Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 118(2): 437-456, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198218

RESUMO

Trehalose-6-phosphate (T6P) functions as a vital proxy for assessing carbohydrate status in plants. While class II T6P synthases (TPS) do not exhibit TPS activity, they are believed to play pivotal regulatory roles in trehalose metabolism. However, their precise functions in carbon metabolism and crop yield have remained largely unknown. Here, BnaC02.TPS8, a class II TPS gene, is shown to be specifically expressed in mature leaves and the developing pod walls of Brassica napus. Overexpression of BnaC02.TPS8 increased photosynthesis and the accumulation of sugars, starch, and biomass compared to wild type. Metabolomic analysis of BnaC02.TPS8 overexpressing lines and CRISPR/Cas9 mutants indicated that BnaC02.TPS8 enhanced the partitioning of photoassimilate into starch and sucrose, as opposed to glycolytic intermediates and organic acids, which might be associated with TPS activity. Furthermore, the overexpression of BnaC02.TPS8 not only increased seed yield but also enhanced seed oil accumulation and improved the oil fatty acid composition in B. napus under both high nitrogen (N) and low N conditions in the field. These results highlight the role of class II TPS in impacting photosynthesis and seed yield of B. napus, and BnaC02.TPS8 emerges as a promising target for improving B. napus seed yield.


Assuntos
Brassica napus , Glucosiltransferases , Brassica napus/genética , Brassica napus/metabolismo , Fotossíntese , Sementes/genética , Sementes/metabolismo , Amido/metabolismo
2.
Plant J ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115024

RESUMO

Pea is a grain legume crop with a high potential to accelerate the food transition due to its high seed protein content and relatively well-balanced amino acid composition. The critical role of external sulfur (S) supply in determining seed yield and seed quality in pea makes it essential to understand the impact of whole plant S management on the trade-off between these two traits. Here, we investigated the physiological relevance of vacuolar sulfate remobilization by targeting PsSULTR4, the only pea sulfate transporter showing substantial similarity to the vacuolar sulfate exporter AtSULTR4;1. Five mutations in PsSULTR4 were identified by TILLING (Targeting Induced Local Lesions IN Genomes), two of which, a loss of function (W78*) and a missense (E568K), significantly decreased seed yield under S deprivation. We demonstrate that PsSULTR4 triggers S distribution from source tissues, especially lower leaves, to reproductive organs to maintain seed yield under S deficiency. Under sufficient S supply, sultr4 seeds display lower levels of the S-rich storage protein PA1 at maturity. They also overaccumulate sulfate in the endosperm at the onset of seed filling. These findings uncover a role of PsSULTR4 in the remobilization of vacuolar sulfate during embryo development, allowing the efficient synthesis of S-rich proteins. Our study uncovers that PsSULTR4 functions (i) in source tissues to remobilize stored vacuolar sulfate for seed production under low S availability and (ii) in developing seeds well supplied with S to fine-tune sulfate remobilization from the endosperm as a critical control point for storage activities in the embryo.

3.
BMC Plant Biol ; 24(1): 691, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030468

RESUMO

BACKGROUND: Kentucky bluegrass (Poa pratensis L.) panicle development is a coordinated process of cell proliferation and differentiation with distinctive phases and architectural changes that are pivotal to determine seed yield. Cytokinin (CK) is a key factor in determining seed yield that might underpin the second "Green Revolution". However, whether there is a difference between endogenous CK content and seed yields of Kentucky bluegrass, and how CK-related genes are expressed to affect enzyme regulation and downstream seed yield in Kentucky bluegrass remains enigmatic. RESULTS: In order to establish a potential link between CK regulation and seed yield, we dissected and characterized the Kentucky bluegrass young panicle, and determined the changes in nutrients, 6 types of endogenous CKs, and 16 genes involved in biosynthesis, activation, inactivation, re-activation and degradation of CKs during young panicle differentiation of Kentucky bluegrass. We found that high seed yield material had more meristems compared to low seed yield material. Additionally, it was found that seed-setting rate (SSR) and lipase activity at the stage of spikelet and floret primordium differentiation (S3), as well as 1000-grain weight (TGW) and zeatin-riboside (ZR) content at the stages of first bract primordium differentiation (S1) and branch primordium differentiation (S2) showed a significantly positive correlation in the two materials. And zeatin, ZR, dihydrozeatin riboside, isopentenyl adenosine and isopentenyl adenosine riboside contents were higher in seed high yield material than those in seed low yield material at S3 stage. Furthermore, the expressions of PpITP3, PpITP5, PpITP8 and PpLOG1 were positively correlated with seed yield, while the expressions of PpCKX2, PpCKX5 and PpCKX7 were negatively correlated with seed yield in Kentucky bluegrass. CONCLUSIONS: Overall, our study established a relationship between CK and seed yield in Kentucky bluegrass. Perhaps we can increase SSR and TGW by increasing lipase activity and ZR content. Of course, using modern gene editing techniques to manipulate CK related genes such as PpITP3/5/8, PpLOG1 and PpCKX2/5/7, will be a more direct and effective method in Kentucky bluegrass, which requires further trial validation.


Assuntos
Citocininas , Regulação da Expressão Gênica de Plantas , Poa , Sementes , Citocininas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Poa/genética , Poa/crescimento & desenvolvimento , Poa/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Genes de Plantas
4.
Plant Cell Environ ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774965

RESUMO

Boron (B) is an essential microelement in plant growth and development. However, the molecular mechanisms underlying B uptake and translocation in Brassica napus are poorly understood. Herein, we identified a low-B (LB)-inducible gene, namely BnaC4.BOR2, with high transcriptional activity in root tips, stele cells, leaves, and floral organs. The green fluorescence protein labelled BnaC4.BOR2 protein was localised to the plasma membrane to demonstrate the B efflux activity in yeast and Arabidopsis. BnaC4.BOR2 knockout considerably reduced B concentration in the root and xylem sap, and altered B distribution in different organs at low B supply, exacerbating B sensitivity at the vegetative and reproductive stages. Additionally, the grafting experiment showed that BnaC4.BOR2 expression in the roots contributed more to B deficiency adaptability than that in the shoots. The pot experiments with LB-soil revealed B concentration in leaves and siliques of BnaC4.BOR2 mutants were markedly reduced, showing an obvious B-deficient phenotype of 'flowering without seed setting' and a considerable reduction in seed yield in B-deficient soil. Altogether, the findings of this study highlight the crucial role of BnaC4.BOR2 in B uptake and translocation during B. napus growth and seed yield under LB conditions.

5.
Data Brief ; 53: 110013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38435735

RESUMO

Crop yield potential in breeding trials can be captured using unmanned aerial vehicle (UAV) based multispectral imagery. Several digital traits or phenotypes such as vegetation indices can represent canopy crop vigor and overall plant health, which can be used to evaluate differences in performance across varieties in crop breeding programs. This dataset contains agronomic data for named cultivars and breeding lines of spring-sown dry pea and chickpea, and over 275 multispectral images from advanced and preliminary breeding trials. The breeding trials were located at three locations in the "Palouse" region of Eastern Washington and Northern Idaho of the United States across 2017, 2018 and 2019 cropping seasons. The multispectral images were captured using a UAV integrated with a 5-band multispectral camera at multiple time points from early vegetative growth through pod development stages during each cropping season. This dataset details seed yield information from trials of dry peas and chickpea that were obtained from each location, as well as additional agronomic and phenological data recorded at one location (mostly Pullman, WA) for each cropping season. The dataset also includes 20-78 megabytes (MB) Tagged Image Format (TIF) uncalibrated stitched orthomosaic images generated from the photogrammetric software. The images can be processed using any convenient image processing algorithm to obtain vegetation indices and other useful information.

6.
AoB Plants ; 16(2): plae021, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38650718

RESUMO

Mungbean is an important source of plant protein for consumers and a high-value export crop for growers across Asia, Australia and Africa. However, many commercial cultivars are highly vulnerable to biotic stresses, which rapidly reduce yield within the season. Fusarium oxysporum is a soil-borne pathogen that is a growing concern for mungbean growers globally. This pathogen causes Fusarium wilt by infecting the root system of the plant resulting in devastating yield reductions. To understand the impact of Fusarium on mungbean development and productivity and to identify tolerant genotypes, a panel of 23 diverse accessions was studied. Field trials conducted in 2016 and 2021 in Warwick, Queensland, Australia under rainfed conditions investigated the variation in phenology, canopy and yield component traits under disease and disease-free conditions. Analyses revealed a high degree of genetic variation for all traits. By comparing the performance of these traits across these two environments, we identified key traits that underpin yield under disease and disease-free conditions. Aboveground biomass components at 50 % flowering were identified as significant drivers of yield development under disease-free conditions and when impacted by Fusarium resulted in up to 96 % yield reduction. Additionally, eight genotypes were identified to be tolerant to Fusarium. These genotypes were found to display differing phenological and morphological behaviours, thereby demonstrating the potential to breed tolerant lines with a range of diverse trait variations. The identification of tolerant genotypes that sustain yield under disease pressure may be exploited in crop improvement programs.

7.
Heliyon ; 10(5): e26816, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434338

RESUMO

The competition of weeds with crops and nutrient management has a significant effect on the yield and economic efficiency of a country. This study aimed to evaluate the impacts of sulfur-coated urea and common urea on the yield and fatty acid composition of three coriander genotypes (Nahavandi, Pishgam, Ethiopia) under weeded and unweeded conditions. Traits including 1000 seeds weight, fruit yield, content of oil, and composition of fatty acids were examined. Nitrogen fertilizer and weeding treatments significantly improved the weight of 1000 seeds and weeds decreased the yield of fruit. The highest fruit yield was obtained by the Ethiopia genotype in weed-free conditions. Results showed that N fertilizer increased the oil percentage of coriander fruit. Urea fertilizer resulted in the highest oil content in the Nahavandi and Pishgam genotypes under weeded plots in the first and second years, respectively. Also, petroselinic, linoleic, and palmitic acids were the major coriander fatty acid composition. Nahavandi genotype showed the highest palmitic acid. Also, urea in the weed condition led to increase the linoleic acid content in the Nahavandi genotype. Overall, results showed that N fertilizer, especially urea, improved the quality characteristics of coriander fruits.

8.
Heliyon ; 10(5): e25507, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434367

RESUMO

Soybeans are a commodity that is widely grown by farmers in rainfed rice fields in South Sulawesi. One of the determining factors in increasing soybean productivity in South Sulawesi is the type of variety. The aim of this research was to determine the characteristics, morphology and response to pests and diseases in several soybean varieties planted in rainfed rice fields in South Sulawesi. This research was carried out in Allepolea Village, Maros Regency in 2022 using a Randomized Block Design with 13 treatments and 3 replications. Varieties tested as treatments include: 1) Derap-1, 2) Devon-2, 3) Deja-1, 4) Anjasmoro, 5) Dena-2, 6) Dena-1, 7) Gepak Kuning, 8) Grobogan, 9) Devon-1, 10) Dega-1, 11) Deja-2, 12) Demas-1, and 13) Detap-1. The results showed that of the 13 varieties tested, the highest height was found in Devon-2 (33.67 cm) and Detap-1 (31.67 cm) in the vegetative phase and in the generative phase in Detap-1 (75.53 cm) and Gepak Yellow (74.67 cm). The largest number of branches is in Dena-1 (3.13 branches). The highest nitrogen content was found in Devon-1 (12.64 m2 per g). The largest leaf area was Detap-1 (4.15 cm2) and Gepak Kuning (4.15 cm2). The highest number of stomata was in Dena-1 (42.80 µm) and Deja-1 (44.00 µm). The highest stomata width was found in Gepak Kuning (2.76 µm). The lowest level of leaf damage due to attacks by Valanga sp (Acrididae) occurred in Grobogan (6.89 %) and Dega-1 (7.35 %). The lowest level of pod damage due to Nezara viridula attack was in Devon-2 (3.56 %) and Dena-2 (3.64 %). The lowest level of leaf damage due to Phaedonia inclusa attack occurred in Dega-1 (4.37 %), Dena-2 (4, 12 %), and Grobogan (4.69 %). Seed damage due to Cercospora sp attack was lowest on Dena-2 (0.81 %). The highest seed yield was in Dena-2 (3.78 t ha-1) and the lowest in Anjasmoro (1.93 t ha-1) and Deja-2 (2.02 t ha-1).

9.
Sci Rep ; 14(1): 6672, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509150

RESUMO

Soybean, belonging to legumes, has a specific ability to biological nitrogen fixation, which can be reinforced by seeds inoculation. However, support with a starter dose of mineral nitrogen fertilizer may be necessary to achieve high seed yields. A four-year field experiment was conducted to determine the effect of mineral N fertilization (0, 30, 60 kg ha-1), seed inoculation with two commercial inoculants and combinations of these treatments on yield components and yielding of soybean in conditions of south-western part of Poland. The synergistic effect of mineral fertilization at dose 30 kg ha-1 and inoculation on soybean productivity was the most beneficial. Similar effects were observed when 60 kg N ha-1 was applied both separately and with inoculation. However, due to the environmental impact of mineral fertilizers and to promote plants to biological nitrogen fixation (BNF), it is advisable to use lower doses of N fertilizer (at 30 kg ha-1) and inoculate soybean seeds in agro- climatic conditions of south-western Poland. Therefore, based on this study we recommend to apply starter dose of N and inoculation.


Assuntos
Glycine max , Nitrogênio , Fertilizantes , Polônia , Sementes , Minerais , Fertilização
10.
Plant Physiol Biochem ; 208: 108508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490152

RESUMO

Boron (B) is essential for plant growth. However, the molecular mechanism of B transport in rapeseed (Brassica napus L.) is unknown well. Here, we report that B transporter BnaA4.BOR2 is involved in the transport of B from root to shoot and its distribution in shoot cell wall and flower in rapeseed. The results of GUS staining and in-situ PCR analysis showed that BnaA4.BOR2 is mainly expressed in cortex and endodermis of root tip meristem zone and endodermis of mature zone. BnaA4.BOR2 was mainly localized in plasma membrane and showed B transport activity in yeast. Overexpression of Bna4.BOR2 could rescue the phenotype of Arabidopsis mutant bor2-2 under low-B condition. Furthermore, knockout of BnaA4.BOR2 could significantly enhance the sensitivity of rapeseed mutants to B deficiency, including inhibition of root elongation and biomass decrease of roots and shoots. The B concentration in xylem sap of BnaA4.BOR2 mutants was significantly decreased under B deficiency, which resulted in significantly lower B concentrations in shoot cell wall at seedling stage and flower organ at reproductive stage compared to that of wild-type QY10. The growth of BnaA4.BOR2 mutants were severely inhibited, exhibiting a typical B-deficient phenotype of "flowering without seed setting", leading to a sharp decrease in seed yield in B deficient soil. Taken together, these results indicate that BnaA4.BOR2 is critical for rapeseed growth and seed yield production under low B level, which is mainly expressed in cortex and endodermis, and contributed to the transport of B from roots to shoots and its distribution in shoot.


Assuntos
Arabidopsis , Brassica napus , Brassica rapa , Brassica napus/metabolismo , Boro/metabolismo , Brassica rapa/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo
11.
PeerJ ; 12: e17191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699184

RESUMO

Context: Exogenous use of potential organic compounds through different modes is a promising strategy for the induction of water stress tolerance in crop plants for better yield. Aims: The present study aimed to explore the potential role of alpha-lipoic acid (ALA) in inducing water stress tolerance in mungbean lines when applied exogenously through various modes. Methods: The experiment was conducted in a field with a split-plot arrangement, having three replicates for each treatment. Two irrigation regimes, including normal and reduced irrigation, were applied. The plants allocated to reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0, 0.1, 0.15 mM) were applied through different modes (seed priming, foliar or priming+foliar). Key results: ALA treatment through different modes manifested higher growth under reduced irrigation (water stress) and normal irrigation. Compared to the other two modes, the application of ALA as seed priming was found more effective in ameliorating the adverse impacts of water stress on growth and yield associated with their better content of leaf photosynthetic pigments, maintenance of plant water relations, levels of non-enzymatic antioxidants, improved activities of enzymatic antioxidants, and decreased lipid peroxidation and H2O2 levels. The maximum increase in shoot fresh weight (29% and 28%), shoot dry weight (27% and 24%), 100-grain weight (24% and 23%) and total grain yield (20% and 21%) in water-stressed mungbean plants of line 16003 and 16004, respectively, was recorded due to ALA seed priming than other modes of applications. Conclusions: Conclusively, 0.1 and 0.15 mM levels of ALA as seed priming were found to reduce the adverse impact of water stress on mungbean yield that was associated with improved physio-biochemical mechanisms. Implications: The findings of the study will be helpful for the agriculturalists working in arid and semi-arid regions to obtain a better yield of mungbean that will be helpful to fulfill the food demand in those areas to some extent.


Assuntos
Antioxidantes , Secas , Fotossíntese , Ácido Tióctico , Vigna , Vigna/crescimento & desenvolvimento , Vigna/efeitos dos fármacos , Vigna/metabolismo , Ácido Tióctico/farmacologia , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Desidratação , Clorofila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
12.
Plants (Basel) ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38891294

RESUMO

In plants, the ubiquitin (Ub)-26S proteasome system (UPS) regulates numerous biological functions by selectively targeting proteins for ubiquitylation and degradation. However, the regulation of Ub itself on plant growth and development remains unclear. To demonstrate a possible impact of Ub supply, as seen in animals and flies, we carefully analyzed the growth and developmental phenotypes of two different poly-Ub (UBQ) gene overexpression plants of Arabidopsis thaliana. One is transformed with hexa-6His-UBQ (designated 6HU), driven by the cauliflower mosaic virus 35S promoter, while the other expresses hexa-6His-TEV-UBQ (designated 6HTU), driven by the endogenous promoter of UBQ10. We discovered that 6HU and 6HTU had contrasting seed yields. Compared to wildtype (WT), the former exhibited a reduced seed yield, while the latter showed an increased seed production that was attributed to enhanced growth vigor and an elevated silique number per plant. However, reduced seed sizes were common in both 6HU and 6HTU. Differences in the activity and size of the 26S proteasome assemblies in the two transgenic plants were also notable in comparison with WT, suggestive of a contributory role of UBQ expression in proteasome assembly and function. Collectively, our findings demonstrated that exogenous expression of recombinant Ub may optimize plant growth and development by influencing the UPS activities via structural variance, expression patterns, and abundance of free Ub supply.

13.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732406

RESUMO

The enhancement of the plant seed yield and quality represents the basis of the successful productivity of the deriving crop. The effect of single and combined foliar treatments of lettuce plants with sodium selenate and garlic bulb extract on seed yield and quality and on mature plant biochemical characteristics was investigated using four lettuce cultivars (Bouquet, Picnic, Moskovsky parnikovy and Cavalier). The seed production of plants treated with Se increased by 20-41%, compared to the untreated control plants, while the augmentation was as much as 10-23% and 17-27% under garlic extract and the joint application of Se and garlic, respectively. Garlic extract stimulated the accumulation of Se in lettuce seeds, which rose by 1.21-1.29 times compared to the Se-treated plants. The proline levels in lettuce seeds exceeded the corresponding values recorded in the control ones by 1.32-1.64 times in the case of the Se supply, 1.10-1.47 times upon garlic extract application and 1.09-1.31 times under the combined Se/garlic treatment. All the treatments given to lettuce plants increased the leaf weight by 1.10-1.30 times, compared to the untreated control. The seed Se levels positively correlated with the leaf weight (r = 0.621; p < 0.005), chlorophyll (r = 0.672, p < 0.002) and total antioxidant activity (AOA; r = 0.730, p < 0.001) of plants grown from these seeds. Positive correlations were also recorded between the seed proline content and lettuce plant leaf weight, chlorophyll and AOA (r = 0.868, 0.811 and 0.815, respectively, at p < 0.001). Lettuce yield was positively correlated with the leaf AOA, chlorophyll and ascorbic acid content (r = 0.942, 0.921 and 0.665, respectively, at p < 0.001). The results indicate high prospects of Na2SeO4 and garlic extract application to seed-addressed lettuce plants, to improve seed productivity and quality, as well as lettuce yield and quality.

14.
Plants (Basel) ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592838

RESUMO

Smooth bromegrass (Bromus inermis) is a perennial, high-quality forage grass. However, its seed yield is influenced by agronomic practices, climatic conditions, and the growing year. The rapid and effective prediction of seed yield can assist growers in making informed production decisions and reducing agricultural risks. Our field trial design followed a completely randomized block design with four blocks and three nitrogen levels (0, 100, and 200 kg·N·ha-1) during 2022 and 2023. Data on the remote vegetation index (RVI), the normalized difference vegetation index (NDVI), the leaf nitrogen content (LNC), and the leaf area index (LAI) were collected at heading, anthesis, and milk stages. Multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) regression models were utilized to predict seed yield. In 2022, the results indicated that nitrogen application provided a sufficiently large range of variation of seed yield (ranging from 45.79 to 379.45 kg ha⁻¹). Correlation analysis showed that the indices of the RVI, the NDVI, the LNC, and the LAI in 2022 presented significant positive correlation with seed yield, and the highest correlation coefficient was observed at the heading stage. The data from 2022 were utilized to formulate a predictive model for seed yield. The results suggested that utilizing data from the heading stage produced the best prediction performance. SVM and RF outperformed MLR in prediction, with RF demonstrating the highest performance (R2 = 0.75, RMSE = 51.93 kg ha-1, MAE = 29.43 kg ha-1, and MAPE = 0.17). Notably, the accuracy of predicting seed yield for the year 2023 using this model had decreased. Feature importance analysis of the RF model revealed that LNC was a crucial indicator for predicting smooth bromegrass seed yield. Further studies with an expanded dataset and integration of weather data are needed to improve the accuracy and generalizability of the model and adaptability for the growing year.

15.
Front Plant Sci ; 15: 1354413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766473

RESUMO

Chickpea (Cicer arietinum L.) is a very important food legume and needs improved drought tolerance for higher seed production in dry environments. The aim of this study was to determine diversity and genetic polymorphism in zinc finger knuckle genes with CCHC domains and their functional analysis for practical improvement of chickpea breeding. Two CaZF-CCHC genes, Ca04468 and Ca07571, were identified as potentially important candidates associated with plant responses to drought and dehydration. To study these genes, various methods were used including Sanger sequencing, DArT (Diversity array technology) and molecular markers for plant genotyping, gene expression analysis using RT-qPCR, and associations with seed-related traits in chickpea plants grown in field trials. These genes were studied for genetic polymorphism among a set of chickpea accessions, and one SNP was selected for further study from four identified SNPs between the promoter regions of each of the two genes. Molecular markers were developed for the SNP and verified using the ASQ and CAPS methods. Genotyping of parents and selected breeding lines from two hybrid populations, and SNP positions on chromosomes with haplotype identification, were confirmed using DArT microarray analysis. Differential expression profiles were identified in the parents and the hybrid populations under gradual drought and rapid dehydration. The SNP-based genotypes were differentially associated with seed weight per plant but not with 100 seed weight. The two developed and verified SNP molecular markers for both genes, Ca04468 and Ca07571, respectively, could be used for marker-assisted selection in novel chickpea cultivars with improved tolerance to drought and dehydration.

16.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732409

RESUMO

The tree peony, a novel woody oil crop extensively cultivated in China, necessitates further investigation into artificial pollination technology to enhance seed yield. In this study, we conducted artificial pollination experiments with 6-year-old Paeonia ostii 'Feng Dan' seedings for suitable pollen sources, pollen concentration, pollination timing, and pollination frequency. By evaluating seed yields, active ingredients, and oil quality, we derived the following significant conclusions. Firstly, compared to natural pollination, artificial pollination could significantly increase the fruit diameter by 13.94-27.58%, seed yields by 35.17-58.99%, and oil content by 6.45-7.52% in tree peonies. In active ingredients, seeds produced by pollen from Hantai County significantly enhanced starch content (by 48.64%), total phenols (by 41.18%) and antioxidant capacity (by 54.39%). In oil quality, seeds produced by pollen from Heyang County exhibited the highest α-linolenic acid and total fatty acid content with enhancements of 1.68%, 7.41%, and 8.48%. Secondly, hand pollination with pure pollen significantly increased seed yield by 58.99%, total phenol content by 40.97%, antioxidant capacity by 54.39%, and oil content by 1.53% compared to natural pollination. Thirdly, pollination at 2/3 bloom range significantly increased seed number by 63.08% and yield by 45.61% compared to natural pollination. Finally, the effect of one, two, and three pollination events had no difference in seed yield. So, to summarize, applying a 100% concentration of allochthonous pollen once is recommended when the bloom range is more than two thirds.

17.
Front Plant Sci ; 15: 1427086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145187

RESUMO

Introduction: Environmental conditions play a prime role in the growth and development of plant species, exerting a significant influence on their reproductive capacity. Soybean is sensitive to high temperatures during flowering and seed developmental stages. Little is known about the combined environmental effect of temperature and CO2 on seed yield and quality and its future generation. Methods: A study was conducted to examine the effect of temperature (22/14°C (low), 30/22°C (optimum), and 38/30°C (high)), and CO2 (420 ppm (ambient; aCO2) and 720 ppm (elevated; eCO2)) on seed yield, quality, and transgenerational seedling vigor traits of soybean cultivars (DS25-1 and DS31-243) using Soil-Plant-Atmospheric-Research facility. Results: A significant temperature effect was recorded among yield and quality attributes. At high-temperature, the 100-seed weights of DS25-1 and DS31-243 declined by 40% and 24%, respectively, over the optimum temperature at aCO2. The harvest index of varieties reduced by 70% when exposed to high temperature under both aCO2 and eCO2, compared to the optimum temperature at aCO2. The seed oil (- 2%) and protein (8%) content altered when developed under high temperature under aCO2. Maximum sucrose (7.5%) and stachyose (3.8%) accumulation in seeds were observed when developed under low temperatures and eCO2. When the growing temperature increased from optimum to high, the seed oleic acids increased (63%), while linoleic and linolenic acids decreased (- 28% and - 43%, respectively). Significant temperature and CO2 effects were observed in progenies with the highest maximum seedling emergence (80%), lesser time to 50% emergence (5.5 days), and higher seedling vigor from parents grown at low-temperature treatment under eCO2. Discussion: Exposure of plants to 38/30°C was detrimental to soybean seed yield, and eCO2 levels did not compensate for this yield loss. The high temperature during seed developmental stages altered the chemical composition of the seed, leading to an increased content of monounsaturated fatty acids. The findings suggest that parental stress can significantly impact the development of offspring, indicating that epigenetic regulation or memory repose may be at play.

18.
PeerJ ; 12: e16791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38259666

RESUMO

Nitrogen (N) addition is a simple and effective field management approach to enhancing plant productivity. Nonetheless, the regulatory mechanisms governing nitrogen concentrations and their effect on soil enzyme activity, nutrient levels, and seed yield in the Festuca kirilowii seed field have yet to be elucidated. Therefore, this study sought to investigate the effect of N fertilizer application on soil enzyme activities, soil nutrients, and seed yield of F. kirilowii Steud cv. Huanhu, the only domesticated variety in the Festuca genus of the Poaceae family, was investigated based on two-year field experiments in the Qinghai-Tibet Plateau (QTP). Results showed that N input significantly affected soil nutrients (potential of hydrogen, total nitrogen, organic matter, and total phosphorus). In addition, soil enzyme activities (urease, catalase, sucrase, and nitrate reductase) significantly increased in response to varying N concentrations, inducing changes in soil nutrient contents. Introducing N improved both seed yield and yield components (number of tillers and number of fertile tillers). These findings suggest that the introduction of different concentrations of N fertilizers can stimulate soil enzyme activity, thus hastening nutrient conversion and increasing seed yield. The exhaustive evaluation of the membership function showed that the optimal N fertilizer treatment was N4 (75 kg·hm-2) for both 2022 and 2023. This finding provides a practical recommendation for improving the seed production of F. kirilowii in QTP.


Assuntos
Fertilizantes , Festuca , Sementes , Nitrogênio/farmacologia , Nutrientes , Solo
19.
PeerJ ; 12: e16840, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313022

RESUMO

Sesame (Sesamum indicum L.) is an important cash crop cultivated under rain-fed conditions where it contributes a significant proportion of Ethiopia's foreign exchange earnings. However, its productivity is constrained by drought stress. The present study aimed to evaluate the agromorphological and yield performance of sesame varieties and to identify drought tolerant varieties using drought tolerance indices. The sesame varieties were evaluated under well-watered (WW) and water-stressed (WS) field conditions with a factorial design laid down in randomized complete block design in three replications. The results revealed the presence of a significant variation in agromorphological traits and drought tolerance indices due to water levels, varieties and their interactive effect. On average, a 21.8, 49.6, 48.4, 47.9 and 21.7% reduction was recorded in plant height, number of leaves per plant, leaf length, leaf width and relative growth rate (RGR), respectively under WS condition. Similarly, a significant reduction was found in shoot biomass, root biomass, biological yield, number of pods per plant and seed yield under WS condition. These traits showed an average reduction of 52.2, 72.5, 54.0, 51.9 and 52.8%, respectively compared to WW condition. The highest yield reduction was recorded from wollega under WS condition, while the lowest was from abasena. Wollega variety produced the highest seed yield (kg/ha) under WW condition, while gondar-1 and humera-1 had the highest yield in kg/ha under WS condition. Under both water levels, abasena produced the lowest yield (kg/ha). Moreover, gondar-1 and humera-1 varieties had a comparatively higher values of stress tolerance index (STI), yield stress score index (YSSI), yield potential score index (YPSI), geometric mean productivity (GMP) and mean productivity (MP) that are significantly and positively correlated with yield under WS, indicating higher yield performance under water stress. The biplot analysis clustered the varieties as low yielding (abasena) and relatively above average performing varieties (humera-1, gondar-1 and wollega). According to the rank sum of all indices, humera-1 was identified as drought tolerant, while abasena as the most susceptible and low yielding varieties. Thus, humera-1 followed by gondar-1 were found to be drought tolerant and high yielding varieties. However, further studies focusing on drought tolerance mechanisms of the varieties are recommended.


Assuntos
Sesamum , Desidratação , Resistência à Seca , Secas , Fenótipo , Sementes
20.
Open Life Sci ; 18(1): 20220792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152581

RESUMO

Alfalfa (Medicago sativa L.) is known as the "king of forages". The aim of the current study is to determine the optimum planting density as the key cultivation technique for high yield of alfalfa seed. Alfalfa variety (Longmu 801) was planted in experimental fields from 2014 to 2017. In the planting density test, the row spacing was 65, 80, and 95 cm, and the plant spacing was 30, 45, 60, 75, and 90 cm. The seed yield and yield components in the row spacing and plant spacing tests were measured. On the basis of 3 years average of the experimental data, the highest seed yield of 225.49 kg ha-1 was obtained with row spacing vs plant spacing of 65 and 60 cm, respectively. Correlation analysis showed a significant positive correlation between the racemes per stem, pods per raceme, pods per stem, seeds per pod, and the seed yield. These results suggested that Longmu 801 should be cultivated with 65 cm row spacing and 60 cm plant spacing to maximize seed yields in western Heilongjiang areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA