Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurol ; 31(2): e16111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903090

RESUMO

BACKGROUND AND PURPOSE: Cerebral infarction in the basal ganglia may cause secondary and delayed neuronal degeneration in the substantia nigra (SN). However, the clinical significance of SN degeneration remains poorly understood. METHODS: This retrospective observational study included patients with acute ischemic stroke in the basal ganglia on initial diffusion-weighted imaging who underwent follow-up diffusion-weighted imaging between 4 and 30 days after symptom onset. SN degeneration was defined as a hyperintensity lesion in the SN observed on diffusion-weighted imaging. We compared functional outcomes at 3 months between patients with and without SN degeneration. A poor outcome was defined as a score of 3-6 (functional dependence or death) on the modified Rankin Scale. RESULTS: Of 350 patients with basal ganglia infarction (median age = 74.0 years, 53.7% male), 125 (35.7%) had SN degeneration. The proportion of functional dependence or death was 79.2% (99/125 patients) in patients with SN degeneration, which was significantly higher than that in those without SN degeneration (56.4%, 127/225 patients, p < 0.001). SN degeneration was more frequent in patients with functional dependence or death (99/226 patients, 43.8%) than in those with functional independence (26/124 patients, 21.0%, p < 0.001). Multivariable logistic regression analysis showed a significant association between SN degeneration and functional dependence or death (odds ratio = 2.91, 95% confidence interval = 1.17-7.21, p = 0.021). CONCLUSIONS: The study showed that patients with degeneration of SN were associated with functional dependence or death at 3 months, suggesting that secondary degeneration is a predictor of poor stroke outcomes and a potential therapeutic target.


Assuntos
AVC Isquêmico , Idoso , Feminino , Humanos , Masculino , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/patologia , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/patologia , Imagem de Difusão por Ressonância Magnética , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Estudos Retrospectivos
2.
Brain ; 146(11): 4659-4673, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37366338

RESUMO

The link between white matter hyperintensities (WMH) and cortical thinning is thought to be an important pathway by which WMH contributes to cognitive deficits in cerebral small vessel disease (SVD). However, the mechanism behind this association and the underlying tissue composition abnormalities are unclear. The objective of this study is to determine the association between WMH and cortical thickness, and the in vivo tissue composition abnormalities in the WMH-connected cortical regions. In this cross-sectional study, we included 213 participants with SVD who underwent standardized protocol including multimodal neuroimaging scans and cognitive assessment (i.e. processing speed, executive function and memory). We identified the cortex connected to WMH using probabilistic tractography starting from the WMH and defined the WMH-connected regions at three connectivity levels (low, medium and high connectivity level). We calculated the cortical thickness, myelin and iron of the cortex based on T1-weighted, quantitative R1, R2* and susceptibility maps. We used diffusion-weighted imaging to estimate the mean diffusivity of the connecting white matter tracts. We found that cortical thickness, R1, R2* and susceptibility values in the WMH-connected regions were significantly lower than in the WMH-unconnected regions (all Pcorrected < 0.001). Linear regression analyses showed that higher mean diffusivity of the connecting white matter tracts were related to lower thickness (ß = -0.30, Pcorrected < 0.001), lower R1 (ß = -0.26, Pcorrected = 0.001), lower R2* (ß = -0.32, Pcorrected < 0.001) and lower susceptibility values (ß = -0.39, Pcorrected < 0.001) of WMH-connected cortical regions at high connectivity level. In addition, lower scores on processing speed were significantly related to lower cortical thickness (ß = 0.20, Pcorrected = 0.030), lower R1 values (ß = 0.20, Pcorrected = 0.006), lower R2* values (ß = 0.29, Pcorrected = 0.006) and lower susceptibility values (ß = 0.19, Pcorrected = 0.024) of the WMH-connected regions at high connectivity level, independent of WMH volumes and the cortical measures of WMH-unconnected regions. Together, our study demonstrated that the microstructural integrity of white matter tracts passing through WMH is related to the regional cortical abnormalities as measured by thickness, R1, R2* and susceptibility values in the connected cortical regions. These findings are indicative of cortical thinning, demyelination and iron loss in the cortex, which is most likely through the disruption of the connecting white matter tracts and may contribute to processing speed impairment in SVD, a key clinical feature of SVD. These findings may have implications for finding intervention targets for the treatment of cognitive impairment in SVD by preventing secondary degeneration.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Transtornos Cognitivos , Doenças Desmielinizantes , Substância Branca , Humanos , Afinamento Cortical Cerebral , Estudos Transversais , Substância Branca/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/psicologia , Doenças Desmielinizantes/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
Neurol Sci ; 44(11): 4099-4102, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526798

RESUMO

INTRODUCTION: Secondary neurodegeneration after stroke is a complex phenomenon affecting remote and synaptically linked cerebral areas. The involvement of the substantia nigra in this process has been rarely described in infarcts involving the striatum. METHODS: We are presenting a case of ischemic stroke involving the right striatum due to atrial fibrillation and associated in a few days with the neuroimaging finding of hyperintensity of the ipsilateral substantia nigra and striatonigral tract on T2-fluid attenuated inversion recovery and diffusion-weighted imaging sequences of brain magnetic resonance imaging. This finding was not related to clinical manifestations and substantially disappeared within 3 months from stroke onset. DISCUSSION: The pathophysiology of secondary degeneration of the substantia nigra is poorly understood and it relies on animal models and autoptic studies. The main putative mechanism is not ischemic but excitotoxic with a different role of the internal and external globus pallidus and a different effect on the pars compacta and pars reticularis of the substantia nigra. In animal models, inflammatory mechanisms seem play a role only in the late phase. The main studies on humans were presented in detail. CONCLUSIONS: A better understanding of the secondary degeneration of the substantia nigra has the potentiality to offer a chance for neuroprotection in acute stroke, but further studies are needed.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Corpo Estriado/patologia , AVC Isquêmico/patologia , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Substância Negra/diagnóstico por imagem , Substância Negra/patologia
4.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834873

RESUMO

Optic nerve injury causes secondary degeneration, a sequela that spreads damage from the primary injury to adjacent tissue, through mechanisms such as oxidative stress, apoptosis, and blood-brain barrier (BBB) dysfunction. Oligodendrocyte precursor cells (OPCs), a key component of the BBB and oligodendrogenesis, are vulnerable to oxidative deoxyribonucleic acid (DNA) damage by 3 days post-injury. However, it is unclear whether oxidative damage in OPCs occurs earlier at 1 day post-injury, or whether a critical 'window-of-opportunity' exists for therapeutic intervention. Here, a partial optic nerve transection rat model of secondary degeneration was used with immunohistochemistry to assess BBB dysfunction, oxidative stress, and proliferation in OPCs vulnerable to secondary degeneration. At 1 day post-injury, BBB breach and oxidative DNA damage were observed, alongside increased density of DNA-damaged proliferating cells. DNA-damaged cells underwent apoptosis (cleaved caspase3+), and apoptosis was associated with BBB breach. OPCs experienced DNA damage and apoptosis and were the major proliferating cell type with DNA damage. However, the majority of caspase3+ cells were not OPCs. These results provide novel insights into acute secondary degeneration mechanisms in the optic nerve, highlighting the need to consider early oxidative damage to OPCs in therapeutic efforts to limit degeneration following optic nerve injury.


Assuntos
Células Precursoras de Oligodendrócitos , Traumatismos do Nervo Óptico , Animais , Ratos , Traumatismos do Nervo Óptico/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Nervo Óptico/metabolismo , Estresse Oxidativo/fisiologia , DNA/metabolismo
5.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572341

RESUMO

The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the "core" area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.


Assuntos
Contusões/genética , Matriz Extracelular/metabolismo , Traumatismos da Medula Espinal/genética , Medula Espinal/patologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Adesão Celular/genética , Movimento Celular/genética , Células Cultivadas , Biologia Computacional , Contusões/patologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Receptores de Hialuronatos/genética , Cultura Primária de Células , Ratos , Medula Espinal/citologia , Traumatismos da Medula Espinal/patologia , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-1/genética
6.
J Stroke Cerebrovasc Dis ; 29(7): 104828, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32404284

RESUMO

BACKGROUND: Pathomechanism of secondary degeneration in remote regions after ischemic stroke has not been totally clarified. Contrast-enhanced MRI with injecting Gd-DTPA in cisterna magna (CM) is regarded as an efficient method to measure glymphatic system function in brain. Our research aimed at evaluating glymphatic system changes in secondary degeneration areas by contrast-enhanced MRI. METHODS: Ischemic stroke was induced by left middle cerebral artery occlusion (MCAO) model. A total of 12 Sprague-Dawley rats were randomly divided into three groups: control group with sham operations (n=4), the group of acute phase (1 day after MCAO) (n=4), and the group of subacute phase (7 days after MCAO) (n=4). Contrast-enhanced MRI was performed in 1days or 7days after operations respectively. All rats received an intrathecal injection of Gd-DTPA (2µl/min, totally 20µl) and high-resolution 3D T1-weighted MRI for 6 h. The time course of the signal-to-noise ratio (SNR) in substantia Nigra (SN) and ventral thalamic nucleus (VTN) was evaluated between two hemispheres in all rats. RESULTS: In control group without ischemia, time-to-peak of SNR in SN was earlier than that in VTN. There were no differences of SNR between two hemispheres after intrathecal Gd-DTPA administration. In the group of acute phase, MRI revealed similar time course and time-to-peak of SNR between ipsilateral and contralateral VTN, while a tendency of higher SNR in ipsilateral SN than contralateral SN at 4h, 5h, 6h after Gd-DTPA injection. And time-to-peak of SNR was similar in bilateral SN. In the group of subacute phase, time-to-peak of SNR was similar in bilateral VTN, while longer in ipsilateral SN compared with contralateral side. In addition, SNR in T1WI in ipsilateral was significantly higher than SNR in contralateral SN and VTN at 5h (VTN, P= 0.003; SN, P=0.004) and 6h (VTN, P=0.015; SN, P=0.006) after Gd-DTPA injection. CONCLUSION: Glymphatic system was impaired in ipsilateral SN and VTN after ischemic stroke, which may contribute to neural degeneration.


Assuntos
Meios de Contraste/administração & dosagem , Gadolínio DTPA/administração & dosagem , Sistema Glinfático/diagnóstico por imagem , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Imageamento por Ressonância Magnética , Degeneração Neural , Substância Negra/diagnóstico por imagem , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Sistema Glinfático/patologia , Sistema Glinfático/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Valor Preditivo dos Testes , Ratos Sprague-Dawley , Razão Sinal-Ruído , Substância Negra/patologia , Substância Negra/fisiopatologia , Fatores de Tempo , Núcleos Ventrais do Tálamo/patologia , Núcleos Ventrais do Tálamo/fisiopatologia
7.
Exp Brain Res ; 237(1): 161-171, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30367192

RESUMO

Following neurotrauma, secondary degeneration of neurons and glia adjacent to the injury leads to further functional loss. A combination of ion channel inhibitors (lomerizine + oxATP + YM872) has been shown to be effective at limiting structural and functional loss due to secondary degeneration. Here we assess efficacy of the combination where oxATP is replaced with Brilliant Blue G (BBG), a more clinically applicable P2X7 receptor inhibitor. Partial optic nerve transection was used to model secondary degeneration in adult female rats. Animals were treated with combinations of lomerizine + YM872 + oxATP or lomerizine + YM872 + BBG, delivered via osmotic mini-pump directly to the injury site. Outcomes assessed were Iba1 + and ED1 + microglia and macrophages, oligodendroglial cell numbers, node/paranode structure and visual function using the optokinetic nystagmus test. The lomerizine + BBG + YM872 combination was at least as effective at the tested concentrations as the lomerizine + oxATP + YM872 combination at preserving node/paranode structure and visual function when delivered locally. However, neither ion channel inhibitor combination significantly improved microglial/macrophage nor oligodendroglial numbers compared to vehicle-treated controls. In conclusion, a locally delivered combination of ion channel inhibitors incorporating lomerizine + BBG + YM872 is at least as effective at limiting secondary degeneration following partial injury to the optic nerve as the combination incorporating oxATP.


Assuntos
Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Traumatismos do Nervo Óptico/complicações , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada , Ectodisplasinas/metabolismo , Feminino , Imidazóis/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Degeneração Neural/patologia , Nistagmo Optocinético/efeitos dos fármacos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Piperazinas/uso terapêutico , Quinoxalinas/uso terapêutico , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Corantes de Rosanilina/uso terapêutico , Tubulina (Proteína)/metabolismo
8.
J Neuroinflammation ; 15(1): 201, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29981582

RESUMO

BACKGROUND: Following injury to the central nervous system, increased microglia, secretion of pro- and anti-inflammatory cytokines, and altered blood-brain barrier permeability, a hallmark of degeneration, are observed at and immediately adjacent to the injury site. However, few studies investigate how regions remote from the primary injury could also suffer from inflammation and secondary degeneration. METHODS: Adult female Piebald-Viral-Glaxo (PVG) rats underwent partial transection of the right optic nerve, with normal, age-matched, unoperated animals as controls. Perfusion-fixed brains and right optic nerves were harvested for immunohistochemical assessment of inflammatory markers and blood-brain barrier integrity; fresh-frozen brains were used for multiplex cytokine analysis. RESULTS: Immediately ventral to the optic nerve injury, immunointensity of both the pro-inflammatory biomarker inducible nitric oxide synthase (iNOS) and the anti-inflammatory biomarker arginase-1 (Arg1) increased at 7 days post-injury, with colocalization of iNOS and Arg1 immunoreactivity within individual cells. CD11b+ and CD45+ cells were increased 7 days post-injury, with altered BBB permeability still evident at this time. In the lower and middle optic tract and superior colliculus, IBA1+ resident microglia were first increased at 3 days; ED1+ and CD11b+ cells were first increased in the middle and upper tract and superior colliculus 7 days post-injury. Increased fibrinogen immunoreactivity indicative of altered BBB permeability was first observed in the contralateral upper tract at 3 days and middle tract at 7 days post-injury. Multiplex cytokine analysis of brain homogenates indicated significant increases in the pro-inflammatory cytokines, IL-2 and TNFα, and anti-inflammatory cytokine IL-10 1 day post-injury, decreasing to control levels at 3 days for TNFα and 7 days for IL-2. IL-10 was significantly elevated at 1 and 7 days post-injury with a dip at 3 days post-injury. CONCLUSIONS: Partial injury to the optic nerve induces a complex remote inflammatory response, characterized by rapidly increased pro- and anti-inflammatory cytokines in brain homogenates, increased numbers of IBA1+ cells throughout the visual pathways, and increased CD11b+ and ED1+ inflammatory cells, particularly towards the synaptic terminals. BBB permeability can increase prior to inflammatory cell infiltration, dependent on the brain region.


Assuntos
Barreira Hematoencefálica/patologia , Citocinas/metabolismo , Encefalite/etiologia , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/patologia , Vias Visuais/patologia , Análise de Variância , Animais , Antígenos CD/metabolismo , Barreira Hematoencefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Ectodisplasinas/metabolismo , Encefalite/patologia , Feminino , Fibrinogênio/metabolismo , Lateralidade Funcional , Macrófagos/patologia , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Nervo Óptico/patologia , Ratos , Fatores de Tempo , Vias Visuais/metabolismo
9.
BMC Neurosci ; 18(1): 62, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806920

RESUMO

BACKGROUND: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca2+ channel inhibitor Lomerizine (Lom), the Ca2+ permeable AMPA receptor inhibitor YM872 and the P2X7 receptor inhibitor oxATP. RESULTS: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. CONCLUSIONS: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs.


Assuntos
Canais de Cálcio/metabolismo , Degeneração Neural/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Receptores de AMPA/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Modelos Animais de Doenças , Feminino , Imidazóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Degeneração Neural/patologia , Nistagmo Optocinético/efeitos dos fármacos , Nistagmo Optocinético/fisiologia , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Piperazinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Quinoxalinas/farmacologia , Distribuição Aleatória , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Ratos , Receptores de AMPA/antagonistas & inibidores
10.
J Neurosci ; 35(16): 6517-31, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904802

RESUMO

This study investigated the role of the complement activation fragment C5a in secondary pathology following contusive spinal cord injury (SCI). C5ar(-/-) mice, which lack the signaling receptor for C5a, displayed signs of improved locomotor recovery and reduced inflammation during the first week of SCI compared with wild-type mice. Intriguingly, the early signs of improved recovery in C5ar(-/-) mice deteriorated from day 14 onward, with absence of C5aR ultimately leading to poorer functional outcomes, larger lesion volumes, reduced myelin content, and more widespread inflammation at 35 d SCI. Pharmacological blockade of C5aR with a selective antagonist (C5aR-A) during the first 7 d after SCI improved recovery compared with vehicle-treated mice, and this phenotype was sustained up to 35 d after injury. Consistent with observations made in C5ar(-/-) mice, these improvements were, however, lost if C5aR-A administration was continued into the more chronic phase of SCI. Signaling through the C5a-C5aR axis thus appears injurious in the acute period but serves a protective and/or reparative role in the post-acute phase of SCI. Further experiments in bone marrow chimeric mice suggested that the dual and opposing roles of C5aR on SCI outcomes primarily relate to its expression on CNS-resident cells and not infiltrating leukocytes. Additional in vivo and in vitro studies provided direct evidence that C5aR signaling is required during the postacute phase for astrocyte hyperplasia, hypertrophy, and glial scar formation. Collectively, these findings highlight the complexity of the inflammatory response to SCI and emphasize the importance of optimizing the timing of therapeutic interventions.


Assuntos
Gliose/fisiopatologia , Inflamação/fisiopatologia , Receptor da Anafilatoxina C5a/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Astrócitos/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/fisiologia , Complemento C5a/biossíntese , Feminino , Gliose/complicações , Gliose/tratamento farmacológico , Gliose/patologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/biossíntese , Receptor da Anafilatoxina C5a/genética , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
11.
J Neuroradiol ; 40(3): 198-203, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23428242

RESUMO

BACKGROUND AND PURPOSE: Ultrasmall superparamagnetic iron oxide (USPIO) particles to enhance MRI have been used to study neuroinflammation in vivo. Our purpose was to observe the USPIO-enhanced MR signal alterations in the primary ischemic lesion and ipsilateral substantia nigra after middle cerebral artery occlusion (MCAO) to verify the subsequent sequelae of neuroinflammation seen in the primary ischemic focus and secondary degeneration region. MATERIALS AND METHODS: Sprague-Dawley rats were subjected to transient MCAO. In addition to conventional T2-, T1-weighted imaging, USPIO-enhanced MRI was performed in USPIO-injected stroke rats, while Gd-enhanced imaging was acquired in control stroke rats, on days 3, 6 using a 3-T MR scanner. The MR signal characteristics in the primary ischemic striatum, ipsilateral substantia nigra were noted, compared on histopathological H&E, Prussian blue (PB) staining. RESULTS: After MCAO, USPIO-induced T2 hypointensity changes were observed in the primary ischemic region with BBB impairment at both time points. In the substantia nigra ipsilateral to the primary ischemic lesion, there was no evidence of USPIO accumulation detected by MRI and PB staining, and no BBB leakage reflected by Gd-enhanced imaging on days 3 and 6. CONCLUSION: USPIO-enhanced MR signals have variable characteristics in both primary and remote sites after focal cerebral ischemia. This suggests that the neuroinflammatory response to brain ischemia in the primary ischemic focus and secondary degeneration region have different temporal patterns and pathophysiological mechanisms.


Assuntos
Infarto da Artéria Cerebral Média/patologia , Degeneração Neural/patologia , Substância Negra/patologia , Animais , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley
12.
Cells ; 12(3)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766798

RESUMO

Secondary degeneration is defined as a set of destructive events that damage cells and structures that were initially spared or only peripherally affected by the primary insult, constituting a key factor for functional impairment after traumatic brain injury or stroke. In the present study, we evaluated the patterns of astrocytosis, inflammatory response, axonal damage and oligodendrocytes/myelin impairment in the internal capsule following a focal injection of endothelin-1 (ET-1) into the dorsal striatum. Animals were perfused at 1, 3 and 7 post-lesion days (PLD), and tissue was processed to immunohistochemistry for neutrophils (MBS1), macrophages/microglia (ED1), astrocytes (GFAP), axonal lesion (ßAPP), oligodendrocytes (Tau) and myelin (MBP). A significant number of neutrophils was observed at 1PLD, followed by intense recruitment/activation of macrophages/microglia at 3PLD and astrocytic reaction with a peak at 7PLD. Oligodendrocyte damage was pronounced at 3PLD, remaining at 7PLD. Progressive myelin impairment was observed, with reduction of immunoreactivity at 7PLD. Axonal lesion was also identified, mainly at 7PLD. Our results indicate that acute inflammatory response elicited by the ischemic insult in the striatum can be associated with the axonal impairment and damage of both oligodendrocytes and myelin sheath identified in the internal capsule, which may be related to loss of tissue functionality observed in secondary degeneration.


Assuntos
Gliose , Bainha de Mielina , Animais , Bainha de Mielina/patologia , Gliose/patologia , Cápsula Interna/patologia , Axônios/patologia , Inflamação/patologia
13.
Curr Med Imaging ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031789

RESUMO

INTRODUCTION: We explored the relationship between secondary degeneration of white matter (WM) tracts and motor outcomes after left basal ganglia infarction and investigated alterations in the diffusion indices of WM tracts in distal areas. METHODS: Clinical neurological evaluations were accomplished using the Fugl-Meyer scale (FMS). Then, the fractional anisotropy (FA) of the bilateral superior corona radiata (SCR), cerebral peduncle (CP), corticospinal tracts (CST), and corpus callosum (CC) were measured in all patients and control subjects. RESULTS: Regional-based analysis revealed decreased FA values in the ipsilesional SCR, CP, and CST of the patients, compared to the control subjects at 5- time points. The relative FA (rFA) values of the SCR, CP, and CST decreased progressively with time, the lowest values recorded at 90 days before increasing slightly at 180 days after stroke. Compared to the contralateral areas, the FA values of the ipsilesional SCR and CST areas were significantly decreased (P=0.023), while those of the CP decreased at 180 days (P=0.008). Compared with the values at 7 days, the rFA values of the ipsilesional SCR and CP areas were significantly reduced at 14, 30, and 90 days, while those in the CST area were significantly reduced at 14, 90, and 180 days. The CP rFA value at 7 days correlated positively with the FM scores at 180 days (r=0.469, P=0.037). CONCLUSION: This study provides an objective, comprehensive, and automated protocol for detecting secondary degeneration of WM, which is important in understanding rehabilitation mechanisms after stroke.

14.
Stem Cells Transl Med ; 12(8): 553-568, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37399126

RESUMO

Human embryonic stem cells-derived neural progenitor cells (hESCs-NPCs) transplantation holds great potential to treat stroke. We previously reported that delayed secondary degeneration occurs in the ventroposterior nucleus (VPN) of ipsilateral thalamus after distal branch of middle cerebral artery occlusion (dMCAO) in adult male Sprague-Dawley (SD) rats. In this study, we investigate whether hESCs-NPCs would benefit the neural recovery of the secondary damage in the VPN after focal cerebral infarction. Permanent dMCAO was performed with electrocoagulation. Rats were randomized into Sham, dMCAO groups with or without hESCs-NPCs treatment. HESCs-NPCs were engrafted into the peri-infarct regions of rats at 48 h after dMCAO. The transplanted hESCs-NPCs survive and partially differentiate into mature neurons after dMCAO. Notably, hESCs-NPCs transplantation attenuated secondary damage of ipsilateral VPN and improved neurological functions of rats after dMCAO. Moreover, hESCs-NPCs transplantation significantly enhanced the expression of BDNF and TrkB and their interaction in ipsilateral VPN after dMCAO, which was reversed by the knockdown of TrkB. Transplantated hESCs-NPCs reconstituted thalamocortical connection and promoted the formation of synapses in ipsilateral VPN post-dMCAO. These results suggest that hESCs-NPCs transplantation attenuates secondary damage of ipsilateral thalamus after cortical infarction, possibly through activating BDNF/TrkB pathway, enhancing thalamocortical projection, and promoting synaptic formation. It provides a promising therapeutic strategy for secondary degeneration in the ipsilateral thalamus post-dMCAO.


Assuntos
Células-Tronco Embrionárias , Infarto da Artéria Cerebral Média , Células-Tronco Neurais , Humanos , Células-Tronco Embrionárias/transplante , Animais , Ratos , Ratos Sprague-Dawley , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/terapia , Células-Tronco Neurais/transplante , Diferenciação Celular , Movimento Celular , Transdução de Sinais , Neuroproteção , Tálamo/metabolismo
15.
Neurotrauma Rep ; 3(1): 433-446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337076

RESUMO

Neuronal ryanodine receptors (RyR) release calcium from internal stores and play a key role in synaptic plasticity, learning, and memory. Dysregulation of RyR function contributes to neurodegeneration and negatively impacts neurological recovery after spinal cord injury (SCI). However, the individual role of RyR isoforms and the underlying mechanisms remain poorly understood. To determine whether RyR2 plays a direct role in axonal fate and functional recovery after SCI, we bred Advillin-Cre: tdTomato (Ai9) reporter mice with "floxed" RyR2 mice to directly knock out (KO) RyR2 function in dorsal root ganglion neurons and their spinal projections. Adult 6- to 8-week-old RyR2KO and littermate controls were subjected to a contusive SCI and their dorsal column axons were imaged in vivo using two-photon excitation microscopy. We found that direct RyR2KO in dorsal column primary afferents did not significantly alter secondary axonal degeneration after SCI. We next assessed behavioral recovery after SCI and found that direct RyR2KO in primary afferents worsened open-field locomotor scores (Basso Mouse Scale subscore) compared to littermate controls. However, both TreadScan™ gait analysis and overground kinematic gait analysis tests revealed subtle, but no fundamental, differences in gait patterns between the two groups after SCI. Subsequent removal of spared afferent fibers using a dorsal column crush revealed similar outcomes in both groups. Analysis of primary afferents at the lumbar (L3-L5) level similarly revealed no noticeable differences between groups. Together, our results support a modest contribution of dorsal column primary afferent RyR2 in neurological recovery after SCI.

16.
J Mol Neurosci ; 72(12): 2389-2397, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36441377

RESUMO

Focal cortical infarction leads to secondary degeneration of the ipsilateral hippocampus, which is associated with poststroke cognitive impairment. VX-765 is a potent small-molecule caspase-1 inhibitor that protects against central nervous system diseases. The present study aimed to determine the protective effects of VX-765 on ß-amyloid (Aß) deposition and secondary degeneration in the hippocampus as well as cognitive decline after cortical infarction. Sprague-Dawley rats were used to establish a distal middle cerebral artery occlusion (dMCAO) model and randomly divided into the vehicle and VX-765 groups. Rats in the vehicle and VX-765 groups, respectively, were subcutaneously injected with VX-765 (50 mg/kg/d) and an isopycnic vehicle once a day for 28 days, starting 1 h after dMCAO. At the end of this 28-day period, cognitive impairment was evaluated with the Morris water maze, and secondary hippocampal damage was evaluated with Nissl staining and immunostaining methods. Neuronal damage and pyroptosis were detected by TUNEL and immunoblotting. The results revealed that VX-765 treatment ameliorated poststroke cognitive dysfunction after ischemia. VX-765 reduced Aß deposition, neuronal loss, and glial activation compared with the vehicle control. In addition, VX-765 treatment increased BDNF levels and normalized synaptophysin protein levels in the hippocampus after cortical infarction. Notably, VX-765 treatment significantly reduced the expression of the pyroptosis-related molecules caspase-1, NLRP3, apoptosis-associated speck-like protein (ASC), gasdermin D, IL-1ß, and IL-18. Additionally, VX-765 significantly decreased the numbers of TUNEL-positive cells and the levels of Bax and cleaved caspase-3 (cC3) and enhanced the levels of Bcl-2 and Bcl-xl after ischemia. Inflammatory pathways, such as the NF-κB and mitogen-activated protein kinase (MAPK) pathways, were inhibited by VX-765 treatment after ischemia. These findings revealed that VX-765 reduced Aß deposition, pyroptosis, and apoptosis in the ipsilateral hippocampus, which may be associated with reduced secondary degeneration and cognitive decline following focal cortical infarction.


Assuntos
Disfunção Cognitiva , Hipocampo , Animais , Ratos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Ratos Sprague-Dawley
17.
J Neurotrauma ; 39(3-4): 311-319, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913747

RESUMO

Ryanodine receptors (RyRs) mediate calcium release from calcium stores and have been implicated in axonal degeneration. Here, we use an intravital imaging approach to determine axonal fate after spinal cord injury (SCI) in real-time and assess the efficacy of ryanodine receptor inhibition as a potential therapeutic approach to prevent intra-axonal calcium-mediated axonal degeneration. Adult 6-8 week old Thy1YFP transgenic mice that express YFP in axons, as well as triple transgenic Avil-Cre:Ai9:Ai95 mice that express the genetically-encoded calcium indicator GCaMP6f in tdTomato positive axons, were used to visualize axons and calcium changes in axons, respectively. Mice received a mild SCI at the T12 level of the spinal cord. Ryanodine, a RyR antagonist, was given at a concentration of 50 µM intrathecally within 15 min of SCI or delayed 3 h after injury and compared with vehicle-treated mice. RyR inhibition within 15 min of SCI significantly reduced axonal spheroid formation from 1 h to 24 h after SCI and increased axonal survival compared with vehicle controls. Delayed ryanodine treatment increased axonal survival and reduced intra-axonal calcium levels at 24 h after SCI but had no effect on axonal spheroid formation. Together, our results support a role for RyR in secondary axonal degeneration.


Assuntos
Axônios/patologia , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , Rianodina/antagonistas & inibidores , Traumatismos da Medula Espinal , Medula Espinal/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Microscopia Intravital , Camundongos , Camundongos Transgênicos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia
18.
Neuroimage Clin ; 33: 102945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35124524

RESUMO

Secondary white matter degeneration is a common occurrence after ischemic stroke, as identified by Diffusion Tensor Imaging (DTI). However, despite recent advances, the time course of the process is not completely understood. The primary aim of this study was to assess secondary degeneration using an approach whereby we create a patient-specific model of damaged fibers based on the volumetric characteristics of lesions. We also examined the effects of secondary degeneration along the modelled streamlines at different distances from the primary infarction using DTI. Eleven patients who presented with upper limb motor deficits at the time of a first-ever ischemic stroke were included. They underwent scanning at weeks 6 and 29 post-stroke. The fractional anisotropy (FA), mean diffusivity (MD), primary eigenvalue (λ1), and transverse eigenvalue (λ23) were measured. Using regions of interest based on the simulation output, the differences between the modelled fibers and matched contralateral areas were analyzed. The longitudinal change between the two time points and across five distances from the primary lesion was also assessed using the ratios of diffusion quantities (rFA, rMD, rλ1, and rλ23) between the ipsilesional and contralesional hemisphere. At week 6 post-stroke, significantly decreased λ1 was found along the ipsilesional corticospinal tract (CST) with a trend towards lower FA, reduced MD and λ23. At week 29 post-stroke, significantly decreased FA was shown relative to the non-lesioned side, with a trend towards lower λ1, unchanged MD, and higher λ23. Along the ipsilesional tract, the rFA diminished, whereas the rMD, rλ1, and rλ23 significantly increased over time. No significant variations in the time progressive effect with distance were demonstrated. The findings support previously described mechanisms of secondary degeneration and suggest that it spreads along the entire length of a damaged tract. Future investigations using higher-order tractography techniques can further explain the intravoxel alterations caused by ischemic injury.


Assuntos
AVC Isquêmico , Substância Branca , Anisotropia , Imagem de Tensor de Difusão/métodos , Humanos , AVC Isquêmico/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
19.
Nutrients ; 13(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34959962

RESUMO

Age-related macular degeneration (AMD) is one of the major causes of blindness in elderly populations. However, the dry form of AMD has lack of effective treatments. The fruits of Aronia melanocarpa are rich in anthocyanins. In this study, the protective effects of aronia fruit extract on rat retina were investigated using a NaIO3-induced dry AMD model. Full-field electroretinograms (ERGs) showed that b-wave amplitudes were significantly decreased and the retina structures were disordered in the model. The extract treatment alleviated the injuries. The b-wave amplitudes increased 61.5% in Scotopic 0.01ERG, 122.0% in Photopic 3.0ERG, and 106.8% in Photopic 3.0 flicker; the retina structure disorder was improved with the thickness of outer nuclear layer increasing by 44.1%; and the malonaldehyde level was significantly reduced in extract-treated rat retinas compared to the model. The proteomics analysis showed the expressions of five crystallin proteins, α-crystallin A chain, ß-crystallin B2, ß-crystallin A3, α-crystallin B chain, and γ-crystallin S, which protect retina ganglion cells, were increased by 7.38-, 7.74-, 15.30-, 4.86-, and 9.14-fold, respectively, in the extract treatment compared to the control, which was also confirmed by immunoblotting. The results suggest that aronia fruit extract, probably due to its anthocyanins, could protect the rat retina by alleviating oxidative damages and by upregulating the crystallin proteins to protect its nerve system.


Assuntos
Antocianinas/farmacologia , Antocianinas/uso terapêutico , Frutas/química , Iodatos/efeitos adversos , Degeneração Macular/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Photinia/química , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Retina/efeitos dos fármacos , Animais , Antocianinas/isolamento & purificação , Modelos Animais de Doenças , Degeneração Macular/patologia , Masculino , Extratos Vegetais/isolamento & purificação , Ratos Sprague-Dawley , Retina/patologia
20.
Front Neurosci ; 14: 611696, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33536869

RESUMO

Ischemic lesions could lead to secondary degeneration in remote regions of the brain. However, the spatial distribution of secondary degeneration along with its role in functional deficits is not well understood. In this study, we explored the spatial and connectivity properties of white matter (WM) secondary degeneration in a focal unilateral sensorimotor cortical ischemia rat model, using advanced microstructure imaging on a 14 T MRI system. Significant axonal degeneration was observed in the ipsilateral external capsule and even remote regions including the contralesional external capsule and corpus callosum. Further fiber tractography analysis revealed that only fibers having direct axonal connections with the primary lesion exhibited a significant degeneration. These results suggest that focal ischemic lesions may induce remote WM degeneration, but limited to fibers tied to the primary lesion. These "direct" fibers mainly represent perilesional, interhemispheric, and subcortical axonal connections. At last, we found that primary lesion volume might be the determining factor of motor function deficits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA