Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Metab Eng ; 60: 1-13, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169542

RESUMO

Engineering biotechnological microorganisms to use methanol as a feedstock for bioproduction is a major goal for the synthetic metabolism community. Here, we aim to redesign the natural serine cycle for implementation in E. coli. We propose the homoserine cycle, relying on two promiscuous formaldehyde aldolase reactions, as a superior pathway design. The homoserine cycle is expected to outperform the serine cycle and its variants with respect to biomass yield, thermodynamic favorability, and integration with host endogenous metabolism. Even as compared to the RuMP cycle, the most efficient naturally occurring methanol assimilation route, the homoserine cycle is expected to support higher yields of a wide array of products. We test the in vivo feasibility of the homoserine cycle by constructing several E. coli gene deletion strains whose growth is coupled to the activity of different pathway segments. Using this approach, we demonstrate that all required promiscuous enzymes are active enough to enable growth of the auxotrophic strains. Our findings thus identify a novel metabolic solution that opens the way to an optimized methylotrophic platform.


Assuntos
Aldeído Liases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formaldeído/metabolismo , Engenharia Metabólica/métodos , Metanol/metabolismo , Biomassa , Genes Bacterianos/genética , Glicina Hidroximetiltransferase/metabolismo , Homosserina/metabolismo , Redes e Vias Metabólicas , Serina/metabolismo
2.
Metab Eng ; 57: 1-12, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626985

RESUMO

Methylotuvimicrobium alcaliphilum 20Z is a promising platform strain for bioconversion of one-carbon (C1) substrates into value-added products. To carry out robust metabolic engineering with methylotrophic bacteria and to implement C1 conversion machinery in non-native hosts, systems-level evaluation and understanding of central C1 metabolism in methanotrophs under various conditions is pivotal but yet elusive. In this study, a genome-scale integrated approach was used to provide in-depth knowledge on the metabolic pathways of M. alcaliphilum 20Z grown on methane and methanol. Systems assessment of core carbon metabolism indicated the methanol assimilation pathway is mostly coupled with the efficient Embden-Meyerhof-Parnas (EMP) pathway along with the serine cycle. In addition, an incomplete TCA cycle operated in M. alcaliphilum 20Z on methanol, which might only supply precursors for de novo synthesis but not reducing powers. Instead, it appears that the direct formaldehyde oxidation pathway supply energy for the whole metabolic system. Additionally, a comparative transcriptomic analysis in multiple gammaproteobacterial methanotrophs also revealed the transcriptional responses of central metabolism on carbon substrate change. These findings provided a systems-level understanding of carbon metabolism and new opportunities for strain design to produce relevant products from different C1-feedstocks.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Genoma Bacteriano , Glicólise/fisiologia , Metano/metabolismo , Metanol/metabolismo , Methylococcaceae , Carbono/metabolismo , Methylococcaceae/genética , Methylococcaceae/crescimento & desenvolvimento
3.
BMC Genomics ; 20(1): 130, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755173

RESUMO

BACKGROUND: Methanotrophs play an important role in biotechnological applications, with their ability to utilize single carbon (C1) feedstock such as methane and methanol to produce a range of high-value compounds. A newly isolated obligate methanotroph strain, Methylomonas sp. DH-1, became a platform strain for biotechnological applications because it has proven capable of producing chemicals, fuels, and secondary metabolites from methane and methanol. In this study, transcriptome analysis with RNA-seq was used to investigate the transcriptional change of Methylomonas sp. DH-1 on methane and methanol. This was done to improve knowledge about C1 assimilation and secondary metabolite pathways in this promising, but under-characterized, methane-bioconversion strain. RESULTS: We integrated genomic and transcriptomic analysis of the newly isolated Methylomonas sp. DH-1 grown on methane and methanol. Detailed transcriptomic analysis indicated that (i) Methylomonas sp. DH-1 possesses the ribulose monophosphate (RuMP) cycle and the Embden-Meyerhof-Parnas (EMP) pathway, which can serve as main pathways for C1 assimilation, (ii) the existence and the expression of a complete serine cycle and a complete tricarboxylic acid (TCA) cycle might contribute to methane conversion and energy production, and (iii) the highly active endogenous plasmid pDH1 may code for essential metabolic processes. Comparative transcriptomic analysis on methane and methanol as a sole carbon source revealed different transcriptional responses of Methylomonas sp. DH-1, especially in C1 assimilation, secondary metabolite pathways, and oxidative stress. Especially, these results suggest a shift of central metabolism when substrate changed from methane to methanol in which formaldehyde oxidation pathway and serine cycle carried more flux to produce acetyl-coA and NADH. Meanwhile, downregulation of TCA cycle when grown on methanol may suggest a shift of its main function is to provide de novo biosynthesis, but not produce NADH. CONCLUSIONS: This study provides insights into the transcriptomic profile of Methylomonas sp. DH-1 grown on major carbon sources for C1 assimilation, providing in-depth knowledge on the metabolic pathways of this strain. These observations and analyses can contribute to future metabolic engineering with the newly isolated, yet under-characterized, Methylomonas sp. DH-1 to enhance its biochemical application in relevant industries.


Assuntos
Carbono/metabolismo , Metano/metabolismo , Metanol/metabolismo , Methylomonas/crescimento & desenvolvimento , Methylomonas/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Ciclo do Ácido Cítrico , Formaldeído/metabolismo , Perfilação da Expressão Gênica , Glicólise , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Methylomonas/genética , Methylomonas/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Pentoses/metabolismo , Serina/metabolismo , Solventes , Triterpenos/metabolismo
4.
Antonie Van Leeuwenhoek ; 112(5): 741-751, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30511326

RESUMO

The indicator enzyme of the serine pathway of assimilation of reduced C1 compounds, serine-glyoxylate aminotransferase (Sga), has been purified from three methane-oxidizing bacteria, Methylomicrobium alcaliphilum 20Z, Methylosinus trichosporium OB3b and Methylococcus capsulatus Bath. The native enzymes were shown to be dimeric (80 kDa, strain 20Z), tetrameric (~ 170 kDa, strain OB3b) or trimeric (~ 120 kDa, strain Bath). Sga from the three methanotrophs catalyse the pyridoxal phosphate-dependent transfer of an amino group from serine to glyoxylate and pyruvate; the enzymes from strains 20Z and Bath also transfer an amino group from serine to α-ketoglutarate and from alanine to glyoxylate. No other significant differences between the Sga from the three methanotrophs were found. The three methanotrophic Sga have their highest catalytic efficiencies in the reaction between glyoxylate and serine, which is in agreement with their function to provide circulation of the serine assimilation pathway.The disruption of the sga gene in Mm. alcaliphilum resulted in retardation of growth rate of the mutant cells and in a prolonged lag-phase after passaging from methane to methanol. In addition, the growth of the mutant strain is accompanied by formaldehyde accumulation in the culture liquid. Hence, Sga is important in the serine cycle of type I methanotrophs and this pathway could be related to the removal of excess formaldehyde and/or energy regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Metano/metabolismo , Methylococcaceae/enzimologia , Transaminases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Meios de Cultura/química , Meios de Cultura/metabolismo , Glioxilatos/metabolismo , Methylococcaceae/genética , Methylococcaceae/crescimento & desenvolvimento , Methylococcaceae/metabolismo , Peso Molecular , Serina/metabolismo , Transaminases/química , Transaminases/genética , Transaminases/isolamento & purificação
5.
FEMS Microbiol Lett ; 367(24)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296465

RESUMO

The biochemical routes for assimilation of one-carbon compounds in bacteria require many clarifications. In this study, the role of malyl-CoA lyase in the metabolism of the aerobic type I methanotroph Methylotuvimicrobium alcaliphilum 20Z has been investigated by gene inactivation and biochemical studies. The functionality of the enzyme has been confirmed by heterologous expression in Escherichia coli. The mutant strain lacking Mcl activity demonstrated the phenotype of glycine auxotrophy. The genes encoding malyl-CoA lyase are present in the genomes of all methanotrophs, except for representatives of the phylum Verrucomicrobium. We suppose that malyl-CoA lyase is the enzyme that provides glyoxylate and glycine synthesis in the type I methanotrophs supporting carbon assimilation via the serine cycle in addition to the major ribulose monophosphate cycle.


Assuntos
Proteínas de Bactérias/metabolismo , Glicina/biossíntese , Glioxilatos/metabolismo , Methylococcaceae/enzimologia , Oxo-Ácido-Liases/metabolismo , Escherichia coli/genética , Methylococcaceae/genética
6.
Metabolites ; 10(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059429

RESUMO

Formaldehyde is a highly reactive compound that participates in multiple spontaneous reactions, but these are mostly deleterious and damage cellular components. In contrast, the spontaneous condensation of formaldehyde with tetrahydrofolate (THF) has been proposed to contribute to the assimilation of this intermediate during growth on C1 carbon sources such as methanol. However, the in vivo rate of this condensation reaction is unknown and its possible contribution to growth remains elusive. Here, we used microbial platforms to assess the rate of this condensation in the cellular environment. We constructed Escherichia coli strains lacking the enzymes that naturally produce 5,10-methylene-THF. These strains were able to grow on minimal medium only when equipped with a sarcosine (N-methyl-glycine) oxidation pathway that sustained a high cellular concentration of formaldehyde, which spontaneously reacts with THF to produce 5,10-methylene-THF. We used flux balance analysis to derive the rate of the spontaneous condensation from the observed growth rate. According to this, we calculated that a microorganism obtaining its entire biomass via the spontaneous condensation of formaldehyde with THF would have a doubling time of more than three weeks. Hence, this spontaneous reaction is unlikely to serve as an effective route for formaldehyde assimilation.

7.
Sheng Wu Gong Cheng Xue Bao ; 35(2): 195-203, 2019 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-30806049

RESUMO

Environmental protection and energy supply are our two major concerns. Greenhouse gases released from energy consumption have serious impact on the environment. CO2 fixation can be used to convert CO2 into fuels or chemicals. However, natural carbon-fixing organisms usually have some disadvantages such as slow growth and low carbon fixation efficiency. Enhancing or remodeling CO2 fixation pathways in model microorganisms can realize CO2 recycling, which can further increase fuel or chemical production and reduce greenhouse gas emission. This review describes in detail metabolic engineering of CO2 fixation pathways to improve chemical production and sugar synthesis, elaborates the role of relevant metabolic pathways and key enzymes in CO2 fixation, introduces the application of electro-biochemical synthesis system, shows the great potential of CO2 fixation, and prospects the future research direction of CO2 fixation.


Assuntos
Engenharia Metabólica , Ciclo do Carbono , Dióxido de Carbono , Processos Heterotróficos , Redes e Vias Metabólicas
8.
Curr Biol ; 27(17): 2579-2588.e6, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28823675

RESUMO

Methylotrophy is the ability of organisms to grow at the expense of reduced one-carbon compounds, such as methanol or methane. Here, we used transposon sequencing combining hyper-saturated transposon mutagenesis with high-throughput sequencing to define the essential methylotrophy genome of Methylobacterium extorquens PA1, a model methylotroph. To distinguish genomic regions required for growth only on methanol from general required genes, we contrasted growth on methanol with growth on succinate, a non-methylotrophic reference substrate. About 500,000 insertions were mapped for each condition, resulting in a median insertion distance of five base pairs. We identified 147 genes and 76 genes as specific for growth on methanol and succinate, respectively, and a set of 590 genes as required under both growth conditions. For the integration of metabolic functions, we reconstructed a genome-scale metabolic model and performed in silico essentiality analysis. In total, the approach uncovered 95 genes not previously described as crucial for methylotrophy, including genes involved in respiration, carbon metabolism, transport, and regulation. Strikingly, regardless of the absence of the Calvin cycle in the methylotroph, the screen led to the identification of the gene for phosphoribulokinase as essential during growth on methanol, but not during growth on succinate. Genetic experiments in addition to metabolomics and proteomics revealed that phosphoribulokinase serves a key regulatory function. Our data support a model according to which ribulose-1,5-bisphosphate is an essential metabolite that induces a transcriptional regulator driving one-carbon assimilation.


Assuntos
Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Genoma Bacteriano , Methylobacterium extorquens/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Bactérias/metabolismo , Espectrometria de Massas , Methylobacterium extorquens/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteômica , Análise de Sequência de DNA
9.
Front Microbiol ; 6: 852, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347732

RESUMO

Paracoccus aminophilus JCM 7686 (Alphaproteobacteria) is a facultative, heterotrophic methylotroph capable of utilizing a wide range of C1 compounds as sole carbon and energy sources. Analysis of the JCM 7686 genome revealed the presence of genes involved in the oxidation of methanol, methylamine, dimethylamine, trimethylamine, N,N-dimethylformamide, and formamide, as well as the serine cycle, which appears to be the only C1 assimilatory pathway in this strain. Many of these genes are located in different extrachromosomal replicons and are not present in the genomes of most members of the genus Paracoccus, which strongly suggests that they have been horizontally acquired. When compared with Paracoccus denitrificans Pd1222 (type strain of the genus Paracoccus), P. aminophilus JCM 7686 has many additional methylotrophic capabilities (oxidation of dimethylamine, trimethylamine, N,N-dimethylformamide, the serine cycle), which are determined by the presence of three separate gene clusters. Interestingly, related clusters form compact methylotrophy islands within the genomes of Paracoccus sp. N5 and many marine bacteria of the Roseobacter clade.

10.
Front Microbiol ; 4: 40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565111

RESUMO

Methane utilizing bacteria (methanotrophs) are important in both environmental and biotechnological applications, due to their ability to convert methane to multicarbon compounds. However, systems-level studies of methane metabolism have not been carried out in methanotrophs. In this work we have integrated genomic and transcriptomic information to provide an overview of central metabolic pathways for methane utilization in Methylosinus trichosporium OB3b, a model alphaproteobacterial methanotroph. Particulate methane monooxygenase, PQQ-dependent methanol dehydrogenase, the H4MPT-pathway, and NAD-dependent formate dehydrogenase are involved in methane oxidation to CO2. All genes essential for operation of the serine cycle, the ethylmalonyl-CoA (EMC) pathway, and the citric acid (TCA) cycle were expressed. PEP-pyruvate-oxaloacetate interconversions may have a function in regulation and balancing carbon between the serine cycle and the EMC pathway. A set of transaminases may contribute to carbon partitioning between the pathways. Metabolic pathways for acquisition and/or assimilation of nitrogen and iron are discussed.

11.
Front Microbiol ; 4: 70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565113

RESUMO

In this work we use metabolomics and (13)C-labeling data to refine central metabolic pathways for methane utilization in Methylosinus trichosporium OB3b, a model alphaproteobacterial methanotrophic bacterium. We demonstrate here that similar to non-methane utilizing methylotrophic alphaproteobacteria the core metabolism of the microbe is represented by several tightly connected metabolic cycles, such as the serine pathway, the ethylmalonyl-CoA (EMC) pathway, and the citric acid (TCA) cycle. Both in silico estimations and stable isotope labeling experiments combined with single cell (NanoSIMS) and bulk biomass analyses indicate that a significantly larger portion of the cell carbon (over 60%) is derived from CO2 in this methanotroph. Our(13) C-labeling studies revealed an unusual topology of the assimilatory network in which phosph(enol) pyruvate/pyruvate interconversions are key metabolic switches. A set of additional pathways for carbon fixation are identified and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA