Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.195
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(23): e2122386119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648835

RESUMO

Pneumococcal conjugate vaccines (PCVs) used in childhood vaccination programs have resulted in replacement of vaccine-type with nonvaccine-type pneumococci in carriage and invasive pneumococcal disease (IPD). A vaccine based on highly conserved and protective pneumococcal antigens is urgently needed. Here, we performed intranasal immunization of mice with pneumococcal membrane particles (MPs) to mimic natural nasopharyngeal immunization. MP immunization gave excellent serotype-independent protection against IPD that was antibody dependent but independent of the cytotoxin pneumolysin. Using Western blotting, immunoprecipitation, mass spectrometry, and different bacterial mutants, we identified the conserved lipoproteins MalX and PrsA as the main antigens responsible for cross-protection. Additionally, we found that omitting the variable surface protein and vaccine candidate PspA from MPs enhanced protective immune responses to the conserved proteins. Our findings suggest that MPs containing MalX and PrsA could serve as a platform for pneumococcal vaccine development targeting the elderly and immunocompromised.


Assuntos
Proteínas de Bactérias , Lipoproteínas , Proteínas de Membrana , Proteínas de Membrana Transportadoras , Infecções Pneumocócicas , Vacinas Pneumocócicas , Administração Intranasal , Animais , Proteínas de Bactérias/imunologia , Membrana Celular/imunologia , Sequência Conservada , Reações Cruzadas , Humanos , Imunização/métodos , Lipoproteínas/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Sorogrupo , Streptococcus pneumoniae/imunologia
2.
BMC Biol ; 22(1): 33, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331785

RESUMO

BACKGROUND: Ribosomal protein SA (RPSA) of human brain microvascular endothelial cells (HBMECs) can transfer from the cytosol to the cell surface and act as a receptor for some pathogens, including Streptococcus suis serotype 2 (SS2), a zoonotic pathogen causing meningitis in pigs and humans. We previously reported that SS2 virulence factor enolase (ENO) binds to RPSA on the cell surface of HBMECs and induces apoptosis. However, the mechanism that activates RPSA translocation to the cell surface and induces ENO-mediated HBMEC apoptosis is unclear. RESULTS: Here, we show that RPSA localization and condensation on the host cell surface depend on its internally disordered region (IDR). ENO binds to the IDR of RPSA and promotes its interaction with RPSA and vimentin (VIM), which is significantly suppressed after 1,6-Hexanediol (1,6-Hex, a widely used tool to disrupt phase separation) treatment, indicating that ENO incorporation and thus the concentration of RPSA/VIM complexes via co-condensation. Furthermore, increasing intracellular calcium ions (Ca2+) in response to SS2 infection further facilitates the liquid-like condensation of RPSA and aggravates ENO-induced HBMEC cell apoptosis. CONCLUSIONS: Together, our study provides a previously underappreciated molecular mechanism illuminating that ENO-induced RPSA condensation activates the migration of RPSA to the bacterial cell surface and stimulates SS2-infected HBMEC death and, potentially, disease progression. This study offers a fresh avenue for investigation into the mechanism by which other harmful bacteria infect hosts via cell surfaces' RPSA.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Células Endoteliais/metabolismo , Sorogrupo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Encéfalo/metabolismo , Apoptose , Proteínas Ribossômicas/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia
3.
J Infect Dis ; 230(1): e189-e198, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052729

RESUMO

BACKGROUND: Streptococcus pneumoniae serotype 3 remains a problem globally. Malawi introduced 13-valent pneumococcal conjugate vaccine (PCV13) in 2011, but there has been no direct protection against serotype 3 carriage. We explored whether vaccine escape by serotype 3 is due to clonal expansion of a lineage with a competitive advantage. METHODS: The distribution of serotype 3 Global Pneumococcal Sequence Clusters (GPSCs) and sequence types (STs) globally was assessed using sequences from the Global Pneumococcal Sequencing Project. Whole-genome sequences of 135 serotype 3 carriage isolates from Blantyre, Malawi (2015-2019) were analyzed. Comparative analysis of the capsule locus, entire genomes, antimicrobial resistance, and phylogenetic reconstructions were undertaken. Opsonophagocytosis was evaluated using serum samples from vaccinated adults and children. RESULTS: Serotype 3 GPSC10-ST700 isolates were most prominent in Malawi. Compared with the prototypical serotype 3 capsular polysaccharide locus sequence, 6 genes are absent, with retention of capsule polysaccharide biosynthesis. This lineage is characterized by increased antimicrobial resistance and lower susceptibility to opsonophagocytic killing. CONCLUSIONS: A serotype 3 variant in Malawi has genotypic and phenotypic characteristics that could enhance vaccine escape and clonal expansion after post-PCV13 introduction. Genomic surveillance among high-burden populations is essential to improve the effectiveness of next-generation pneumococcal vaccines.


Assuntos
Cápsulas Bacterianas , Filogenia , Infecções Pneumocócicas , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Humanos , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/classificação , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/imunologia , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/genética , Malaui , Adulto , Sequenciamento Completo do Genoma , Pré-Escolar , Criança , Vacinas Conjugadas/imunologia , Masculino , Genoma Bacteriano , Feminino , Adulto Jovem , Lactente , Genótipo , Portador Sadio/microbiologia
4.
J Infect Dis ; 230(1): e182-e188, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052735

RESUMO

Recent phylogenetic profiling of pneumococcal serotype 3 (Pn3) isolates revealed a dynamic interplay among major lineages with the emergence and global spread of a variant termed clade II. The cause of Pn3 clade II dissemination along with epidemiological and clinical ramifications are currently unknown. Here, we sought to explore biological characteristics of dominant Pn3 clades in a mouse model of pneumococcal invasive disease and carriage. Carriage and virulence potential were strain dependent with marked differences among clades. We found that clinical isolates from Pn3 clade II are less virulent and less invasive in mice compared to clade I isolates. We also observed that clade II isolates are carried for longer and at higher bacterial densities in mice compared to clade I isolates. Taken together, our data suggest that the epidemiological success of Pn3 clade II could be related to alterations in the pathogen's ability to cause invasive disease and to establish a robust carriage episode.


Assuntos
Portador Sadio , Infecções Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Animais , Streptococcus pneumoniae/patogenicidade , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação , Infecções Pneumocócicas/microbiologia , Virulência , Camundongos , Portador Sadio/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Filogenia
5.
J Infect Dis ; 229(1): 282-293, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37665210

RESUMO

BACKGROUND: Nonbacteremic community-acquired pneumonia (CAP) is a leading presentation of severe pneumococcal disease in adults. Serotype-specific urinary antigen detection (UAD) assay can detect serotypes causing pneumococcal CAP, including nonbacteremic cases, and guide recommendations for use of higher valency pneumococcal conjugate vaccines (PCVs). METHODS: Adult CAP serotype distribution studies that used both Pfizer UADs (UAD1, detects PCV13 serotypes; UAD2, detects PCV20 non-PCV13 serotypes plus 2, 9N, 17F, and 20) were identified by review of an internal study database and included if results were published. The percentages of all-cause radiologically confirmed CAP (RAD + CAP) due to individual or grouped (PCV13, PCV15, and PCV20) serotypes as detected from culture or UAD were reported. RESULTS: Six studies (n = 2, United States; n = 1 each, Germany, Sweden, Spain, and Greece) were included. The percentage of RAD + CAP among adults ≥18 years with PCV13 serotypes equaled 4.6% to 12.9%, with PCV15 serotypes 5.9% to 14.5%, and with PCV20 serotypes 7.8% to 23.8%. The percentage of RAD + CAP due to PCV15 and PCV20 serotypes was 1.1-1.3 and 1.3-1.8 times higher than PCV13 serotypes, respectively. CONCLUSIONS: PCV13 serotypes remain a cause of RAD + CAP among adults even in settings with pediatric PCV use. Higher valency PCVs among adults could address an important proportion of RAD + CAP in this population.


Assuntos
Infecções Comunitárias Adquiridas , Infecções Pneumocócicas , Pneumonia Pneumocócica , Adulto , Humanos , Criança , Streptococcus pneumoniae , Pneumonia Pneumocócica/epidemiologia , Pneumonia Pneumocócica/prevenção & controle , Sorogrupo , Infecções Pneumocócicas/prevenção & controle , Infecções Comunitárias Adquiridas/epidemiologia , Vacinas Pneumocócicas , Vacinas Conjugadas
6.
J Infect Dis ; 229(1): 19-29, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37433021

RESUMO

BACKGROUND: Ad26.RSV.preF is an adenovirus serotype 26 vector-based respiratory syncytial virus (RSV) vaccine encoding a prefusion conformation-stabilized RSV fusion protein (preF) that demonstrated robust humoral and cellular immunogenicity and showed promising efficacy in a human challenge study in younger adults. Addition of recombinant RSV preF protein might enhance RSV-specific humoral immune responses, especially in older populations. METHODS: This randomized, double-blind, placebo-controlled, phase 1/2a study compared the safety and immunogenicity of Ad26.RSV.preF alone and varying doses of Ad26.RSV.preF-RSV preF protein combinations in adults aged ≥60 years. This report includes data from cohort 1 (initial safety, n = 64) and cohort 2 (regimen selection, n = 288). Primary immunogenicity and safety analyses were performed 28 days postvaccination (cohort 2) for regimen selection. RESULTS: All vaccine regimens were well tolerated, with similar reactogenicity profiles among them. Combination regimens induced greater humoral immune responses (virus-neutralizing and preF-specific binding antibodies) and similar cellular ones (RSV-F-specific T cells) as compared with Ad26.RSV.preF alone. Vaccine-induced immune responses remained above baseline up to 1.5 years postvaccination. CONCLUSIONS: All Ad26.RSV.preF-based regimens were well tolerated. A combination regimen comprising Ad26.RSV.preF, which elicits strong humoral and cellular responses, and RSV preF protein, which increases humoral responses, was selected for further development. Clinical Trials Registration. NCT03502707.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunidade Humoral , Imunogenicidade da Vacina , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Pessoa de Meia-Idade
7.
J Biol Chem ; 299(9): 105085, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495106

RESUMO

The polysaccharide (PS) capsule is essential for immune evasion and virulence of Streptococcus pneumoniae. Existing pneumococcal vaccines are designed to elicit anticapsule antibodies; however, the effectiveness of these vaccines is being challenged by the emergence of new capsule types or variants. Herein, we characterize a newly discovered capsule type, 33E, that appears to have repeatedly emerged from vaccine type 33F via an inactivation mutation in the capsule glycosyltransferase gene, wciE. Structural analysis demonstrated that 33E and 33F share an identical repeat unit backbone [→5)-ß-D-Galf2Ac-(1→3)-ß-D-Galp-(1→3)-α-D-Galp-(1→3)-ß-D-Galf-(1→3)-ß-D-Glcp-(1→], except that a galactose (α-D-Galp) branch is present in 33F but not in 33E. Though the two capsule types were indistinguishable using conventional typing methods, the monoclonal antibody Hyp33FM1 selectively bound 33F but not 33E pneumococci. Further, we confirmed that wciE encodes a glycosyltransferase that catalyzes the addition of the branching α-D-Galp and that its inactivation in 33F strains results in the expression of the 33E capsule type. Though 33F and 33E share a structural and antigenic similarity, our pilot study suggested that immunization with a 23-valent pneumococcal PS vaccine containing 33F PS did not significantly elicit cross-opsonic antibodies to 33E. New conjugate vaccines that target capsule type 33F may not necessarily protect against 33E. Therefore, studies of new conjugate vaccines require knowledge of the newly identified capsule type 33E and reliable pneumococcal typing methods capable of distinguishing it from 33F.


Assuntos
Cápsulas Bacterianas , Genes Bacterianos , Infecções Pneumocócicas , Streptococcus pneumoniae , Transferases , Anticorpos Antibacterianos/imunologia , Projetos Piloto , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/classificação , Vacinas Pneumocócicas/imunologia , Polissacarídeos/química , Sorogrupo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas/classificação , Vacinas Conjugadas/imunologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/genética , Genes Bacterianos/genética , Genes Bacterianos/imunologia , Inativação Gênica , Transferases/genética , Transferases/metabolismo
8.
Clin Infect Dis ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016606

RESUMO

INTRODUCTION: Understanding the pneumococcal serotypes causing community-acquired pneumonia (CAP) is essential for evaluating the impact of pneumococcal vaccines. METHODS: We conducted a prospective surveillance study of adults aged ≥18 years hospitalized with CAP at 3 hospitals in Tennessee and Georgia between 1 September 2018 and 31 October 2022. We assessed for pneumococcal etiology with cultures, the BinaxNOW urinary antigen detection test, and serotype-specific urinary antigen detection assays that detect 30 pneumococcal serotypes contained in the investigational pneumococcal conjugate vaccine V116, as well as licensed vaccines PCV15 and PCV20 (except serotype 15B). The distribution of pneumococcal serotypes was calculated based on serotype-specific urinary antigen detection results. RESULTS: Among 2917 hospitalized adults enrolled with CAP, 352 (12.1%) patients had Streptococcus pneumoniae detected, including 51 (1.7%) patients with invasive pneumococcal pneumonia. The 8 most commonly detected serotypes were: 3, 22F, 19A, 35B, 9N, 19F, 23A, and 11A. Among 2917 adults with CAP, 272 (9.3%) had a serotype detected that is contained in V116, compared to 196 (6.7%) patients with a serotype contained in PCV20 (P < .001), and 168 (5.8%) patients with a serotype contained in PCV15 (P < .001). A serotype contained in V116 but not PCV15 or PCV20 was detected in 120 (4.1%) patients, representing 38.0% of serotype detections. CONCLUSIONS: Approximately 12% of adults hospitalized with CAP had S. pneumoniae detected, and approximately one-third of the detected pneumococcal serotypes were not contained in PCV15 or PCV20. Development of new pneumococcal vaccines with expanded serotype coverage has the potential to prevent a substantial burden of disease.

9.
Emerg Infect Dis ; 30(4): 770-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526209

RESUMO

In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Senegal/epidemiologia , Sorogrupo , Meio Ambiente , Dengue/epidemiologia
10.
Angiogenesis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922557

RESUMO

BACKGROUND: Pathological angiogenesis causes significant vision loss in neovascular age-related macular degeneration and other retinopathies with neovascularization (NV). Neuronal/glial-vascular interactions influence the release of angiogenic and neurotrophic factors. We hypothesized that botulinum neurotoxin serotype A (BoNT/A) modulates pathological endothelial cell proliferation through glial cell activation and growth factor release. METHODS: A laser-induced choroidal NV (CNV) was employed to investigate the anti-angiogenic effects of BoNT/A. Fundus fluorescence angiography, immunohistochemistry, and real-time PCR were used to assess BoNT/A efficacy in inhibiting CNV and the molecular mechanisms underlying this inhibition. Neuronal and glial suppressor of cytokine signaling 3 (SOCS3) deficient mice were used to investigate the molecular mechanisms of BoNT/A in inhibiting CNV via SOCS3. FINDINGS: In laser-induced CNV mice with intravitreal BoNT/A treatment, CNV lesions decreased > 30%; vascular leakage and retinal glial activation were suppressed; and Socs3 mRNA expression was induced while vascular endothelial growth factor A (Vegfa) mRNA expression was suppressed. The protective effects of BoNT/A on CNV development were diminished in mice lacking neuronal/glial SOCS3. CONCLUSION: BoNT/A suppressed laser-induced CNV and glial cell activation, in part through SOCS3 induction in neuronal/glial cells. BoNT/A treatment led to a decrease of pro-angiogenic factors, including VEGFA, highlighting the potential of BoNT/A as a therapeutic intervention for pathological angiogenesis in retinopathies.

11.
J Gene Med ; 26(1): e3576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37580111

RESUMO

BACKGROUND: Adenoviral vectors are among the most frequently used vectors for gene therapy and cancer treatment. Most vectors are derived from human adenovirus (Ad) serotype 5 despite limited applicability caused by pre-existing immunity and unfavorable liver tropism, whereas the other more than 100 known human serotypes remain largely unused. Here, we screened a library of human Ad types and identified Ad4 as a promising candidate vector. METHODS: Reporter-gene-expressing viruses representative of the natural human Ad diversity were used to transduce an array of muscle cell lines and two- or three-dimensional tumor cultures. The time-course of transgene expression was monitored by fluorescence or luminescence measurements. To generate replication-deficient Ad4 vector genomes, successive homologous recombination was applied. RESULTS: Ad4, 17 and 50 transduced human cardiomyocytes more efficiently than Ad5, whereas Ad37 was found to be superior in rhabdomyocytes. Despite its moderate transduction efficiency, Ad4 showed efficient and long-lasting gene expression in papillomavirus (HPV) positive tumor organoids. Therefore, we aimed to harness the potential of Ad4 for improved muscle transduction or oncolytic virotherapy of HPV-positive tumors. We deleted the E1 and E3 transcription units to produce first generation Ad vectors for gene therapy. The E1- and E1/E3-deleted vectors were replication-competent in HEK293 cells stably expressing E1 but not in the other cell lines tested. Furthermore, we show that the Ad5 E1 transcription unit can complement the replication of E1-deleted Ad4 vectors. CONCLUSIONS: Our Ad4-based gene therapy vector platform contributes to the development of improved Ad vectors based on non-canonical serotypes for a broad range of applications.


Assuntos
Adenovírus Humanos , Neoplasias , Infecções por Papillomavirus , Humanos , Sorogrupo , Células HEK293 , Adenoviridae/genética , Adenovírus Humanos/genética , Vetores Genéticos/genética , Terapia Genética , Neoplasias/genética , Neoplasias/terapia
12.
Dev Neurosci ; : 1-10, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723617

RESUMO

BACKGROUND: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). After gene transfer in mice, exogenous MeCP2 expression must be regulated to avoid dose-dependent toxicity. SUMMARY: The preclinical gene therapy literature for treating RTT illustrates a duly diligent progression that begins with proof-of-concept studies and advances toward the development of safer, regulated MECP2 viral genome designs. This design progression was partly achieved through international collaborative studies. In 2023, clinicians administered investigational gene therapies for RTT to patients a decade after the first preclinical gene therapy publications for RTT (clinical trial numbers NCT05606614 and NCT05898620). As clinicians take on a more prominent role in MECP2 gene therapy research, preclinical researchers may continue to test more nuanced hypotheses regarding the safety, efficacy, and mechanism of MECP2 gene transfer. KEY MESSAGE: This review summarizes the history of preclinical MECP2 gene transfer for treating RTT and acknowledges major contributions among colleagues in the field. The first clinical injections are a shared milestone.

13.
BMC Med ; 22(1): 69, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360645

RESUMO

BACKGROUND: New 15- and 20-valent pneumococcal vaccines (PCV15, PCV20) are available for both children and adults, while PCV21 for adults is in development. However, their cost-effectiveness for older adults, taking into account indirect protection and serotype replacement from a switch to PCV15 and PCV20 in childhood vaccination, remains unexamined. METHODS: We used a static model for the Netherlands to assess the cost-effectiveness of different strategies with 23-valent pneumococcal polysaccharide vaccine (PPV23), PCV15, PCV20, and PCV21 for a 65-year-old cohort from a societal perspective, over a 15-year time horizon. Childhood vaccination was varied from PCV10 to PCV13, PCV15, and PCV20. Indirect protection was assumed to reduce the incidence of vaccine serotypes in older adults by 80% (except for serotype 3, no effect), completely offset by an increase in non-vaccine serotype incidence due to serotype replacement. RESULTS: Indirect effects from childhood vaccination reduced the cost-effectiveness of vaccination of older adults, depending on the serotype overlap between the vaccines. With PCV10, PCV13, or PCV15 in children, PCV20 was more effective and less costly for older adults than PPV23 and PCV15. PCV20 costs approximately €10,000 per quality-adjusted life year (QALY) gained compared to no pneumococcal vaccination, which falls below the conventional Dutch €20,000/QALY gained threshold. However, with PCV20 in children, PCV20 was no longer considered cost-effective for older adults, costing €22,550/QALY gained. As indirect effects progressed over time, the cost-effectiveness of PCV20 for older adults further diminished for newly vaccinated cohorts. PPV23 was more cost-effective than PCV20 for cohorts vaccinated 3 years after the switch to PCV20 in children. PCV21 offered the most QALY gains, and its cost-effectiveness was minimally affected by indirect effects due to its coverage of 11 different serotypes compared to PCV20. CONCLUSIONS: For long-term cost-effectiveness in the Netherlands, the pneumococcal vaccine for older adults should either include invasive serotypes not covered by childhood vaccination or become more affordable than its current pricing for individual use.


Assuntos
Infecções Pneumocócicas , Criança , Humanos , Idoso , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Análise Custo-Benefício , Países Baixos/epidemiologia , Vacinas Pneumocócicas , Vacinação , Anos de Vida Ajustados por Qualidade de Vida , Vacinas Conjugadas
14.
J Virol ; 97(5): e0048923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37097156

RESUMO

Infectious bronchitis virus (IBV) infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host factors and fuses the viral and cell membranes. The N-terminal domain of the S1 subunit of IBV S protein binds to sialic acids, but the precise location of the sialic acid binding domain (SABD) and the role of the SABD in IBV-infected chickens remain unclear. Here, we identify the S1 N-terminal amino acid (aa) residues 19 to 227 (209 aa total) of IBV strains SD (GI-19) and GD (GI-7), and the corresponding region of M41 (GI-1), as the minimal SABD using truncated protein histochemistry and neuraminidase assays. Both α-2,3- and α-2,6-linked sialic acids on the surfaces of CEK cells can be used as attachment receptors by IBV, leading to increased infection efficiency. However, 9-O acetylation of the sialic acid glycerol side chain inhibits IBV S1 and SABD protein binding. We further constructed recombinant strains in which the S1 gene or the SABD in the GD and SD genomes were replaced with the corresponding region from M41 by reverse genetics. Infecting chickens with these viruses revealed that the virulence and nephrotropism of rSDM41-S1, rSDM41-206, rGDM41-S1, and rGDM41-206 strains were decreased to various degrees compared to their parental strains. A positive sera cross-neutralization test showed that the serotypes were changed for the recombinant viruses. Our results provide insight into IBV infection of host cells that may aid vaccine design. IMPORTANCE To date, only α-2,3-linked sialic acid has been identified as a potential host binding receptor for IBV. Here, we show the minimum region constituting the sialic acid binding domain (SABD) and the binding characteristics of the S1 subunit of spike (S) protein of IBV strains SD (GI-19), GD (GI-7), and M41 (GI-1) to various sialic acids. The 9-O acetylation modification partially inhibits IBV from binding to sialic acid, while the virus can also bind to sialic acid molecules linked to host cells through an α-2,6 linkage, serving as another receptor determinant. Substitution of the putative SABD from strain M41 into strains SD and GD resulted in reduced virulence, nephrotropism, and a serotype switch. These findings suggest that sialic acid binding has diversified during the evolution of γ-coronaviruses, impacting the biological properties of IBV strains. Our results offer insight into the mechanisms by which IBV invades host cells.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Glicoproteína da Espícula de Coronavírus , Animais , Galinhas , Vírus da Bronquite Infecciosa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oligopeptídeos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Appl Environ Microbiol ; 90(4): e0119723, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38551353

RESUMO

Klebsiella pneumoniae, especially hypervirulent K. pneumoniae (hvKP), is a common opportunistic pathogen that often causes hospital- and community-acquired infections. Capsular polysaccharide (CPS) is an important virulence factor of K. pneumoniae. Some phages encode depolymerases that can recognize and degrade bacterial polysaccharides. In this study, the lytic bacteriophage vB_KpnP_ZK1 (abbreviated as ZK1) was isolated using serotype K1 hvKP as the host. Although amino acid sequence BLAST analysis indicated that the tail fiber protein Depo16 of phage ZK1 showed no significant similarity to any reported phage depolymerases, it displayed enzymatic activities that are characteristic of phage depolymerases. After expression and purification, Depo16 could efficiently remove the capsular polysaccharide layer that surrounds the surface of serotype K1 K. pneumoniae. Although no bactericidal activity was detected, Depo16 makes serotype K1 K. pneumoniae sensitive to peritoneal macrophages (PMs). In addition, in a mouse bacteremia model of serotype K1 K. pneumoniae, 25 µg of Depo16 was effective in significantly prolonging survival. Depo16 treatment can reduce the bacterial load in blood and major tissues and alleviate tissue damage in mice. This indicates that the putative depolymerase Depo16 is a potential antibacterial agent against serotype K1 K. pneumoniae infections.IMPORTANCEKlebsiella pneumoniae often causes hospital-acquired infections and community-acquired infections. Capsular polysaccharide (CPS) is one of the crucial virulence factors of K. pneumoniae. K1 and K2 capsular-type K. pneumoniae strains are the most prevalent serotypes of hypervirulent K. pneumoniae (hvKP). In this study, a novel K. pneumoniae phage named vB_KpnP_ZK1 was isolated, and its putative depolymerase Depo16 showed low homology with other reported phage depolymerases. Depo16 can specifically degrade the K. pneumoniae K1 capsule making this serotype sensitive to peritoneal macrophages. More importantly, Depo16 showed a significant therapeutic effect in a mouse bacteremia model caused by serotype K1 K. pneumoniae. Thus, Depo16 is a potential antibacterial agent to combat serotype K1 K. pneumoniae infections.


Assuntos
Bacteriemia , Bacteriófagos , Infecções Comunitárias Adquiridas , Infecções por Klebsiella , Animais , Camundongos , Klebsiella pneumoniae , Bacteriófagos/genética , Infecções por Klebsiella/terapia , Infecções por Klebsiella/microbiologia , Fatores de Virulência/metabolismo , Polissacarídeos Bacterianos , Antibacterianos
16.
BMC Microbiol ; 24(1): 146, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678217

RESUMO

BACKGROUND: Streptococcus pneumoniae is a global cause of community-acquired pneumonia (CAP) and invasive disease in children. The CAP-IT trial (grant No. 13/88/11; https://www.capitstudy.org.uk/ ) collected nasopharyngeal swabs from children discharged from hospitals with clinically diagnosed CAP, and found no differences in pneumococci susceptibility between higher and lower antibiotic doses and shorter and longer durations of oral amoxicillin treatment. Here, we studied in-depth the genomic epidemiology of pneumococcal (vaccine) serotypes and their antibiotic resistance profiles. METHODS: Three-hundred and ninety pneumococci cultured from 1132 nasopharyngeal swabs from 718 children were whole-genome sequenced (Illumina) and tested for susceptibility to penicillin and amoxicillin. Genome heterogeneity analysis was performed using long-read sequenced isolates (PacBio, n = 10) and publicly available sequences. RESULTS: Among 390 unique pneumococcal isolates, serotypes 15B/C, 11 A, 15 A and 23B1 were most prevalent (n = 145, 37.2%). PCV13 serotypes 3, 19A, and 19F were also identified (n = 25, 6.4%). STs associated with 19A and 19F demonstrated high genome variability, in contrast to serotype 3 (n = 13, 3.3%) that remained highly stable over a 20-year period. Non-susceptibility to penicillin (n = 61, 15.6%) and amoxicillin (n = 10, 2.6%) was low among the pneumococci analysed here and was independent of treatment dosage and duration. However, all 23B1 isolates (n = 27, 6.9%) were penicillin non-susceptible. This serotype was also identified in ST177, which is historically associated with the PCV13 serotype 19F and penicillin susceptibility, indicating a potential capsule-switch event. CONCLUSIONS: Our data suggest that amoxicillin use does not drive pneumococcal serotype prevalence among children in the UK, and prompts consideration of PCVs with additional serotype coverage that are likely to further decrease CAP in this target population. Genotype 23B1 represents the convergence of a non-vaccine genotype with penicillin non-susceptibility and might provide a persistence strategy for ST types historically associated with vaccine serotypes. This highlights the need for continued genomic surveillance.


Assuntos
Antibacterianos , Infecções Comunitárias Adquiridas , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/epidemiologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Reino Unido/epidemiologia , Pré-Escolar , Antibacterianos/farmacologia , Criança , Irlanda/epidemiologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/epidemiologia , Pneumonia Pneumocócica/prevenção & controle , Lactente , Genômica , Amoxicilina/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Feminino , Sequenciamento Completo do Genoma , Genoma Bacteriano , Penicilinas/farmacologia , Nasofaringe/microbiologia
17.
J Med Virol ; 96(5): e29635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682660

RESUMO

Guangzhou has been the city most affected by the dengue virus (DENV) in China, with a predominance of DENV serotype 1 (DENV-1). Viral factors such as dengue serotype and genotype are associated with severe dengue (SD). However, none of the studies have investigated the relationship between DENV-1 genotypes and SD. To understand the association between DENV-1 genotypes and SD, the clinical manifestations of patients infected with different genotypes were investigated. A total of 122 patients with confirmed DENV-1 genotype infection were recruited for this study. The clinical manifestations, laboratory tests, and levels of inflammatory mediator factors were statistically analyzed to investigate the characteristics of clinical manifestations and immune response on the DENV-1 genotype. In the case of DENV-1 infection, the incidence of SD with genotype V infection was significantly higher than that with genotype I infection. Meanwhile, patients infected with genotype V were more common in ostealgia and bleeding significantly. In addition, levels of inflammatory mediator factors including IFN-γ, TNF-α, IL-10, and soluble vascular cell adhesion molecule 1 were higher in patients with SD infected with genotype V. Meanwhile, the concentrations of regulated upon activation normal T-cell expressed and secreted and growth-related gene alpha were lower in patients with SD infected with genotype V. The higher incidence of SD in patients infected with DENV-1 genotype V may be attributed to elevated cytokines and adhesion molecules, along with decreased chemokines.


Assuntos
Vírus da Dengue , Genótipo , Sorogrupo , Dengue Grave , Humanos , Vírus da Dengue/genética , Vírus da Dengue/classificação , China/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Dengue Grave/virologia , Dengue Grave/epidemiologia , Adulto Jovem , Citocinas/sangue , Adolescente , Idoso , Incidência , Criança , Dengue/virologia , Dengue/epidemiologia
18.
J Med Virol ; 96(6): e29727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864343

RESUMO

Dengue, a mosquito-borne viral disease, poses a significant public health challenge in Pakistan, with a significant outbreak in 2023, prompting our investigation into the serotype and genomic diversity of the dengue virus (DENV). NS-1 positive blood samples from 153 patients were referred to the National Institute of Health, Pakistan, between July and October 2023. Among these, 98 (64.1%) tested positive using multiplex real-time PCR, with higher prevalence among males (65.8%) and individuals aged 31-40. Serotyping revealed DENV-1 as the predominant serotype (84.7%), followed by DENV-2 (15.3%). Whole-genome sequencing of 18 samples (DENV-1 = 17, DENV-2 = 01) showed that DENV-1 (genotype III) samples were closely related (>99%) to Pakistan outbreak samples (2022), and approx. > 98% with USA (2022), Singapore and China (2016), Bangladesh (2017), and Pakistan (2019). The DENV-2 sequence (cosmopolitan genotype; clade IVA) shared genetic similarity with Pakistan outbreak sequences (2022), approx. > 99% with China and Singapore (2018-2019) and showed divergence from Pakistan sequences (2008-2013). No coinfection with dengue serotypes or other viruses were observed. Comparisons with previous DENV-1 sequences highlighted genetic variations affecting viral replication efficiency (NS2B:K55R) and infectivity (E:M272T). These findings contribute to dengue epidemiology understanding and underscore the importance of ongoing genomic surveillance for future outbreak responses in Pakistan.


Assuntos
Vírus da Dengue , Dengue , Surtos de Doenças , Variação Genética , Genoma Viral , Genótipo , Filogenia , Sorogrupo , Sequenciamento Completo do Genoma , Humanos , Paquistão/epidemiologia , Vírus da Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Dengue/epidemiologia , Dengue/virologia , Masculino , Adulto , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Criança , Genoma Viral/genética , Pré-Escolar , Idoso , Lactente , Sorotipagem , RNA Viral/genética
19.
J Med Virol ; 96(8): e29838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39081166

RESUMO

Enteroviruses are important human pathogens with diverse serotypes, posing a major challenge to develop vaccines for individual serotypes, the success of polio vaccines in controlling and eradicating polio, along with the recent emergence and high prevalence of enterovirus-caused infectious diseases, highlights the importance of enterovirus vaccine development. Given our previous report on enteroviruses weakened by the 2 A S/T125A mutation, we assessed the potential of the EV-A71 2A-125A mutant as a vaccine candidate to address this challenge. We found that the 2A-125A mutant caused transient mild symptoms, low viral loads, and no significant pathological changes mild pathological changes in hSCARB2-KI mice, producing long-lasting cross-neutralizing antibodies against two EV-A71 wild strains. Pre-exposure to the 2A-125A mutant substantially protected against the EV-A71 Isehara wild-type strain, causing minor pathologies, significantly reducing muscle and lung inflammation, and preventing neurological damage, with reduced viral loads in vivo. Pre-exposure also distinctly suppressed the expression of pro-inflammatory cytokines, correlating to the severity of clinical symptoms. Collectively, the EV-A71 2A-125A mutant was attenuated and could generate a robust and protective immune response, suggesting its potential as a vaccine candidate and global solution for specific enterovirus vaccine development.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Enterovirus Humano A , Infecções por Enterovirus , Vacinas Atenuadas , Carga Viral , Vacinas Virais , Animais , Enterovirus Humano A/imunologia , Enterovirus Humano A/genética , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Humanos , Desenvolvimento de Vacinas , Feminino , Mutação , Citocinas
20.
Int Microbiol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613721

RESUMO

Pathogenic Escherichia coli strains cause diseases in both humans and animals. The limiting factors to prevent as well as control infections from pathogenic E. coli strains are their pathotypes, serotypes, and drug resistance. Herein, a bacteriophage (vB_EcoM-P896) has been isolated from duck sewage. Furthermore, aside from targeting intestinal pathogenic E. coli strains like enteropathogenic E. coli, Shiga toxin-producing E. coli, entero-invasive E. coli, and enteroaggregative E. coli, vB_EcoM-P896 can cause lysis in extraintestinal pathogenic E. coli strains such as avian pathogenic E. coli. Stability analysis revealed that vB_EcoM-P896 was stable under the following conditions: temperature, 4℃-50℃; pH, 3-11. The sequencing of the vB_EcoM-P896 genome was conducted utilizing an HiSeq system (Illumina, San Diego, CA) and subjected to de novo assembling with the aid of Spades 3.11.1. The characteristics of the DNA genome were as follows: size, 170,656 bp; GC content, 40.4%; the number of putative coding regions, 294. Transmission electron microscopy analysis of morphology and genome analysis revealed that the phage vB_EcoM-P896 belonged to the order Caudovirales and the family Myoviridae. The pan-genome analysis of vB_EcoM-P896 was divided into two levels. The first level involved the analysis of 91 strains of muscle tail phages, which were mainly divided into 5 groups. The second level involved the analysis of 24 strains of myophage with high homology. Of the 1480 gene clusters, 23 were shared core genes. Neighbor-joining phylogenetic trees were constructed using the Poisson model with MEGA6.0 based on the conserved sequences of phage proteins, the amino acid sequence of the terminase large subunit, and tail fibrin. Further analysis revealed that vB_EcoM-P896 was a typical T4-like potent phage with potential clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA