Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 174(5): 1095-1105.e11, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057112

RESUMO

Transcriptional downregulation caused by intronic triplet repeat expansions underlies diseases such as Friedreich's ataxia. This downregulation of gene expression is coupled with epigenetic changes, but the underlying mechanisms are unknown. Here, we show that an intronic GAA/TTC triplet expansion within the IIL1 gene of Arabidopsis thaliana results in accumulation of 24-nt short interfering RNAs (siRNAs) and repressive histone marks at the IIL1 locus, which in turn causes its transcriptional downregulation and an associated phenotype. Knocking down DICER LIKE-3 (DCL3), which produces 24-nt siRNAs, suppressed transcriptional downregulation of IIL1 and the triplet expansion-associated phenotype. Furthermore, knocking down additional components of the RNA-dependent DNA methylation (RdDM) pathway also suppressed both transcriptional downregulation of IIL1 and the repeat expansion-associated phenotype. Thus, our results show that triplet repeat expansions can lead to local siRNA biogenesis, which in turn downregulates transcription through an RdDM-dependent epigenetic modification.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigênese Genética , Íntrons , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Ribonuclease III/genética , Transcrição Gênica , Metilação de DNA , DNA Polimerase beta/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oligonucleotídeos Antissenso/genética , Fenótipo , Interferência de RNA , Transgenes , Expansão das Repetições de Trinucleotídeos
2.
RNA ; 29(4): 396-401, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669888

RESUMO

With over 15 FDA approved drugs on the market and numerous ongoing clinical trials, RNA therapeutics, such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs), have shown great potential to treat human disease. Their mechanism of action is based entirely on the sequence of validated disease-causing genes without the prerequisite knowledge of protein structure, activity or cellular location. In contrast to small molecule therapeutics that passively diffuse across the cell membrane's lipid bilayer, RNA therapeutics are too large, too charged, and/or too hydrophilic to passively diffuse across the cellular membrane and instead are taken up into cells by endocytosis. However, endosomes are also composed of a lipid bilayer barrier that results in endosomal capture and retention of 99% of RNA therapeutics with 1% or less entering the cytoplasm. Although this very low level of endosomal escape has proven sufficient for liver and some CNS disorders, it is insufficient for the vast majority of extra-hepatic diseases. Unfortunately, there are currently no acceptable solutions to the endosomal escape problem. Consequently, before RNA therapeutics can be used to treat widespread human disease, the rate-limiting delivery problem of endosomal escape must be solved in a nontoxic manner.


Assuntos
Endossomos , Bicamadas Lipídicas , Humanos , Bicamadas Lipídicas/metabolismo , Endossomos/metabolismo , Endocitose , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , RNA Interferente Pequeno/metabolismo , Proteínas/metabolismo
3.
RNA ; 29(4): 402-414, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725319

RESUMO

Glycol nucleic acid (GNA) is an acyclic nucleic acid analog connected via phosphodiester bonds. Crystal structures of RNA-GNA chimeric duplexes indicated that nucleotides of the right-handed (S)-GNA were better accommodated in the right-handed RNA duplex than were the left-handed (R)-isomers. GNA nucleotides adopt a rotated nucleobase orientation within all duplex contexts, pairing with complementary RNA in a reverse Watson-Crick mode, which explains the inabilities of GNA C and G to form strong base pairs with complementary nucleotides. Transposition of the hydrogen bond donor and acceptor pairs using novel (S)-GNA isocytidine and isoguanosine nucleotides resulted in stable base-pairing with the complementary G and C ribonucleotides, respectively. GNA nucleotide or dinucleotide incorporation into an oligonucleotide increased resistance against 3'-exonuclease-mediated degradation. Consistent with the structural observations, small interfering RNAs (siRNAs) modified with (S)-GNA had greater in vitro potencies than identical sequences containing (R)-GNA. (S)-GNA is well tolerated in the seed regions of antisense and sense strands of a GalNAc-conjugated siRNA in vitro. The siRNAs containing a GNA base pair in the seed region had in vivo potency when subcutaneously injected into mice. Importantly, seed pairing destabilization resulting from a single GNA nucleotide at position 7 of the antisense strand mitigated RNAi-mediated off-target effects in a rodent model. Two GNA-modified siRNAs have shown an improved safety profile in humans compared with their non-GNA-modified counterparts, and several additional siRNAs containing the GNA modification are currently in clinical development.


Assuntos
Ácidos Nucleicos , Humanos , Animais , Camundongos , Ácidos Nucleicos/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , Terapêutica com RNAi , Glicóis/química , Nucleotídeos/química , Conformação de Ácido Nucleico
4.
Semin Cell Dev Biol ; 124: 82-84, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34257038

RESUMO

The immunocompetence and regeneration potential of the dental pulp and its surrounding apical tissues have been investigated extensively in the field of endodontics. While research on the role of non-coding RNAs in these tissues is still in its infancy, it is envisioned that improved understanding of the regulatory function of ncRNAs in pulpal and periapical immune response will help prevent or treat endodontic disease. Of particular importance is the role of these RNAs in regenerating the dentin-pulp complex. In this review, we highlight recent progress on the role of non-coding RNAs in the immune response to endodontic infection as well as the repair and regenerative response to injury.

5.
Plant J ; 113(1): 186-204, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403224

RESUMO

Transient transgenic expression accelerates pharming and facilitates protein studies in plants. One embodiment of the approach involves leaf infiltration of Agrobacterium strains whose T-DNA is engineered with the gene(s) of interest. However, gene expression during 'agro-infiltration' is intrinsically and universally impeded by the onset of post-transcriptional gene silencing (PTGS). Nearly 20 years ago, a simple method was developed, whereby co-expression of the tombusvirus-encoded P19 protein suppresses PTGS and thus enhances transient gene expression. Yet, how PTGS is activated and suppressed by P19 during the process has remained unclear to date. Here, we address these intertwined questions in a manner also rationalizing how vastly increased protein yields are achieved using a minimal viral replicon as a transient gene expression vector. We also explore, in side-by-side analyses, why some proteins do not accumulate to the expected high levels in the assay, despite vastly increased mRNA levels. We validate that enhanced co-expression of multiple constructs is achieved within the same transformed cells, and illustrate how the P19 system allows rapid protein purification for optimized downstream in vitro applications. Finally, we assess the suitability of the P19 system for subcellular localization studies - an originally unanticipated, yet increasingly popular application - and uncover shortcomings of this specific implement. In revisiting the P19 system using contemporary knowledge, this study sheds light onto its hitherto poorly understood mechanisms while further illustrating its versatility but also some of its limits.


Assuntos
Agrobacterium , Folhas de Planta , Plantas Geneticamente Modificadas/genética , Interferência de RNA , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas de Fluorescência Verde/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Nicotiana/metabolismo , RNA Interferente Pequeno/genética
6.
Plant Mol Biol ; 114(3): 47, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632206

RESUMO

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.


Assuntos
Canabinoides , Cannabis , RNA Antissenso/análise , RNA Antissenso/genética , RNA Antissenso/metabolismo , Cannabis/genética , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Genoma de Planta
7.
Small ; 20(11): e2306902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37932003

RESUMO

The therapeutic potential of small interfering RNAs (siRNAs) is limited by their poor stability and low cellular uptake. When formulated as spherical nucleic acids (SNAs), siRNAs are resistant to nuclease degradation and enter cells without transfection agents with enhanced activity compared to their linear counterparts; however, the gene silencing activity of SNAs is limited by endosomal entrapment, a problem that impacts many siRNA-based nanoparticle constructs. To increase cytosolic delivery, SNAs are formulated using calcium chloride (CaCl2 ) instead of the conventionally used sodium chloride (NaCl). The divalent calcium (Ca2+ ) ions remain associated with the multivalent SNA and have a higher affinity for SNAs compared to their linear counterparts. Importantly, confocal microscopy studies show a 22% decrease in the accumulation of CaCl2 -salted SNAs within the late endosomes compared to NaCl-salted SNAs, indicating increased cytosolic delivery. Consistent with this finding, CaCl2 -salted SNAs comprised of siRNA and antisense DNA all exhibit enhanced gene silencing activity (up to 20-fold), compared to NaCl-salted SNAs regardless of sequence or cell line (U87-MG and SK-OV-3) studied. Moreover, CaCl2 -salted SNA-based forced intercalation probes show improved cytosolic mRNA detection.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/genética , Cloreto de Cálcio , Cloreto de Sódio , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Endossomos/metabolismo
8.
New Phytol ; 243(3): 1154-1171, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822646

RESUMO

Cross-kingdom RNA interference (RNAi) is a crucial mechanism in host-pathogen interactions, with RNA-dependent RNA polymerase (RdRP) playing a vital role in signal amplification during RNAi. However, the role of pathogenic fungal RdRP in siRNAs generation and the regulation of plant-pathogen interactions remains elusive. Using deep sequencing, molecular, genetic, and biochemical approaches, this study revealed that VmRDR2 of Valsa mali regulates VmR2-siR1 to suppress the disease resistance-related gene MdLRP14 in apple. Both VmRDR1 and VmRDR2 are essential for the pathogenicity of V. mali in apple, with VmRDR2 mediating the generation of endogenous siRNAs, including an infection-related siRNA, VmR2-siR1. This siRNA specifically degrades the apple intracellular LRR-RI protein gene MdLRP14 in a sequence-specific manner, and overexpression of MdLRP14 enhances apple resistance against V. mali, which can be suppressed by VmR2-siR1. Conversely, MdLRP14 knockdown reduces resistance. In summary, this study demonstrates that VmRDR2 contributes to the generation of VmR2-siR1, which silences the host's intracellular LRR protein gene, thereby inhibiting host resistance. These findings offer novel insights into the fungi-mediated pathogenicity mechanism through RNAi.


Assuntos
Resistência à Doença , Malus , Doenças das Plantas , Proteínas de Plantas , Interferência de RNA , Malus/genética , Malus/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Genes de Plantas
9.
RNA Biol ; 21(1): 81-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39498940

RESUMO

Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.


Assuntos
Plasticidade Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Melanoma , RNA Longo não Codificante , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Plasticidade Celular/genética , Transição Epitelial-Mesenquimal/genética , Fenótipo , Animais , Terapia de Alvo Molecular , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/terapia , Biomarcadores Tumorais/genética
10.
Mol Biol Rep ; 51(1): 107, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227137

RESUMO

Various viruses cause viral infection, and these viruses have different microscopic sizes, genetic material, and morphological forms. Due to a viral infection, the host body induces defense mechanisms that activate the innate and adaptive immune system. sncRNAs are involved in various biological processes and play an essential role in antiviral response in viruses including ZIKV, HCV, DENV, SARS-CoV, and West Nile virus, and regulate the complex interactions between the viruses and host cells. This review discusses the role of miRNAs, siRNAs, piRNAs, and tiRNAs in antiviral response. Cellular miRNAs bind with virus mRNA and perform their antiviral response in multiple viruses. However, the chemical modifications of miRNA necessary to avoid nuclease attack, which is then involved with intracellular processing, have proven challenging for therapeutic replacement of miRNAs. siRNAs have significant antiviral responses by targeting any gene of interest along the correct nucleotide of targeting mRNA. Due to this ability, siRNAs have valuable characteristics in antiviral response for therapeutic purposes. Additionally, the researchers noted the involvement of piRNAs and tiRNAs in the antiviral response, yet their findings were deemed insignificant.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Infecção por Zika virus , Zika virus , Humanos , RNA de Interação com Piwi , RNA Interferente Pequeno/genética , RNA Mensageiro , Antivirais
11.
Arch Insect Biochem Physiol ; 117(1): e22148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39250333

RESUMO

Our previous research reported the influence of 50 µM selenium (Se) on the cytosolization (endocytosis) pathway, which in turn stimulates the growth and development of Bombyx mori. Lately, dynamin is recognized as one of the key proteins in endocytosis. To explore the underlying mechanisms of Se impact, the dynamin gene was knocked down by injecting siRNAs (Dynamin-1, Dynamin-2, and Dynamin-3). This was followed by an analysis of the target gene and levels of silk protein genes, as well as growth and developmental indices, Se-enrichment capacity, degree of oxidative damage, and antioxidant capacity of B. mori. Our findings showed a considerable decrease in the relative expression of the dynamin gene in all tissues 24 h after the interference and a dramatic decrease in the silkworm body after 48 h. RNAi dynamin gene decreased the silkworm body weight, cocoon shell weight, and the ratio of cocoon. In the meantime, malondialdehyde level increased and glutathione level and superoxide dismutase/catalase activities decreased. 50 µM Se markedly ameliorated these growth and physiological deficits as well as decreases in dynamin gene expression. On the other hand, there were no significant effects on fertility (including produced eggs and laid eggs) between the interference and Se treatments. Additionally, the Se content in the B. mori increased after the dynamin gene interference. The dynamin gene was highly expressed in the silk gland and declined significantly after interference. Among the three siRNAs (Dynamin-1, Dynamin-2, and Dynamin-3), the dynamin-2 displayed the highest interference effects to target gene expression. Our results demonstrated that 50 µM Se was effective to prevent any adverse effects caused by dynamin knockdown in silkworms. This provides practical implications for B. mori breeding industry.


Assuntos
Bombyx , Dinaminas , Técnicas de Silenciamento de Genes , Selênio , Animais , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Bombyx/efeitos dos fármacos , Selênio/farmacologia , Dinaminas/genética , Dinaminas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Larva/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Feminino , Seda
12.
BMC Musculoskelet Disord ; 25(1): 386, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762732

RESUMO

OBJECTIVE: Duchenne muscular dystrophy (DMD) is a devastating X-linked neuromuscular disorder caused by various defects in the dystrophin gene and still no universal therapy. This study aims to identify the hub genes unrelated to excessive immune response but responsible for DMD progression and explore therapeutic siRNAs, thereby providing a novel treatment. METHODS: Top ten hub genes for DMD were identified from GSE38417 dataset by using GEO2R and PPI networks based on Cytoscape analysis. The hub genes unrelated to excessive immune response were identified by GeneCards, and their expression was further verified in mdx and C57 mice at 2 and 4 months (M) by (RT-q) PCR and western blotting. Therapeutic siRNAs were deemed as those that could normalize the expression of the validated hub genes in transfected C2C12 cells. RESULTS: 855 up-regulated and 324 down-regulated DEGs were screened from GSE38417 dataset. Five of the top 10 hub genes were considered as the candidate genes unrelated to excessive immune response, and three of these candidates were consistently and significantly up-regulated in mdx mice at 2 M and 4 M when compared with age-matched C57 mice, including Col1a2, Fbn1 and Fn1. Furthermore, the three validated up-regulated candidate genes can be significantly down-regulated by three rational designed siRNA (p < 0.0001), respectively. CONCLUSION: COL1A2, FBN1 and FN1 may be novel biomarkers for DMD, and the siRNAs designed in our study were help to develop adjunctive therapy for Duchenne muscular dystrophy.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , RNA Interferente Pequeno , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Camundongos , Modelos Animais de Doenças , Masculino , Humanos , Mapas de Interação de Proteínas
13.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612895

RESUMO

Expression of miR-21 has been found to be altered in almost all types of cancers, and it has been classified as an oncogenic microRNA. In addition, the expression of tumor suppressor gene RECK is associated with miR-21 overexpression in high-grade cervical lesions. In the present study, we analyze the role of miR-21 in RECK gene regulation in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression using siRNAs. We analyzed the expression of miR-21 and RECK, as well as functional effects on cell proliferation and migration. We found that in cervical cancer cells, there was an inverse correlation between miR-21 expression and RECK mRNA and protein expression. SiRNAs to miR-21 increased luciferase reporter activity in construct plasmids containing the RECK-3'-UTR microRNA response elements MRE21-1, MRE21-2, and MRE21-3. The role of miR-21 in cell proliferation was also analyzed, and cancer cells transfected with siRNAs exhibited a markedly reduced cell proliferation and migration. Our findings indicate that miR-21 post-transcriptionally down-regulates the expression of RECK to promote cell proliferation and cell migration inhibition in cervical cancer cell survival. Therefore, miR-21 and RECK may be potential therapeutic targets in gene therapy for cervical cancer.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Transdução de Sinais , Proliferação de Células/genética , Movimento Celular/genética , RNA Interferente Pequeno , MicroRNAs/genética , Agitação Psicomotora , RNA de Cadeia Dupla , Proteínas Ligadas por GPI/genética
14.
RNA ; 27(6): 710-724, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33853897

RESUMO

Target-directed microRNA (miRNA) degradation (TDMD), which is mediated by the protein ZSWIM8, plays a widespread role in shaping miRNA abundances across bilateria. Some endogenous small interfering RNAs (siRNAs) of Drosophila cells have target sites resembling those that trigger TDMD, raising the question as to whether they too might undergo such regulation by Dora, the Drosophila ZSWIM8 homolog. Here, we find that some of these siRNAs are indeed sensitive to Dora when loaded into Ago1, the Argonaute paralog that preferentially associates with miRNAs. Despite this sensitivity when loaded into Ago1, these siRNAs are not detectably regulated by target-directed degradation because most molecules are loaded into Ago2, the Argonaute paralog that preferentially associates with siRNAs, and we find that siRNAs and miRNAs loaded into Ago2 are insensitive to Dora. One explanation for the protection of these small RNAs loaded into Ago2 is that these small RNAs are 2'-O-methylated at their 3' termini. However, 2'-O-methylation does not protect these RNAs from Dora-mediated target-directed degradation, which indicates that their protection is instead conferred by features of the Ago2 protein itself. Together, these observations clarify the requirements for regulation by target-directed degradation and expand our understanding of the role of 2'-O-methylation in small-RNA biology.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Drosophila/metabolismo , MicroRNAs/metabolismo , Estabilidade de RNA , RNA Interferente Pequeno/metabolismo , Animais , Linhagem Celular , Drosophila , Metilação
15.
Mol Pharm ; 20(12): 6079-6089, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37941379

RESUMO

Nucleic acid technologies with designed intracellular delivery systems are some of the most promising therapies of the future. Small interfering (si)RNAs inhibit gene expression and protein synthesis and may complement current vaccines with faster design and production. Although successful delivery remains an issue, delivery peptides may help to fill this gap. Here, we address this issue by applying bioinformatic approaches to design new putative cell delivery peptides and siRNAs for COVID-19 variants and other related viral diseases. Of the 29,880 RNA sequences analyzed, 62 were identified in silico as able to target the virus mRNA sequence, and from the 9,984 peptide sequences analyzed, 10 were selected as delivery peptides. From the latter, we further performed in vitro studies of the two best-ranked peptides and compared them with the broadly used TAT delivery peptide. One of them, seq5, displayed better internalization results with about double intensity signal compared to TAT after a 1 h incubation time in GFP-HeLa cells. This peptide has, thus, the features of a delivery peptide and could be used for cargo intracellular delivery.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Interferente Pequeno/genética , SARS-CoV-2/genética , Células HeLa , Peptídeos/metabolismo
16.
Pharmacol Res ; 187: 106562, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410673

RESUMO

Lipopolysaccharide binding protein (LBP) knockout mice models are protected against the deleterious effects of major acute inflammation but its possible physiological role has been less well studied. We aimed to evaluate the impact of liver LBP downregulation (using nanoparticles containing siRNA- Lbp) on liver steatosis, inflammation and fibrosis during a standard chow diet (STD), and in pathological non-obesogenic conditions, under a methionine and choline deficient diet (MCD, 5 weeks). Under STD, liver Lbp gene knockdown led to a significant increase in gene expression markers of liver inflammation (Itgax, Tlr4, Ccr2, Ccl2 and Tnf), liver injury (Krt18 and Crp), fibrosis (Col4a1, Col1a2 and Tgfb1), endoplasmic reticulum (ER) stress (Atf6, Hspa5 and Eif2ak3) and protein carbonyl levels. As expected, the MCD increased hepatocyte vacuolation, liver inflammation and fibrosis markers, also increasing liver Lbp mRNA. In this model, liver Lbp gene knockdown resulted in a pronounced worsening of the markers of liver inflammation (also including CD68 and MPO activity), fibrosis, ER stress and protein carbonyl levels, all indicative of non-alcoholic steatohepatitis (NASH) progression. At cellular level, Lbp gene knockdown also increased expression of the proinflammatory mediators (Il6, Ccl2), and markers of fibrosis (Col1a1, Tgfb1) and protein carbonyl levels. In agreement with these findings, liver LBP mRNA in humans positively correlated with markers of liver damage (circulating hsCRP, ALT activity, liver CRP and KRT18 gene expression), and with a network of genes involved in liver inflammation, innate and adaptive immune system, endoplasmic reticulum stress and neutrophil degranulation (all with q-value<0.05). In conclusion, current findings suggest that a significant downregulation in liver LBP levels promotes liver oxidative stress and inflammation, aggravating NASH progression, in physiological and pathological non-obesogenic conditions.


Assuntos
Cirrose Hepática , Fígado , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Inflamação/genética , Cirrose Hepática/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , RNA Mensageiro/metabolismo
17.
Mol Biol Rep ; 50(4): 3011-3022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36652154

RESUMO

BACKGROUND: Eukaryotic elongation factor 2 kinase (eukaryotic elongation factor 2 kinase, eEF2K) is a calcium calmodulin dependent protein kinase that keeps the highest energy consuming cellular process of protein synthesis under check through negative regulation. eEF2K pauses global protein synthesis rates at the translational elongation step by phosphorylating its only kown substrate elongation factor 2 (eEF2), a unique translocase activity in ekaryotic cells enabling the polypeptide chain elongation. Therefore, eEF2K is thought to preserve cellular energy pools particularly upon acute development of cellular stress conditions such as nutrient deprivation, hypoxia, or infections. Recently, high expression of this enzyme has been associated with poor prognosis in an array of solid tumor types. Therefore, in a growing number of studies tremendous effort is being directed to the development of treatment methods aiming to suppress eEF2K as a novel therapeutic approach in the fight against cancer. METHODS: In our study, we aimed to investigate the changes in the tumorigenicity of chordoma cells in presence of gene silencing for eEF2K. Taking a transient gene silencing approach using siRNA particles, eEF2K gene expression was suppressed in chordoma cells. RESULTS: Silencing eEF2K expression was associated with a slight increase in cellular proliferation and a decrease in death rates. Furthermore, no alteration in the sensitivity of chordoma cells to chemotherapy was detected in response to the decrease in eEF2K expression which intriguingly promoted suppression of cell migratory and invasion related properties. CONCLUSION: Our findings indicate that the loss of eEF2K expression in chordoma cell lines results in the reduction of metastatic capacity.


Assuntos
Cordoma , Quinase do Fator 2 de Elongação , Humanos , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/metabolismo , Cordoma/genética , Fosforilação , Linhagem Celular , Transdução de Sinais
18.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511335

RESUMO

Most anticancer treatments only induce the death of ordinary cancer cells, while cancer stem cells (CSCs) in the quiescent phase of cell division are difficult to kill, which eventually leads to cancer drug resistance, metastasis, and relapse. Therefore, CSCs are also important in targeted cancer therapy. Herein, we developed dual-targeted and glutathione (GSH)-responsive novel nanoparticles (SSBPEI-DOX@siRNAs/iRGD-PEG-HA) to efficiently and specifically deliver both doxorubicin and small interfering RNA cocktails (siRNAs) (survivin siRNA, Bcl-2 siRNA and ABCG2 siRNA) to ovarian CSCs. They are fabricated via electrostatic assembly of anionic siRNAs and cationic disulfide bond crosslinking-branched polyethyleneimine-doxorubicin (SSBPEI-DOX) as a core. Interestingly, the SSBPEI-DOX could be degraded into low-cytotoxic polyethyleneimine (PEI). Because of the enrichment of glutathione reductase in the tumor microenvironment, the disulfide bond (-SS-) in SSBPEI-DOX can be specifically reduced to promote the controlled release of siRNA and doxorubicin (DOX) in the CSCs. siRNA cocktails could specifically silence three key genes in CSCs, which, in combination with the traditional chemotherapy drug DOX, induces apoptosis or necrosis of CSCs. iRGD peptides and "sheddable" hyaluronic acid (HA) wrapped around the core could mediate CSC targeting by binding with neuropilin-1 (NRP1) and CD44 to enhance delivery. In summary, the multifunctional delivery system SSBPEI-DOX@siRNAs/iRGD-PEG-HA nanoparticles displays excellent biocompatibility, accurate CSC-targeting ability, and powerful anti-CSC ability, which demonstrates its potential value in future treatments to overcome ovarian cancer metastasis and relapse. To support this work, as exhaustive search was conducted for the literature on nanoparticle drug delivery research conducted in the last 17 years (2007-2023) using PubMed, Web of Science, and Google Scholar.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Feminino , Humanos , RNA Interferente Pequeno/metabolismo , Polietilenoimina/química , Doxorrubicina/uso terapêutico , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Células-Tronco Neoplásicas/metabolismo , Dissulfetos , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958988

RESUMO

The outbreak of Fusarium head blight (FHB) poses a serious threat to wheat production as it leads to both significant yield losses and accumulation of several mycotoxins including deoxynivalenol (DON) in the grains, which are harmful to human and livestock. To date, hundreds of FHB-resistance-related quantitative trait loci (QTLs) have been reported, but only a few of them have been cloned and used for breeding. Small interfering RNAs (siRNA) have been reported in plants to mediate host defense against pathogens, but they have rarely been reported in wheat-FHB interaction. In order to identify the key siRNAs that can potentially be used in the improvement of resistance to FHB, siRNAs from the spikes of an FHB-resistant variety Sumai 3 and an FHB-susceptible variety of Chinese Spring (CS) were sequenced after F. graminearum infection and mock inoculation, respectively. The expression patterns of the siRNAs of interest were analyzed. A total of 4019 siRNAs of high-confidence were identified, with 131 being CS-specific, 309 Sumai 3-specific and 3071 being common in both varieties. More than 87% of these siRNAs were 24 nt in length. An overall down-regulation trend was found for siRNAs in the spikes of both varieties after being infected with F. graminearum. The expression patterns for Triticum aestivum Dicer-like 3 (TaDCL3) that synthesizes 24 nt siRNAs were validated by qRT-PCR, which were positively correlated with those of the siRNAs. A total of 85% of the differentially expressed genes putatively targeted by the siRNAs were significantly up-regulated after infection, showing a negative correlation with the overall down-regulated expression of siRNAs. Interestingly, the majority of the up-regulated genes are annotated as disease resistance. These results suggested that the inhibition of siRNA by F. graminearum up-regulated the disease resistance genes, which were putatively suppressed by siRNAs through RNA-directed DNA methylation (RdDM). Consequently, the resistant capability to F. graminearum infection was enhanced. This study provides novel clues for investigating the function of siRNA in wheat-F. graminearum interaction.


Assuntos
Fusariose , Fusarium , Humanos , Triticum/genética , Triticum/metabolismo , Resistência à Doença/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Melhoramento Vegetal , Fusarium/genética , Doenças das Plantas/genética
20.
Biochem Biophys Res Commun ; 605: 97-103, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35316769

RESUMO

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are crucial for plant growth and development via mediating post-transcriptional gene silencing. In wild-type Arabidopsis, DICER-LIKE 2 (DCL2)-dependent 22-nt siRNAs are rare, whereas DCL1 and DCL4-dependent 21-nt miRNAs and siRNAs are highly abundant. DCL4 naturally inhibits DCL2 in producing abundant 22-nt siRNAs from endogenous transcripts, but whether DCL1 suppresses endogenous 22-nt siRNA production and the extent of repression are still unknown. Here, we report that DCL1 and DCL2 cleaved both miRNA precursors and coding transcript-derived double-stranded RNAs. In a dcl1 dcl4 double mutant, massive 22-nt siRNAs were produced from endogenous protein-coding genes (genic siRNAs). Compared with wild-type, the 22-nt genic siRNAs derived from the Nitrate Reductase 1 (NIA1), NIA2, DIACYLGLYCEROL ACYLTRANSFERASES 3 (DGAT3), SUPPRESSOR OF MAX2 1-LIKE 5 (SMXL5), and SMXL4 in dcl1 dcl4 increased up to 95%. Our analysis further indicated that the 22-nt genic siRNAs in dcl1 dcl4 were mainly loaded into ARGONAUTE 1 (AGO1) or AGO2. Thus, our results demonstrated that both DCL1 and DCL4 safeguard post-transcriptional gene silencing, preventing the production of DCL2-dependent 22-nt genic siRNAs from disrupting plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA