phenylboronic-acid-functionalized montmorillonites, known as phenylboronic-acid-functionalized montmorillonites with PEI (PMP) and phenylboronic-acid-functionalized montmorillonites with KH550 (PMK), respectively, were produced. In this paper, detailed comparisons of the SAA adsorption performance and morphology of two adsorbents were performed. PMP showed a higher adsorption efficiency (>88%) over a wide pH range. PMK showed less pH-dependent SAA adsorption with a faster adsorption kinetic fitting in a pseudo-second-order model. For both PMP and PMK, the SAA adsorption processes were endothermic. Additionally, it was clearer how temperature affected PMP adsorption. PMK has a higher adsorption selectivity. This study demonstrates how the type of intercalator can be seen to have an impact on adsorption behavior through various structural variations and offers an alternative suggestion for establishing a dependable method for the synthesis of functional montmorillonite from the intercalator's perspective.


Assuntos
Bentonita , Substâncias Intercalantes , Bentonita/química , Adsorção , Indicadores e Reagentes
8.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110864

RESUMO

Salvianolic acid A (SAA) is one of the major components in Salvia miltiorrhiza Bge., with various pharmacological activities, and is likely to be a promising agent for the treatment of kidney diseases. The purpose of this study was to explore the protective effect and mechanisms of SAA on kidney disease. In this study, the improvement effects of SAA (10, 20, 40 mg/kg, i.g.) on kidney injury rats were investigated by detecting the levels of KIM-1, NGAL in serum and UP in the urine of AKI model rats established with gentamicin, as well as the levels of SCr and UREA in serum and IL-6, IL-12, MDA and T-SOD in the kidneys of CKD model rats established with 5/6 nephrectomy. HE and Masson staining were used to observe the histopathological changes in the kidney. Network pharmacology and Western blotting were used to explore the mechanism of SAA in improving kidney injury. The results showed that SAA improved kidney function in kidney injury rats by reducing the kidney index and pathological injury by HE and Masson staining, reducing the levels of KIM-1, NGAL and UP in AKI rats and UREA, SCr and UP in CKD rats, as well as exerting anti-inflammatory and anti-oxidative stress effects by inhibiting the release of IL-6 and IL-12, reducing MDA and increasing T-SOD. Western blotting results showed that SAA significantly reduced the phosphorylation levels of ERK1/2, p38, JNK and smad2/3, and the expression of TLR-4 and smad7. In conclusion, SAA plays a significant role in improving kidney injury in rats and the mechanism may be achieved by regulating the MAPKs and TGF-ß1/smads signaling pathways.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Interleucina-6/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/farmacologia , Rim/metabolismo , Transdução de Sinais , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Interleucina-12/metabolismo , Ureia/farmacologia , Superóxido Dismutase/metabolismo
9.
Pharmacol Res ; 175: 105989, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800628

RESUMO

Chronic cerebral ischemia (CCI) refers to long-term hypoperfusion of cerebral blood flow with the main clinical manifestations of progressive cognitive impairment. The pathological mechanism of CCI is complex, and there is a lack of effective treatments. Salvianolic acid A (SalA) is a neuroprotective extract of Salvia miltiorrhiza with the effects of anti-inflammation and anti-apoptosis. In this study, the effect of SalA on cognitive function and Drd2/Cryab/NF-κB signaling pathway in rats with CCI was investigated. Morris water maze and open field test were used to observe the effects of SalA on the cognitive function of CCI rats. The pathological changes in the brain were observed by HE, Nissl, and LFB staining. TUNEL staining, enzyme-linked immunosorbent assay, and western blot analysis were used to detect the inflammatory and apoptosis in the cortex and hippocampus. The expression of Drd2/Cryab/NF-κB pathway-related molecules and Drd2 localization were detected by western blotting and dual immunofluorescence, respectively. SH-SY5Y cells were exposed to chronic hypoglycemic and hypoxic injury in vitro, and Drd2 inhibitor haloperidol was used to verify the involved pathway. The results showed that SalA could improve the cognitive function of CCI rats, reduce pathological damage of cortex and hippocampus, inhibit neuroinflammation and apoptosis, and suppress the activation of NF-κB by regulating Drd2/Cryab pathway. And SalA inhibited NF-κB activation and nuclear translocation in SH-SY5Y cells by upregulating Drd2/Cryab pathway, which was reversed by haloperidol interference. In conclusion, SalA could relieve CCI-induced cognitive impairment in rats, at least partly through the Drd2/Cryab/NF-κB pathway.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Ácidos Cafeicos/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Lactatos/uso terapêutico , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Ácidos Cafeicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doença Crônica , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Cristalinas/metabolismo , Glucose/metabolismo , Humanos , Lactatos/farmacologia , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Fármacos Neuroprotetores/farmacologia , Ratos Wistar , Receptores de Dopamina D2/metabolismo
10.
Acta Pharmacol Sin ; 43(9): 2212-2225, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35217812

RESUMO

Stroke is the major cause of death and disability worldwide. Most stroke patients who survive in the acute phase of ischemia display various extents of neurological deficits. In order to improve the prognosis of ischemic stroke, promoting endogenous neurogenesis has attracted great attention. Salvianolic acid A (SAA) has shown neuroprotective effects against ischemic diseases. In the present study, we investigated the neurogenesis effects of SAA in ischemic stroke rats, and explored the underlying mechanisms. An autologous thrombus stroke model was established by electrocoagulation. The rats were administered SAA (10 mg/kg, ig) or a positive drug edaravone (5 mg/kg, iv) once a day for 14 days. We showed that SAA administration significantly decreased infarction volume and vascular embolism, and ameliorated pathological injury in the hippocampus and striatum as well as the neurological deficits as compared with the model rats. Furthermore, we found that SAA administration significantly promoted neural stem/progenitor cells (NSPCs) proliferation, migration and differentiation into neurons, enhanced axonal regeneration and diminished neuronal apoptosis around the ipsilateral subventricular zone (SVZ), resulting in restored neural density and reconstructed neural circuits in the ischemic striatum. Moreover, we revealed that SAA-induced neurogenesis was associated to activating Wnt3a/GSK3ß/ß-catenin signaling pathway and downstream target genes in the hippocampus and striatum. Edaravone exerted equivalent inhibition on neuronal apoptosis in the SVZ, as SAA, but edaravone-induced neurogenesis was weaker than that of SAA. Taken together, our results demonstrate that long-term administration of SAA improves neurological function through enhancing endogenous neurogenesis and inhibiting neuronal apoptosis in ischemic stroke rats via activating Wnt3a/GSK3ß/ß-catenin signaling pathway. SAA may be a potential therapeutic drug to promote neurogenesis after stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Ácidos Cafeicos , Edaravone/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Lactatos , Neurogênese , Ratos , Transdução de Sinais , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
11.
J Appl Toxicol ; 42(12): 1978-1985, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857334

RESUMO

The clinical use of clozapine (CLZ), an atypical antipsychotic drug, was affected by side effects, such as cardiotoxicity. We selected normally developing zebrafish embryos to explore the antagonism of salvianolic acid A (SAA) against clozapine-induced cardiotoxicity. Embryos were treated with CLZ and SAA, and zebrafish phenotypes were observed at 24 h, 48 h, 72 h, and 96 h after treatment. The observed phenotypes included heart shape, heart rate, and venous sinus-arterial bulb (SV-BA) interval. Real-time quantitative PCR was used to detect changes in the expression of genes involved in heart inflammation, oxidative stress, and apoptosis. The results showed that SAA relieved pericardial edema, increased heart rate, and reduced the SV-BA interval. The PCR results also showed that when the zebrafish embryos were incubated with SAA and CLZ for 96 h, the expression of il-1b and nfkb2 were significantly downregulated, the expression of sod1 and cat were significantly upregulated, and the expressions of mcl1a and mcl1b were significantly downregulated. In summary, SAA can antagonize clozapine-induced cardiotoxicity.


Assuntos
Clozapina , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Clozapina/toxicidade , Clozapina/metabolismo , Cardiotoxicidade , Embrião não Mamífero
12.
Molecules ; 27(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268683

RESUMO

The effective treatment of cervical intraepithelial neoplasia (CIN) can prevent cervical cancer. Salvia miltiorrhiza is a medicinal and health-promoting plant. To identify a potential treatment for CIN, the effect of S. miltiorrhiza extract and its active components on immortalized cervical epithelial cells was studied in vitro. The H8 cell was used as a CIN model. We found that S. miltiorrhiza extract effectively inhibited H8 cells through the CCK8 method. An HPLC-MS analysis revealed that S. miltiorrhiza extract contained salvianolic acid H, salvianolic acid A, salvianolic acid B, monomethyl lithospermate, 9‴-methyl lithospermate B, and 9‴-methyl lithospermate B/isomer. Salvianolic acid A had the best inhibitory effect on H8 cells with an IC50 value of 5.74 ± 0.63 µM. We also found that the combination of salvianolic acid A and oxysophoridine had a synergistic inhibitory effect on H8 cells at molar ratios of 4:1, 2:1, 1:1, 1:2, and 1:4, with salvianolic acid A/oxysophoridine = 1:2 having the best synergistic effect. Using Hoechst33342, flow cytometry, and Western blotting analysis, we found that the combination of salvianolic acid A and oxysophoridine can induce programmed apoptosis of H8 cells and block the cell cycle in the G2/M phase, which was correlated with decreased cyclinB1 and CDK1 protein levels. In conclusion, S. miltiorrhiza extract can inhibit the growth of H8 cells, and the combination of salvianolic acid A (its active component) and oxysophoridine has a synergistic inhibitory effect on H8 cells and may be a potential treatment for cervical intraepithelial neoplasia.


Assuntos
Salvia miltiorrhiza
13.
J Med Virol ; 93(5): 3143-3151, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33580518

RESUMO

Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2, 2019-nCoV])-induced disease, COVID-19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti-coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit-8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin-converting enzyme 2) high-expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 µM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019-nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor-binding domain (RBD) of the 2019-nCoV with a binding constant (KD ) of (3.82 ± 0.43) e-6 M, (5.15 ± 0.64)e-7 M, and (2.19 ± 0.14)e-6 M; and bind to ACE2 with KD (4.08 ± 0.61)e-7 M, (2.95 ± 0.78)e-7 M, and (7.32 ± 0.42)e-7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019-nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 µM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019-nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019-nCoV spike protein and ACE2 protein.


Assuntos
Alcenos/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Benzofuranos/farmacologia , Ácidos Cafeicos/farmacologia , Lactatos/farmacologia , Polifenóis/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Alcenos/química , Enzima de Conversão de Angiotensina 2/química , Benzofuranos/química , Ácidos Cafeicos/química , Sobrevivência Celular , Células HEK293 , Humanos , Lactatos/química , Estrutura Molecular , Polifenóis/química , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus , Tratamento Farmacológico da COVID-19
14.
Acta Pharmacol Sin ; 42(3): 370-381, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33303991

RESUMO

Stroke is an acute cerebrovascular disease caused by ruptured or blocked blood vessels. For the prevention of ischemic stroke, the coagulation state of blood and cerebrovascular protection should be considered. Our previous study has shown that salvianolic acid A (SAA), which is a water-soluble component from the root of Salvia Miltiorrhiza Bge, prevents thrombosis with a mild inhibitory effect on platelet aggregation. In this study we investigated the preventive effects of SAA on cerebrovascular endothelial injury caused by ischemia in vivo and oxygen-glucose deprivation (OGD) in vitro, and explored the underlying mechanisms. An autologous thrombus stroke model was established in SD rats by electrocoagulation. SAA (10 mg/kg) was orally administered twice a day for 5 days before the operation. The rats were sacrificed at 24 h after the operation. We showed that pretreatment with SAA significantly improved the neurological deficits, intracerebral hemorrhage, BBB disruption, and vascular endothelial dysfunction as compared with model group. In human brain microvascular endothelial cells (HBMECs), pretreatment with SAA (10 µM) significantly inhibited OGD-induced cell viability reduction and degradation of tight junction proteins (ZO-1, occludin, claudin-5). Furthermore, we found that SAA inhibited the upregulation of Src signaling pathway in vivo and vitro and reversed the increased expression of matrix metalloproteinases (MMPs) after ischemic stroke. In conclusion, our results suggest that SAA protects cerebrovascular endothelial cells against ischemia and OGD injury via suppressing Src signaling pathway. These findings show that pretreatment with SAA is a potential therapeutic strategy for the prevention of ischemic stroke.


Assuntos
Ácidos Cafeicos/uso terapêutico , Endotélio Vascular/efeitos dos fármacos , AVC Isquêmico/prevenção & controle , Lactatos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Hemorragia Cerebral/prevenção & controle , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Ratos Sprague-Dawley , Junções Íntimas/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores
15.
J Nanobiotechnology ; 19(1): 196, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215269

RESUMO

BACKGROUND: The development of alternative anti-angiogenesis therapy for choroidal neovascularization (CNV) remains a great challenge. Nanoparticle systems have emerged as a new form of drug delivery in ocular diseases. Here, we report the construction and characterization of arginine-glycine-aspartic acid (RGD)-conjugated polyethyleneimine (PEI) as a vehicle to load antioxidant salvianolic acid A (SAA) for targeted anti-angiogenesis therapy of CNV. In this study, PEI was consecutively modified with polyethylene glycol (PEG) conjugated RGD segments, 3-(4'-hydroxyphenyl) propionic acid-Osu (HPAO), and fluorescein isothiocyanate (FI), followed by acetylation of the remaining PEI surface amines to generate the multifunctional PEI vehicle PEI.NHAc-FI-HPAO-(PEG-RGD) (for short, RGD-PEI). The formed RGD-PEI was utilized as an effective vehicle platform to load SAA. RESULTS: We showed that RGD-PEI/SAA complexes displayed desirable water dispersibility, low cytotoxicity, and sustainable release of SAA under different pH conditions. It could be specifically taken up by retinal pigment epithelium (RPE) cells which highly expressed ɑvß5 integrin receptors in vitro and selectively accumulated in CNV lesions in vivo. Moreover, the complexes displayed specific therapeutic efficacy in a mouse model of laser induced CNV, and the slow elimination of the complexes in the vitreous cavity was verified by SPECT imaging after 131I radiolabeling. The histological examinations further confirmed the biocompatibility of RGD-PEI/SAA. CONCLUSIONS: The results suggest that the designed RGD-PEI/SAA complexes may be a potential alternative anti-angiogenesis therapy for posterior ocular neovascular diseases.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neovascularização de Coroide/tratamento farmacológico , Nanopartículas Multifuncionais/química , Oligopeptídeos/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Ácidos Cafeicos , Linhagem Celular Tumoral , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lactatos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoimina/química , Inibidores da Bomba de Prótons/química , Inibidores da Bomba de Prótons/farmacologia , Cicatrização/efeitos dos fármacos
16.
Clin Exp Pharmacol Physiol ; 48(4): 508-514, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33529404

RESUMO

Vasculogenic mimicry (VM) is associated with aggressive cancer cells. Salvianolic acid A (Sal-A), an antioxidant and anti-inflammatory agent, has bioactive properties from Salvia miltiorrhiza Bunge. Current investigation aspired to explore the activity of Sal-A in the VM formation of non-small cell lung cancer (NSCLC) and the mechanism underling this function. The CCK8, the scratch and boyden chemotaxis assay were presented to describe NSCLC cells viability, migration and invasion capabilities, respectively. The protein expression was verified by western blotting. In this report, Sal-A caused a reduction in viability, metastasis and capillaries structure formation of NSCLC cells. Additionally, Sal-A markedly prevented the key VM related proteins, containing EphA2, VE-cadherin and MMP2. Besides, Sal-A significantly diminished p-PI3K, p-Akt and p-mTOR level in NSCLC cells. More importantly, SC79 pretreatment reversed Sal-A inhibits NSCLC cells viability, metastasis and VM formation. These data exhibit that Sal-A could block VM network formation in NSCLC cells through modulating the PI3K/Akt/mTOR signalling pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Neoplasias Pulmonares , Transdução de Sinais
17.
Drug Dev Res ; 82(1): 108-114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32780460

RESUMO

E-DRS is a novel salvianolic acid A (SAA) analog, which was synthesized from resveratrol (RES) and methyldopate. Its structure is similar to that of SAA, but the 3',4'-dihydroxy-trans-stilbene group and the ester structure in SAA were replaced by the RES structure and an amine group, respectively. E-DRS scavenged free oxygen radicals effectively, including superoxide anion (ascorbic acid > E-DRS > SAA ≥ rutin > RES) and DPPH radical (rutin > E-DRS ≥ ascorbic acid > SAA > RES), and exhibited powerful total antioxidant capacity (ascorbic acid > E-DRS > SAA ≥ rutin > RES) in vitro. Furthermore, oral administration of E-DRS dose-dependently and significantly decreased CCl4 -induced oxidative stress in mice as indicated by the decreased content of hepatic malondialdehyde (MDA). In addition, oral administration of E-DRS also increased the content of nonenzymatic antioxidant glutathione (GSH) and the activity of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) in the liver of mice. All these results demonstrated that E-DRS had good antioxidant activities both in vitro and in vivo, and could be a potential antioxidant agent after further optimization and evaluation.


Assuntos
Antioxidantes/química , Antioxidantes/uso terapêutico , Ácidos Cafeicos/química , Ácidos Cafeicos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Lactatos/química , Lactatos/uso terapêutico , Animais , Compostos de Bifenilo/química , Tetracloreto de Carbono , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Picratos/química , Resveratrol/química , Superóxido Dismutase/metabolismo , Superóxidos/química
18.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2276-2286, 2021 May.
Artigo em Zh | MEDLINE | ID: mdl-34047131

RESUMO

The metabolites of salvianolic acid A and salvianolic acid B in rats were analyzed and compared by ultra-high-perfor-mance liquid chromatography with linear ion trap-orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS). After the rats were administrated by gavage, plasma at different time points and urine within 24 hours were collected to be treated by solid phase extraction(SPE), then they were gradient eluted by Acquity UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) and 0.1% formic acid solution(A)-acetonitrile(B) mobile phase system, and finally all biological samples of rats were analyzed under negative ion scanning mode. By obtaining the accurate relative molecular mass and multi-level mass spectrometry information of metabolites, combined with the characteristic cleavage law of the reference standard and literature reports, a total of 30 metabolites, including salvianolic acid A and B, were identified. Among them, there were 24 metabolites derived from salvianolic acid A, with the main metabolic pathways including ester bond cleavage, dehydroxylation, decarboxylation, hydrogenation, methylation, hydroxylation, sulfonation, glucuronidation, and their multiple reactions. There were 15 metabolites of salvianolic acid B, and the main biotransformation pathways were five-membered ring cracking, ester bond cleavage, decarboxylation, dehydroxylation, hydrogenation, methylation, sulfonation, glucuronidation, and their compound reactions. In this study, the cross-metabolic profile of salvianolic acid A and B was elucidated completely, which would provide reference for further studies on the basis of pharmacodynamic substances and the exploration of pharmacological mechanism.


Assuntos
Tecnologia , Animais , Benzofuranos , Ácidos Cafeicos , Cromatografia Líquida de Alta Pressão , Lactatos , Espectrometria de Massas , Ratos
19.
Pharmacol Res ; 159: 104963, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32497719

RESUMO

Thrombotic events act as a critical factor that interferes with Cardiovascular Diseases (CVDs), and antithrombotic herbal medicine is a long-standing controversial issue. Although a dispute is involved in their clinical application, all parties unanimously agree that herbal products have been widely used in folk medicine, and their interactions with conventional drugs are of high concern. This study aims to investigate how antithrombotic herbal medicines interact with Western cardiovascular drugs on the molecular level by taking an example of the most frequently used herbal pair, Danshen-Chuanxiong (DS-CX), and to discover more scientific evidence on their potential herb-drug interactions. Network pharmacology (NP), as an analytical approach of a complex system, is used to visualize and compare target profiles of DS-CX and Western cardiovascular drugs, which can be applied to predict common herb-drug targets and to construct a solid context for discussing herb-drug interactions. These interactions are further validated by in vitro assays, while in vivo zebrafish model employed for evaluating an overall pharmacological efficacy of herbal pairs in specific combination ratios. The study finds that DS could react directly to the Western cardiovascular drug targets relevant to antithrombotic pathways (i.e., thrombin, coagulation factor Xa and cyclooxygenase-1), whereas CX could not react directly and can synergistically affect antithrombotic effects with DS in specific combination ratios. Moreover, it is indicated that DS-CX may generate wide biological functions by a complicated mechanism of "neuro-immune-metabolism/endocrine" (NIM), which can further cause multiple direct and indirect interactions with Western cardiovascular drugs. From the clinical perspective, herb-drug interactions should be given high attention, especially when multiple herbs are used simultaneously.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fármacos Cardiovasculares/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrinolíticos/uso terapêutico , Interações Ervas-Drogas , Medicina Tradicional Chinesa , Trombose/tratamento farmacológico , Animais , Fármacos Cardiovasculares/efeitos adversos , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Fibrinolíticos/efeitos adversos , Humanos , Ligusticum , Salvia miltiorrhiza , Biologia de Sistemas , Trombose/sangue
20.
BMC Cardiovasc Disord ; 20(1): 15, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931718

RESUMO

BACKGROUND: Platelets in patients with type 2 diabetes mellitus (DM2) are characterized by increased activation and aggregation, which tends to be associated with a high morbidity and mortality due to cardiovascular disease (CVD). Moreover, a large proportion of DM2 patients show an inadequate response to standard antiplatelet treatments, contributing to recurrent cardiovascular events. In our previous study, we indicated that Salvianolic acid A (SAA) presents an antiplatelet effect in healthy volunteers. However, whether it can inhibit "activated platelets" with a pathologic status has not been explored. Therefore, this study was designed to investigate the antiplatelet effect of SAA and its diabetic complication-related difference in DM2. METHODS: Forty patients diagnosed with DM2 from January 2018 to April 2018 were recruited. Fibrinogen-binding (PAC-1) and P-selectin (CD62p) flow cytometry reagents were measured under resting and stimulated conditions by flow cytometry, while agonist-induced platelet aggregation was conducted by light transmission aggregometry. Before all these measurements were conducted, all platelet samples were preincubated with a vehicle or SAA for 10 min. Additionally, the diabetic complication-related difference in the antiplatelet effect of SAA was further studied in enrolled patients. RESULTS: The expressions of PAC-1 and CD62p were elevated in DM2, as well as the maximal platelet aggregation. In addition, SAA decreased the expressions of PAC-1 and CD62p, which were enhanced by ADP and thrombin (all P < 0.01). It also reduced the platelet aggregation induced by ADP (P < 0.001) and thrombin (P < 0.05). Comparing the antiplatelet effect of SAA on DM2, with and without diabetic complications, no statistically significant difference was found (all P > 0.05). CONCLUSIONS: The present study demonstrated that SAA can inhibit platelet activation and aggregation in patients with DM2, and the inhibition did not abate for the existence of diabetic complications.


Assuntos
Plaquetas/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Lactatos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Idoso , Biomarcadores/sangue , Plaquetas/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Selectina-P/sangue , Inibidores da Agregação Plaquetária/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA