Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 182(2): 345-356.e16, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32589945

RESUMO

Pathogenic clostridial species secrete potent toxins that induce severe host tissue damage. Paeniclostridium sordellii lethal toxin (TcsL) causes an almost invariably lethal toxic shock syndrome associated with gynecological infections. TcsL is 87% similar to C. difficile TcdB, which enters host cells via Frizzled receptors in colon epithelium. However, P. sordellii infections target vascular endothelium, suggesting that TcsL exploits another receptor. Here, using CRISPR/Cas9 screening, we establish semaphorins SEMA6A and SEMA6B as TcsL receptors. We demonstrate that recombinant SEMA6A can protect mice from TcsL-induced edema. A 3.3 Å cryo-EM structure shows that TcsL binds SEMA6A with the same region that in TcdB binds structurally unrelated Frizzled. Remarkably, 15 mutations in this evolutionarily divergent surface are sufficient to switch binding specificity of TcsL to that of TcdB. Our findings establish semaphorins as physiologically relevant receptors for TcsL and reveal the molecular basis for the difference in tissue targeting and disease pathogenesis between highly related toxins.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridium sordellii/metabolismo , Semaforinas/metabolismo , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Sítios de Ligação , Sistemas CRISPR-Cas/genética , Linhagem Celular , Microscopia Crioeletrônica , Edema/patologia , Edema/prevenção & controle , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/uso terapêutico , Semaforinas/química , Semaforinas/genética
2.
Cell ; 176(4): 729-742.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661757

RESUMO

Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.


Assuntos
Metabolismo Energético/genética , Melanocortinas/metabolismo , Semaforinas/genética , Adolescente , Adulto , Animais , Peso Corporal , Linhagem Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Variação Genética/genética , Homeostase , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Adulto Jovem , Peixe-Zebra
3.
Annu Rev Cell Dev Biol ; 32: 577-608, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27576119

RESUMO

Axon guidance relies on a combinatorial code of receptor and ligand interactions that direct adhesive/attractive and repulsive cellular responses. Recent structural data have revealed many of the molecular mechanisms that govern these interactions and enabled the design of sophisticated mutant tools to dissect their biological functions. Here, we discuss the structure/function relationships of four major classes of guidance cues (ephrins, semaphorins, slits, netrins) and examples of morphogens (Wnt, Shh) and of cell adhesion molecules (FLRT). These cell signaling systems rely on specific modes of receptor-ligand binding that are determined by selective binding sites; however, defined structure-encoded receptor promiscuity also enables cross talk between different receptor/ligand families and can also involve extracellular matrix components. A picture emerges in which a multitude of highly context-dependent structural assemblies determines the finely tuned cellular behavior required for nervous system development.


Assuntos
Orientação de Axônios , Proteínas do Tecido Nervoso/metabolismo , Animais , Humanos , Modelos Biológicos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
4.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738602

RESUMO

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Assuntos
Proteínas de Drosophila , Morfogênese , Proteínas do Tecido Nervoso , Neurópilo , Lobo Óptico de Animais não Mamíferos , Receptores de Superfície Celular , Semaforinas , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Morfogênese/genética , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Neurônios/metabolismo , Drosophila/metabolismo , Drosophila/embriologia , Mutação/genética
5.
Proc Natl Acad Sci U S A ; 121(31): e2402755121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042673

RESUMO

The precise assembly of a functional nervous system relies on axon guidance cues. Beyond engaging their cognate receptors and initiating signaling cascades that modulate cytoskeletal dynamics, guidance cues also bind components of the extracellular matrix, notably proteoglycans, yet the role and mechanisms of these interactions remain poorly understood. We found that Drosophila secreted semaphorins bind specifically to glycosaminoglycan (GAG) chains of proteoglycans, showing a preference based on the degree of sulfation. Structural analysis of Sema2b unveiled multiple GAG-binding sites positioned outside canonical plexin-binding site, with the highest affinity binding site located at the C-terminal tail, characterized by a lysine-rich helical arrangement that appears to be conserved across secreted semaphorins. In vivo studies revealed a crucial role of the Sema2b C-terminal tail in specifying the trajectory of olfactory receptor neurons. We propose that secreted semaphorins tether to the cell surface through interactions with GAG chains of proteoglycans, facilitating their presentation to cognate receptors on passing axons.


Assuntos
Orientação de Axônios , Proteínas de Drosophila , Proteoglicanas , Semaforinas , Transdução de Sinais , Animais , Semaforinas/metabolismo , Semaforinas/genética , Proteoglicanas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Axônios/metabolismo , Drosophila melanogaster/metabolismo , Glicosaminoglicanos/metabolismo , Sítios de Ligação , Ligação Proteica , Neurônios Receptores Olfatórios/metabolismo
6.
J Cell Sci ; 137(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963001

RESUMO

Semaphorin6A (Sema6A) is a repulsive guidance molecule that plays many roles in central nervous system, heart and bone development, as well as immune system responses and cell signaling in cancer. Loss of Sema6A or its receptor PlexinA2 in zebrafish leads to smaller eyes and improper retinal patterning. Here, we investigate a potential role for the Sema6A intracellular domain in zebrafish eye development and dissect which phenotypes rely on forward signaling and which rely on reverse signaling. We performed rescue experiments on zebrafish Sema6A morphants with either full-length Sema6A (Sema6A-FL) or Sema6A lacking its intracellular domain (Sema6A-ΔC). We identified that the intracellular domain is not required for eye size and retinal patterning, however it is required for retinal integrity, the number and end feet strength of Müller glia and protecting against retinal cell death. This novel function for the intracellular domain suggests a role for Sema6A reverse signaling in zebrafish eye development.


Assuntos
Domínios Proteicos , Retina , Semaforinas , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Semaforinas/metabolismo , Semaforinas/genética , Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Transdução de Sinais , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia
7.
Mol Cell Neurosci ; 128: 103920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331011

RESUMO

Synapse formation in the mammalian brain is a complex and dynamic process requiring coordinated function of dozens of molecular families such as cell adhesion molecules (CAMs) and ligand-receptor pairs (Ephs/Ephrins, Neuroligins/Neurexins, Semaphorins/Plexins). Due to the large number of molecular players and possible functional redundancies within gene families, it is challenging to determine the precise synaptogenic roles of individual molecules, which is key to understanding the consequences of mutations in these genes for brain function. Furthermore, few molecules are known to exclusively regulate either GABAergic or glutamatergic synapses, and cell and molecular mechanisms underlying GABAergic synapse formation in particular are not thoroughly understood. We previously demonstrated that Semaphorin-4D (Sema4D) regulates GABAergic synapse development in the mammalian hippocampus while having no effect on glutamatergic synapse development, and this effect occurs through binding to its high affinity receptor, Plexin-B1. In addition, we demonstrated that RNAi-mediated Plexin-B2 knock-down decreases GABAergic synapse density suggesting that both receptors function in this process. Here, we perform a structure-function study of the Plexin-B1 and Plexin-B2 receptors to identify the protein domains in each receptor which are required for its synaptogenic function. Further, we examine whether Plexin-B2 is required in the presynaptic neuron, the postsynaptic neuron, or both to regulate GABAergic synapse formation. Our data reveal that Plexin-B1 and Plexin-B2 function non-redundantly to regulate GABAergic synapse formation and suggest that the transmembrane domain may underlie functional distinctions. We also provide evidence that Plexin-B2 expression in presynaptic GABAergic interneurons, as well as postsynaptic pyramidal cells, regulates GABAergic synapse formation in hippocampus. These findings lay the groundwork for future investigations into the precise signaling pathways required for synapse formation downstream of Plexin-B receptor signaling.


Assuntos
Moléculas de Adesão Celular , Receptores de Superfície Celular , Semaforinas , Animais , Receptores de Superfície Celular/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Mamíferos
8.
Proc Natl Acad Sci U S A ; 119(12): e2111283119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286204

RESUMO

SignificanceThe adult Drosophila mushroom body (MB) is one of the most extensively studied neural circuits. However, how its circuit organization is established during development is unclear. In this study, we provide an initial characterization of the assembly process of the extrinsic neurons (dopaminergic neurons and MB output neurons) that target the vertical MB lobes. We probe the cellular mechanisms guiding the neurite targeting of these extrinsic neurons and demonstrate that Semaphorin 1a is required in several MB output neurons for their dendritic innervations to three specific MB lobe zones. Our study reveals several intriguing molecular and cellular principles governing assembly of the MB circuit.


Assuntos
Corpos Pedunculados , Semaforinas , Animais , Neurônios Dopaminérgicos , Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Neuritos , Semaforinas/genética
9.
J Neurosci ; 43(32): 5769-5778, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344233

RESUMO

Semaphorins and Plexins form ligand/receptor pairs that are crucial for a wide range of developmental processes from cell proliferation to axon guidance. The ability of semaphorins to act both as signaling receptors and ligands yields a multitude of responses. Here, we describe a novel role for Semaphorin-6D (Sema6D) and Plexin-A1 in the positioning and targeting of retinogeniculate axons. In Plexin-A1 or Sema6D mutant mice of either sex, the optic tract courses through, rather than along, the border of the dorsal lateral geniculate nucleus (dLGN), and some retinal axons ectopically arborize adjacent and lateral to the optic tract rather than defasciculating and entering the target region. We find that Sema6D and Plexin-A1 act together in a dose-dependent manner, as the number of the ectopic retinal projections is altered in proportion to the level of Sema6D or Plexin-A1 expression. Moreover, using retinal in utero electroporation of Sema6D or Plexin-A1 shRNA, we show that Sema6D and Plexin-A1 are both required in retinal ganglion cells for axon positioning and targeting. Strikingly, nonelectroporated retinal ganglion cell axons also mistarget in the tract region, indicating that Sema6D and Plexin-A1 can act non-cell-autonomously, potentially through axon-axon interactions. These data provide novel evidence for a dose-dependent and non-cell-autonomous role for Sema6D and Plexin-A1 in retinal axon organization in the optic tract and dLGN.SIGNIFICANCE STATEMENT Before innervating their central brain targets, retinal ganglion cell axons fasciculate in the optic tract and then branch and arborize in their target areas. Upon deletion of the guidance molecules Plexin-A1 or Semaphorin-6D, the optic tract becomes disorganized near and extends within the dorsal lateral geniculate nucleus. In addition, some retinal axons form ectopic aggregates within the defasciculated tract. Sema6D and Plexin-A1 act together as a receptor-ligand pair in a dose-dependent manner, and non-cell-autonomously, to produce this developmental aberration. Such a phenotype highlights an underappreciated role for axon guidance molecules in tract cohesion and appropriate defasciculation near, and arborization within, targets.


Assuntos
Células Ganglionares da Retina , Semaforinas , Animais , Camundongos , Axônios/fisiologia , Ligantes , Células Ganglionares da Retina/metabolismo , Semaforinas/genética , Semaforinas/metabolismo
10.
J Neurosci ; 43(32): 5753-5768, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344234

RESUMO

Axon fasciculation is thought to be a critical step in neural circuit formation and function. Recent studies have revealed various molecular mechanisms that underlie axon fasciculation; however, the impacts of axon fasciculation, and its corollary, defasciculation, on neural circuit wiring remain unclear. Corticospinal (CS) neurons in the sensorimotor cortex project axons to the spinal cord to control skilled movements. In rodents, the axons remain tightly fasciculated in the brain and traverse the dorsal funiculus of the spinal cord. Here we show that plexinA1 (PlexA1) and plexinA3 (PlexA3) receptors are expressed by CS neurons, whereas their ligands, semaphorin-5A (Sema5A) and semaphorin-5B (Sema5B) are expressed in the medulla at the decussation site of CS axons to inhibit premature defasciculation of these axons. In the absence of Sema5A/5B-PlexA1/A3 signaling, some CS axons are prematurely defasciculated in the medulla of the brainstem, and those defasciculated CS axons aberrantly transverse in the spinal gray matter instead of the spinal dorsal funiculus. In the absence of Sema5A/Sema5B-PlexA1/A3 signaling, CS axons, which would normally innervate the lumbar spinal cord, are unbundled in the spinal gray matter, and prematurely innervate the cervical gray matter with reduced innervation of the lumbar gray matter. In both Sema5A/5B and PlexA1/A3 mutant mice (both sexes), stimulation of the hindlimb motor cortex aberrantly evokes robust forelimb muscle activation. Finally, Sema5A/5B and PlexA1/A3 mutant mice show deficits in skilled movements. These results suggest that proper fasciculation of CS axons is required for appropriate neural circuit wiring and ultimately affect the ability to perform skilled movements.SIGNIFICANCE STATEMENT Axon fasciculation is believed to be essential for neural circuit formation and function. However, whether and how defects in axon fasciculation affect the formation and function of neural circuits remain unclear. Here we examine whether the transmembrane proteins semaphorin-5A (Sema5A) and semaphorin-5B (Sema5B), and their receptors, plexinA1 (PlexA1) and plexinA3 (PlexA3) play roles in the development of corticospinal circuits. We find that Sema5A/Sema5B and PlexA1/A3 are required for proper axon fasciculation of corticospinal neurons. Furthermore, Sema5A/5B and PlexA1/A3 mutant mice show marked deficits in skilled motor behaviors. Therefore, these results strongly suggest that proper corticospinal axon fasciculation is required for the appropriate formation and functioning of corticospinal circuits in mice.


Assuntos
Semaforinas , Feminino , Masculino , Camundongos , Animais , Semaforinas/metabolismo , Fasciculação Axônica , Neurônios/metabolismo , Axônios/fisiologia , Medula Espinal/metabolismo
11.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
12.
J Biol Chem ; 299(6): 104740, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088134

RESUMO

Plexin-B1 is a receptor for the cell surface semaphorin, Sema4D. This signaling system has been implicated in a variety of human diseases, including cancer, multiple sclerosis and osteoporosis. While inhibitors of the Plexin-B1:Sema4D interaction have been previously reported, understanding their mechanism has been hindered by an incomplete structural view of Plexin-B1. In this study, we have raised and characterized a pair of nanobodies that are specific for mouse Plexin-B1 and which inhibit the binding of Sema4D to mouse Plexin-B1 and its biological activity. Structural studies of these nanobodies reveal that they inhibit the binding of Sema4D in an allosteric manner, binding to epitopes not previously reported. In addition, we report the first unbound structure of human Plexin-B1, which reveals that Plexin-B1 undergoes a conformational change on Sema4D binding. These changes mirror those seen upon binding of allosteric peptide modulators, which suggests a new model for understanding Plexin-B1 signaling and provides a potential innovative route for therapeutic modulation of Plexin-B1.


Assuntos
Moléculas de Adesão Celular , Semaforinas , Anticorpos de Domínio Único , Animais , Camundongos , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Moléculas de Adesão Celular/metabolismo
13.
J Cell Physiol ; 239(5): e31248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501506

RESUMO

The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-ß)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-ß specifically in cardiac tissues (TGF-ß transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-ß transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-ß transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.


Assuntos
Fibrilação Atrial , Proliferação de Células , Células Endoteliais , Transição Epitelial-Mesenquimal , Flavanonas , Átrios do Coração , Semaforina-3A , Fator de Crescimento Transformador beta , Animais , Humanos , Masculino , Camundongos , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/genética , Fibrilação Atrial/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Flavanonas/farmacologia , Átrios do Coração/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Camundongos Transgênicos , Semaforina-3A/metabolismo , Semaforina-3A/genética , Fator de Crescimento Transformador beta/metabolismo
14.
Breast Cancer Res ; 26(1): 122, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138514

RESUMO

BACKGROUND: A better understanding of ductal carcinoma in situ (DCIS) is urgently needed to identify these preinvasive lesions as distinct clinical entities. Semaphorin 3F (SEMA3F) is a soluble axonal guidance molecule, and its coreceptors Neuropilin 1 (NRP1) and NRP2 are strongly expressed in invasive epithelial BC cells. METHODS: We utilized two cell line models to represent the progression from a healthy state to the mild-aggressive or ductal carcinoma in situ (DCIS) stage and, ultimately, to invasive cell lines. Additionally, we employed in vivo models and conducted analyses on patient databases to ensure the translational relevance of our results. RESULTS: We revealed SEMA3F as a promoter of invasion during the DCIS-to-invasive ductal carcinoma transition in breast cancer (BC) through the action of NRP1 and NRP2. In epithelial cells, SEMA3F activates epithelialmesenchymal transition, whereas it promotes extracellular matrix degradation and basal membrane and myoepithelial cell layer breakdown. CONCLUSIONS: Together with our patient database data, these proof-of-concept results reveal new SEMA3F-mediated mechanisms occurring in the most common preinvasive BC lesion, DCIS, and represent potent and direct activation of its transition to invasion. Moreover, and of clinical and therapeutic relevance, the effects of SEMA3F can be blocked directly through its coreceptors, thus preventing invasion and keeping DCIS lesions in the preinvasive state.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Invasividade Neoplásica , Proteínas do Tecido Nervoso , Neuropilina-1 , Neuropilina-2 , Humanos , Neuropilina-1/metabolismo , Neuropilina-1/genética , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neuropilina-2/metabolismo , Neuropilina-2/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/genética , Linhagem Celular Tumoral , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Transição Epitelial-Mesenquimal/genética , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/genética , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais
15.
EMBO J ; 39(13): e102926, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32500924

RESUMO

Semaphorin ligands interact with plexin receptors to contribute to functions in the development of myriad tissues including neurite guidance and synaptic organisation within the nervous system. Cell-attached semaphorins interact in trans with plexins on opposing cells, but also in cis on the same cell. The interplay between trans and cis interactions is crucial for the regulated development of complex neural circuitry, but the underlying molecular mechanisms are uncharacterised. We have discovered a distinct mode of interaction through which the Drosophila semaphorin Sema1b and mouse Sema6A mediate binding in cis to their cognate plexin receptors. Our high-resolution structural, biophysical and in vitro analyses demonstrate that monomeric semaphorins can mediate a distinctive plexin binding mode. These findings suggest the interplay between monomeric vs dimeric states has a hereto unappreciated role in semaphorin biology, providing a mechanism by which Sema6s may balance cis and trans functionalities.


Assuntos
Moléculas de Adesão Celular/química , Proteínas de Drosophila/química , Proteínas do Tecido Nervoso/química , Semaforinas/química , Animais , Células COS , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Quaternária de Proteína , Semaforinas/genética , Semaforinas/metabolismo , Relação Estrutura-Atividade
16.
Scand J Immunol ; 99(5): e13360, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605547

RESUMO

Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction. Semaphorin 4A (Sema4A) is involved in the activation of T cells in various inflammatory disorders. In this study, we aimed to investigate whether Sema4A is involved in the pathogenesis of MG. We measured serum Sema4A concentrations in 30 treatment-naïve MG patients with acetylcholine receptor (AChR) antibodies, 7 with muscle-specific tyrosine kinase (MuSK) antibodies and 21 normal controls. As a result, serum Sema4A levels were significantly higher in patients with AChR antibody-positive MG and MuSK antibody-positive MG than in controls (p ≤ 0.0001 for both MG groups). Serum Sema4A levels were correlated with AChR antibody levels (Spearman's ρ = 0.39, p = 0.03) and MG Foundation of America clinical classification classes (Spearman's ρ = 0.38, p = 0.04) in patients with AChR antibody-positive MG. In conclusion, high serum Sema4A levels may reflect T-cell activation, and this molecule could be a potential marker of disease activity in MG.


Assuntos
Miastenia Gravis , Semaforinas , Humanos , Miastenia Gravis/diagnóstico , Autoanticorpos
17.
Dev Growth Differ ; 66(5): 308-319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761018

RESUMO

One of the major functions of the semaphorin signaling system is the regulation of cell shape. In the nematode Caenorhabditis elegans, membrane-bound semaphorins SMP-1/2 (SMPs) regulate the morphology of epidermal cells via their receptor plexin, PLX-1. In the larval male tail of the SMP-PLX-1 signaling mutants, the border between two epidermal cells, R1.p and R2.p, is displaced anteriorly, resulting in the anterior displacement of the anterior-most ray, ray 1, in the adult male. To elucidate how the intercellular signaling mediated by SMPs regulates the position of the intercellular border, we performed mosaic gene expression analyses by using infrared laser-evoked gene operator (IR-LEGO). We show that PLX-1 expressed in R1.p and SMP-1 expressed in R2.p are required for the proper positioning of ray 1. The result suggests that SMP signaling promotes extension, rather than retraction, of R1.p. This is in contrast to a previous finding that SMPs mediate inhibition of cell extension of vulval precursor cells, another group of epidermal cells of C. elegans, indicating the context dependence of cell shape control via the semaphorin signaling system.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Epiderme , Semaforinas , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Semaforinas/metabolismo , Semaforinas/genética , Epiderme/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Transdução de Sinais , Comunicação Celular , Células Epidérmicas/metabolismo , Células Epidérmicas/citologia , Masculino
18.
BMC Cancer ; 24(1): 1025, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164619

RESUMO

BACKGROUND: Most studies on tumour progression from precursor lesion toward gallbladder adenocarcinoma investigate lesions sampled from distinct patients, providing an overarching view of pathogenic cascades. Whether this reflects the tumourigenic process in individual patients remains insufficiently explored. Genomic and epigenomic studies suggest that a subset of gallbladder cancers originate from biliary intraepithelial neoplasia (BilIN) precursor lesions, whereas others form independently from BilINs. Spatial transcriptomic data supporting these conclusions are missing. Moreover, multiple areas with precursor or adenocarcinoma lesions can be detected within the same pathological sample. Yet, knowledge about intra-patient variability of such lesions is lacking. METHODS: To characterise the spatial transcriptomics of gallbladder cancer tumourigenesis in individual patients, we selected two patients with distinct cancer aetiology and whose samples simultaneously displayed multiple areas of normal epithelium, BilINs and adenocarcinoma. Using GeoMx digital spatial profiling, we characterised the whole transcriptome of a high number of regions of interest (ROIs) per sample in the two patients (24 and 32 ROIs respectively), with each ROI covering approximately 200 cells of normal epithelium, low-grade BilIN, high-grade BilIN or adenocarcinoma. Human gallbladder organoids and cell line-derived tumours were used to investigate the tumour-promoting role of genes. RESULTS: Spatial transcriptomics revealed that each type of lesion displayed limited intra-patient transcriptomic variability. Our data further suggest that adenocarcinoma derived from high-grade BilIN in one patient and from low-grade BilIN in the other patient, with co-existing high-grade BilIN evolving via a distinct process in the latter case. The two patients displayed distinct sequences of signalling pathway activation during tumour progression, but Semaphorin 4 A (SEMA4A) expression was repressed in both patients. Using human gallbladder-derived organoids and cell line-derived tumours, we provide evidence that repression of SEMA4A promotes pseudostratification of the epithelium and enhances cell migration and survival. CONCLUSION: Gallbladder adenocarcinoma can develop according to patient-specific processes, and limited intra-patient variability of precursor and cancer lesions was noticed. Our data suggest that repression of SEMA4A can promote tumour progression. They also highlight the need to gain gene expression data in addition to histological information to avoid understimating the risk of low-grade preneoplastic lesions.


Assuntos
Adenocarcinoma , Progressão da Doença , Neoplasias da Vesícula Biliar , Perfilação da Expressão Gênica , Humanos , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Transcriptoma , Masculino , Regulação Neoplásica da Expressão Gênica , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Feminino , Linhagem Celular Tumoral , Organoides/patologia , Vesícula Biliar/patologia , Idoso , Pessoa de Meia-Idade
19.
Mol Cell Biochem ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819599

RESUMO

The initiation and progression of atherosclerotic plaque caused by abnormal lipid metabolism is one of the main causes of atherosclerosis (AS). Lipid droplet accumulation has become a novel research pointcut for AS treatment in recent years. In AS patients, miR-135b level was up-regulated relative to the normal cases, which showed negative correlations with the levels of Semaphorin 3A (SEMA3A) and circZNF609, separately. The U937-derived macrophages were cultured with ox-LDL to establish AS models in vitro. After that, the lipid accumulation, inflammation, mitochondrial dysfunction and cell death were evaluated by ORO, ELISA, RT-qPCR, western blot, JC-1 and FCM assays respectively. Transfection of the circZNF609 expression vector notably declined lipid accumulation, attenuated inflammation, reduced mitochondrial dysfunction and inhibited cell death in ox-LDL-stimulated cells. The direct binding of miR-135b to circZNF609 in vitro was confirmed using RIP assay, and SEMA3A expression was up-regulated by circZNF609 overexpression. After manipulating the endogenous expressions of circZNF609, miR-135b and SEMA3A, the above damages in ox-LDL-stimulated cells were rescued by inhibition of miR-135b expression and overexpression of circZNF609 or SEMA3A. Besides, the AS mice model was built to demonstrate the excessive lipid accumulation, increasing inflammation and cell death in AS pathogenesis according to the results of HE staining, ELISA and IHC assays, while these damages were reversed after overexpression of circZNF609 or SEMA3A. In AS models, overexpressed circZNF609 prevents the AS progression through depleting miR-135b expression and subsequent up-regulation of SEMA3A expression to overwhelm lipid accumulation, mitochondrial dysfunction and cell death.

20.
Pediatr Dev Pathol ; : 10935266241237656, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576387

RESUMO

Recent progress in glomerular immune complex and complement-mediated diseases have refined diagnostic categories and informed mechanistic understanding of disease development in pediatric patients. Herein, we discuss selected advances in 3 categories. First, membranous nephropathy antigens are increasingly utilized to characterize disease in pediatric patients and include phospholipase A2 receptor (PLA2R), Semaphorin 3B (Sema3B), neural epidermal growth factor-like 1 (NELL1), and protocadherin FAT1, as well as the lupus membranous-associated antigens exostosin 1/2 (EXT1/2), neural cell adhesion molecule 1 (NCAM1), and transforming growth factor beta receptor 3 (TGFBR3). Second, we examine advances in techniques for paraffin and light chain immunofluorescence (IF), including the former's function as a salvage technique and their necessity for diagnosis in adolescent cases of membranous-like glomerulopathy with masked IgG kappa deposits (MGMID) and proliferative glomerulonephritis with monotypic Ig deposits (PGNMID), respectively. Finally, progress in understanding the roles of complement in pediatric glomerular disease is reviewed, with specific attention to overlapping clinical, histologic, and genetic or functional alternative complement pathway (AP) abnormalities among C3 glomerulopathy (C3G), infection-related and post-infectious GN, "atypical" post-infectious GN, immune complex mediated membranoproliferative glomerulonephritis (IC-MPGN), and atypical hemolytic uremic syndrome (aHUS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA