Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Allergol Immunopathol (Madr) ; 52(1): 71-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38186196

RESUMO

BACKGROUND: Melanoma is the most aggressive form of skin cancer. Melanoma stem cells (MSCs) are one of the driving forces of melanoma invasion and metastasis. Therefore, it is of great significance to explore the mechanisms that maintain the stemness of MSCs. In this study, CD147-positive (CD147+) MSCs derived from A375 cell line were characterized. METHODS: Side population (SP) and non-SP cells were sorted from A375 cells. Quantitative real-time polymerase chain reaction and Western blot analysis were conducted to determine the expression of CD147 in SP and non-SP cells. Subsequently, CD147+ and CD147-negative (CD147-) cells were isolated from SP cells. Stem cell characteristics and metastatic potential of CD147+/- antigen-presenting cells were identified by sphere-forming, wound-healing, and transwell assays. Western blot analysis was performed to evaluate the protein levels of transforming growth factor-beta1 (TGFß1) and neurogenic locus notch homolog protein 1 (Notch1) signaling pathway. Xenograft tumor experiments were conducted to investigate the tumorigenic capacity of CD147+ cells in vivo. RESULTS: CD147 was highly expressed in SP cells of A375 cell line. CD147+ cells have stronger abilities for sphere forming, migration, and invasion in vitro. The protein levels of TGFß1, notch1, jagged1, and Hes1 were higher in CD147+ cells than in CD147- cells. Moreover, the CD147+ cells showed stronger tumorigenic and metastatic potential in vivo. CONCLUSION: SP cells of A375 cell line expressed high levels of CD147, and CD147+ SP cells possessed much stronger stem-like characteristics and motility, which is linked to the activation of TGFß and notch pathways.


Assuntos
Melanoma , Humanos , Células-Tronco , Movimento Celular
2.
Med Princ Pract ; : 1-11, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39068919

RESUMO

Ovarian cancer is one of the most common gynecologic malignancies. Recurrence and metastasis often occur after treatment, and it has the highest mortality rate of all gynecological tumors. Cancer stem cells (CSCs) are a small population of cells with the ability of self-renewal, multidirectional differentiation, and infinite proliferation. They have been shown to play an important role in tumor growth, metastasis, drug resistance, and angiogenesis. Ovarian cancer side population (SP) cells, a type of CSC, have been shown to play roles in tumor formation, colony formation, xenograft tumor formation, ascites formation, and tumor metastasis. The rapid progression of tumor angiogenesis is necessary for tumor growth; however, many of the mechanisms driving this process are unclear as is the contribution of CSCs. The aim of this review was to document the current state of knowledge of the molecular mechanism of ovarian cancer stem cells (OCSCs) in regulating tumor angiogenesis.

3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834918

RESUMO

Luminal breast cancer subtypes respond poorly to endocrine and trastuzumab treatments due to cellular heterogeneity arising from the phenotype transitions, accounted for mainly by the loss of receptor expression. The origins of basal-like and human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer subtypes have been attributed to genetic and protein modifications in stem-like cells and luminal progenitor cell populations, respectively. The post-transcriptional regulation of protein expression is known to be influenced by microRNAs (miRNAs) that are deemed to be master regulators of several biological processes in breast tumorigenesis and progression. Our objective was to identify the fractions of luminal breast cancer cells that share stemness potentials and marker profiles and to elucidate the molecular regulatory mechanism that drives transitions between fractions, leading to receptor discordances. Established breast cancer cell lines of all prominent subtypes were screened for the expression of putative cancer stem cell (CSC) markers and drug transporter proteins using a side population (SP) assay. Flow-cytometry-sorted fractions of luminal cancer cells implanted in immunocompromised mice generated a pre-clinical estrogen receptor alpha (ERα+) animal model with multiple tumorigenic fractions displaying differential expression of drug transporters and hormone receptors. Despite an abundance of estrogen receptor 1 (ESR1) gene transcripts, few fractions transitioned to the triple-negative breast cancer (TNBC) phenotype with a visible loss of ER protein expression and a distinct microRNA expression profile that is reportedly enriched in breast CSCs. The translation of this study has the potential to provide novel therapeutic miRNA-based targets to counter the dreaded subtype transitions and the failure of antihormonal therapies in the luminal breast cancer subtype.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/metabolismo , MicroRNAs/genética , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico , Mama/metabolismo , Fenótipo , Receptores de Progesterona/genética
4.
Molecules ; 28(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36677705

RESUMO

Immunogenic proteins in cancer are relevant targets for drug delivery. In Photodynamic Therapy (PDT), surface antigens have previously been used to deliver the photosensitizer (PS) to the tumor microenvironment for specific targeting. However, can we target intracellular antigens to achieve more than surface recognition? Can we possibly increase PS intracellular localization and prevent drug efflux at the same time? In this study, these questions were addressed by using a compound that can not only specifically recognize and bind to intracellular E6 oncoproteins in Human Papillomavirus (HPV)-Transformed cancer cells, but is also capable of enhancing transmembrane uptake using the cells' own active transport mechanisms. HPV-transformed SiHa cells were cultured in vitro, and the resistant subpopulation was isolated using Magnetic Activated Cell Sorting (MACS). PDT was performed on four different cell types with varying physiognomies in terms of HPV oncoprotein expression and physiological form. Results demonstrated that tagging PSs on a carrier molecule that specifically delivers the PS inside the cells that express the target proteins enhanced both cellular uptake and retention of the PS even in the presence of drug efflux proteins on resistant subpopulations. These findings provide insight into the possibility of preventing cell-mediated resistance to PDT.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Fármacos Fotossensibilizantes/farmacologia , Neoplasias do Colo do Útero/patologia , Células-Tronco Neoplásicas/metabolismo , Proteínas E7 de Papillomavirus , Microambiente Tumoral
5.
Dev Growth Differ ; 64(6): 290-296, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35839785

RESUMO

Xenopus laevis tadpoles have a strong regenerative ability and can regenerate their whole tails after tail amputation. Lineage-restricted tissue stem cells are thought to provide sources for the regenerating tissues by producing undifferentiated progenitor cells in response to tail amputation. However, elucidating the behavioral dynamics of tissue stem cells during tail regeneration is difficult because of their rarity, and there are few established methods of isolating these cells in amphibians. Here, to detect and analyze rare tissue stem cells, we attempted to enrich tissue stem cells from tail regeneration buds. High Hoechst dye efflux capacity is thought to be a common characteristic of several types of mammalian tissue stem cells; these stem cells, designated as the "side population (SP)," may be enriched by flow cytometry (SP method). To evaluate the effectiveness of stem cell enrichment using the SP method in regenerating X. laevis tadpole tails, we performed single-cell RNA sequencing (scRNA-seq) of SP cells from regeneration buds and analyzed the frequency of satellite cells, which are muscle stem/progenitor cells expressing pax7. The pax7-expressing cells were enriched in the SP compared with whole normal tails and regeneration buds. Furthermore, hes1-expressing cells, which are assumed to be neural stem/progenitor cells, were also enriched in the SP. Our findings suggest that the SP method is efficient for successfully enriching tissue stem cells in regenerating X. laevis tadpole tails, indicating that the combination of the SP method and scRNA-seq is useful for studying tissue stem cells that contribute to tail regeneration.


Assuntos
Células-Tronco , Cauda , Animais , Larva/genética , Mamíferos , Xenopus laevis/genética
6.
Neurol Sci ; 43(1): 399-410, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34032944

RESUMO

INTRODUCTION: Spinal muscular atrophy (SMA), an autosomal recessive neurodegenerative disorder of alpha motor neurons of spinal cord associated with progressive muscle weakness and hypotonia, is the most common genetic cause of infant mortality. Although there is few promising treatment for SMA, but the field of translational research is active in it, and stem cell-based therapy clinical trials or case studies are ongoing. Combination of different therapeutic approaches for noncurative treatments may increase their effectiveness and compliance of patients. We present a phase 1 clinical trial in patients with SMA1 who received side population adipose-derived mesenchymal stem cells (SPADMSCs). METHODS: The intervention group received three intrathecal administrations of escalating doses of SPADMSCs and followed until 24 months or the survival time. The safety analysis was assessed by controlling the side effects and efficacy evaluations performed by the Hammersmith Infant Neurological Examination (HINE), Ballard score, and electrodiagnostic (EDX) evaluation. These evaluations were performed before intervention and at the end of the follow-up. RESULTS: The treatment was safe and well tolerated, without any adverse event related to the stem cell administration. One of the patients in the intervention group was alive after 24 months of study follow-up. He is a non-sitter 62-month-old boy with appropriate weight gain and need for noninvasive ventilation (NIV) for about 8 h per day. Clinical scores, need for supportive ventilation, and number of hospitalizations were not meaningful parameters in the response of patients in the intervention and control groups. All five patients in the intervention group showed significant improvement in the motor amplitude response of the tibial nerve (0.56mV; p: 0.029). CONCLUSION: This study showed that SPADMSCs therapy is tolerable and safe with promising efficacy in SMA I. Probably same as other treatment strategies, early intervention will increase its efficacy and prepare time for more injections. We suggest EDX evaluation for the follow-up of treatment efficacy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Pré-Escolar , Humanos , Masculino , Atrofias Musculares Espinais da Infância/terapia , Resultado do Tratamento
7.
Zhonghua Zhong Liu Za Zhi ; 44(12): 1362-1368, 2022 Dec 23.
Artigo em Zh | MEDLINE | ID: mdl-36575788

RESUMO

Objective: To inhibit the stemness maintenance potential of endometrial cancer and increase the sensitivity of endometrial cancer side population cells to chemotherapy drugs by inducing extensive deSUMOylation modification of proteins. Methods: Flow cytometry was used to sort and culture CD133(+) CD44(+) KLE endometrial cancer cell clone spheres. Protein expression level of small ubiquitin-related modifier 1 (SUMO1) and two stemness maintenance genes of tumor side population cells, octamer binding transcription factor-4 (Oct4) and sex determining region Y-box2 (Sox2), were detected by western blotting method. Lentivirus-mediated Sentrin/SUMO-specific proteases 1 (SENP1) gene was stably transfected into KLE side population cells. Western blotting was used to detect the protein expressions of SENP1, SUMO1, Oct4 and Sox2. The clone formation rate was compared between KLE side population cells with or without SENP1 overexpression. Flow cytometry was applied to detect cell cycle changes. 3-(4, 5-Dimethylthiazole-2)-2, 5-diphenyl-tetrazolium bromide (MTT) experiment and flow cytometry apoptosis method were used to detect the chemosensitivity of the side population of endometrial cancer cells to cisplatin. Tumor-bearing mouse models of endometrial cancer were established to detect the effect of SENP1 overexpression on the chemotherapy sensitivity of cisplatin. Results: Compared with CD133(-)CD44(-) KLE cells, CD133(+) CD44(+) KLE side population cells could form clonal spheres and express higher levels of SUMO1, Oct4 and Sox2 proteins (P<0.05). Compared with KLE side population cells that were not transfected with SENP1 gene, the expression level of SENP1 protein in KLE side population cells overexpressing SUMO1、Oct4 and Sox2 were lower. The clonal sphere formation rate was reduced from (25.67±5.44)% to (7.46±1.42)%, and cell cycle shifted from G(0)/G(1) phase to G(2) phase. IC(50) of cisplatin decreased from (55.46±6.14) µg/ml to (11.55±3.12) µg/ml, and cell apoptosis rate increased from (9.76±2.09)% to (16.79±3.44)%. Overexpression of SENP1 could reduce the tumorigenesis rate of KLE side population cells in vivo and increase their chemotherapy sensitivity to cisplatin (P<0.05). Conclusion: Overexpression of SENP1 can induce protein deSUMOylation modification, inhibit the stemness maintenance potential of endometrial cancer side population cells, and enhance their chemotherapy sensitivity, which provides a new reference for gene therapy of endometrial cancer.


Assuntos
Cisplatino , Cisteína Endopeptidases , Neoplasias do Endométrio , Animais , Feminino , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Células da Side Population/metabolismo , Células da Side Population/patologia , Sumoilação
8.
Medicina (Kaunas) ; 58(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422231

RESUMO

The aim of this clinical study was to demonstrate that through a micrograft of viable adipose tissue cells microfiltered at 50 microns to exclude fibrous shoots and cell debris in a suspension of cross-linked hyaluronic acid, we were able to improve visible imperfections of the dermis and to improve clinically observable wrinkles, with a beneficial effect also in the extracellular matrix (ECM). Background and Objectives: With the passage of time, the aging process begins, resulting in a progressive impairment of tissue homeostasis. The main reason for the formation of wrinkles is the involution of the papillary dermis, as well as the loss of stem cell niches with compromise of the extra-cytoplasmic matrix (ECM), and the loss of hyaluronic acid, which helps to maintain the shape and resistance and that is contained in the connective tissue. Materials and Methods: This study involved 14 female patients who underwent dermal wrinkle correction and bio-regeneration over the entire facial area through a suspension containing 1.0 mL of viable micrografts from adipose tissue in a 1.0 mL cross-linked hyaluronic acid. To verify the improvement of the anatomical area concerned over time, the various degrees of correction obtained for wrinkles, and in general for texture, were objectively evaluated by using a Numeric Rating scale (NRS) 10-0, a modified Vancouver scale and a Berardesca scale. Results: The Berardesca, NRS and Modified Vancouver scales showed that with this technique it was possible to obtain excellent results both when the suspension was injected into wrinkles with the linear retrograde technique, and when it was injected with the micropomphs technique to correct furrows, with the intent to revitalize the tissue through progenitors with adult stemness markers. Conclusions: The combination of microfragmented and microfiltered adipose tissue and cross-linked hyaluronic acid at 50 microns is safe new method to treat soft tissue defects such as deep wrinkles.


Assuntos
Ácido Hialurônico , Células-Tronco Mesenquimais , Adulto , Feminino , Humanos , Tecido Adiposo , Cicatriz , Depressão , Derme , Ácido Hialurônico/uso terapêutico , Projetos Piloto
9.
Gastroenterology ; 159(5): 1898-1915.e6, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32781084

RESUMO

BACKGROUND & AIMS: It is not clear how pancreatic cancer stem cells (CSCs) are regulated, resulting in ineffective treatments for pancreatic cancer. PAF1, a RNA polymerase II-associated factor 1 complex (PAF1C) component, maintains pluripotency of stem cells, by unclear mechanisms, and is a marker of CSCs. We investigated mechanisms by which PAF1 maintains CSCs and contributes to development of pancreatic tumors. METHODS: Pancreatic cancer cell lines were engineered to knockdown PAF1 using inducible small hairpin RNAs. These cells were grown as orthotopic tumors in athymic nude mice and PAF1 knockdown was induced by administration of doxycycline in drinking water. Tumor growth and metastasis were monitored via IVIS imaging. CSCs were isolated from pancreatic cancer cell populations using flow cytometry and characterized by tumor sphere formation, tumor formation in nude mice, and expression of CSC markers. Isolated CSCs were depleted of PAF1 using the CRISPR/Cas9 system. PAF1-regulated genes in CSCs were identified via RNA-seq and PCR array analyses of cells with PAF1 knockdown. Proteins that interact with PAF1 in CSCs were identified by immunoprecipitations and mass spectrometry. We performed chromatin immunoprecipitation sequencing of CSCs to confirm the binding of the PAF1 sub-complex to target genes. RESULTS: Pancreatic cancer cells depleted of PAF1 formed smaller and fewer tumor spheres in culture and orthotopic tumors and metastases in mice. Isolated CSCs depleted of PAF1 downregulated markers of self-renewal (NANOG, SOX9, and ß-CATENIN), of CSCs (CD44v6, and ALDH1), and the metastasis-associated gene signature, compared to CSCs without knockdown of PAF1. The role of PAF1 in CSC maintenance was independent of its RNA polymerase II-associated factor 1 complex component identity. We identified DDX3 and PHF5A as proteins that interact with PAF1 in CSCs and demonstrated that the PAF1-PHF5A-DDX3 sub-complex bound to the promoter region of Nanog, whose product regulates genes that control stemness. Levels of the PAF1-DDX3 and PAF1-PHF5A were increased and co-localized in human pancreatic tumor specimens, human pancreatic tumor-derived organoids, and organoids derived from tumors of KPC mice, compared with controls. Binding of DDX3 and PAF1 to the Nanog promoter, and the self-renewal capacity of CSCs, were decreased in cells incubated with the DDX3 inhibitor RK-33. CSCs depleted of PAF1 downregulated genes that regulate stem cell features (Flot2, Taz, Epcam, Erbb2, Foxp1, Abcc5, Ddr1, Muc1, Pecam1, Notch3, Aldh1a3, Foxa2, Plat, and Lif). CONCLUSIONS: In pancreatic CSCs, PAF1 interacts with DDX3 and PHF5A to regulate expression of NANOG and other genes that regulate stemness. Knockdown of PAF1 reduces the ability of orthotopic pancreatic tumors to develop and progress in mice and their numbers of CSCs. Strategies to target the PAF1-PHF5A-DDX3 complex might be developed to slow or inhibit progression of pancreatic cancer.


Assuntos
RNA Helicases DEAD-box/metabolismo , Células-Tronco Neoplásicas/enzimologia , Neoplasias Pancreáticas/enzimologia , Proteínas de Ligação a RNA/metabolismo , Células da Side Population/enzimologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Autorrenovação Celular , RNA Helicases DEAD-box/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Proteínas de Ligação a RNA/genética , Células da Side Population/patologia , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética , Carga Tumoral
10.
Cancer Immunol Immunother ; 70(10): 2911-2924, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33693963

RESUMO

The multiple myeloma (MM) landscape has changed in the last few years, but most patients eventually relapse because current treatment modalities do not target clonogenic stem cells, which are drug-resistant and can self-renew. We hypothesized that side population (SP) cells represent myeloma clonogenic stem cells and, searching for new treatment strategies, analyzed the anti-myeloma activity of natural killer (NK) cells against clonogenic cells. Activated and expanded NK cells (NKAE) products were obtained by co-culturing NK cells from MM patients with K562-mb15-41BBL cell line and characterized by flow cytometry. Functional experiments against MM cells were performed by Eu-TDA release assays and methylcellulose clonogenic assays. Side population was detected by Dye Cycle Violet labeling and then characterized by flow cytometry and RNA-Seq. Self-renewal capacity was tested by clonogenic assays. Sorting of both kind of cells was performed for time-lapse microscopy experiments. SP cells exhibited self-renewal potential and overexpressed genes involved in stem cell metabolism. NK cells from MM patients exhibited dysregulation and had lower anti-tumor potential against clonogenic cells than healthy donors' NK cells. Patients' NK cells were activated and expanded. These cells recovered cytotoxic activity and could specifically destroy clonogenic myeloma cells. They also had a highly cytotoxic phenotype expressing NKG2D receptor. Blocking NKG2D receptor decreased NK cell activity against clonogenic myeloma cells, and activated NK cells were able to destroy SP cells, which expressed NKG2D ligands. SP cells could represent the stem cell compartment in MM. This is the first report describing NK cell activity against myeloma clonogenic cells.


Assuntos
Linhagem Celular Tumoral/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/metabolismo , Células Tumorais Cultivadas/metabolismo , Humanos
11.
Biol Reprod ; 104(4): 850-860, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33438005

RESUMO

The mechanism of bovine endometrial regeneration after parturition remains unclear. Here, we hypothesized that bovine endometrial stem/progenitor cells participate in the postpartum regeneration of the endometrium. Flow cytometry analysis identified the presence of side population (SP) cells among endometrial stromal cells. Endometrial SP cells were shown to differentiate into osteoblasts and adipocytes. RNA-seq data showed that the gene expression pattern was different between bovine endometrial SP cells and main population cells. Gene Set Enrichment Analysis identified the enrichment of stemness genes in SP cells. Significantly (false discovery rate < 0.01) upregulated genes in SP cells contained several stem cell marker genes. Gene ontology (GO) analysis of the upregulated genes in SP cells showed enrichment of terms related to RNA metabolic process and transcription. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of upregulated genes in SP cells revealed enrichment of signaling pathways associated with maintenance and differentiation of stem/progenitor cells. The terms involved in TCA cycles were enriched in GO and KEGG pathway analysis of downregulated genes in SP cells. These results support the assumption that bovine endometrial SP cells exhibit characteristics of somatic stem/progenitor cells. The ratio of SP cells to endometrial cells was lowest on days 9-11 after parturition, which gradually increased thereafter. SP cells were shown to differentiate into epithelial cells. Collectively, these results suggest that bovine endometrial SP cells were temporarily reduced immediately after calving possibly due to their differentiation to provide new endometrial cells.


Assuntos
Endométrio , Período Pós-Parto/genética , Células da Side Population/metabolismo , Transcriptoma , Animais , Bovinos/genética , Diferenciação Celular/genética , Endométrio/citologia , Endométrio/metabolismo , Feminino , Análise em Microsséries , Gravidez , Células Estromais/metabolismo
12.
BMC Cancer ; 21(1): 125, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549034

RESUMO

BACKGROUND: Side population (SP) cells, which have similar features to those of cancer stem cells, show resistance to dexamethasone (Dex) treatment. Thus, new drugs that can be used in combination with Dex to reduce the population of SP cells in multiple myeloma (MM) are required. Diallyl thiosulfinate (DATS, allicin), a natural organosulfur compound derived from garlic, has been shown to inhibit the proliferation of SP cells in MM cell lines. Therefore, we investigated the effect of a combination of DATS and Dex (DAT + Dex) on MM SP cells. METHODS: SP cells were sorted from MM RPMI-8226 and NCI-H929 cell lines using Hoechst 33342-labeled fluorescence-activated cell sorting. The growth of SP cells was evaluated using the cell counting kit-8 assay. Cell cycle and apoptosis assays were conducted using a BD Calibur flow cytometer. miRNA expression was measured using quantitative reverse transcription-polymerase chain reaction. Phosphoinositide 3-kinase (PI3K), phosphorylated AKT (p-AKT), AKT, p-mechanistic target of rapamycin (mTOR), and mTOR levels were measured using western blot analysis. RESULTS: Our results showed that the combination of DATS+Dex inhibited sphere formation, colony formation, and proliferation of MM SP cells by inducing apoptosis and cell cycle arrest in the G1/S phase. In addition, the combination of DATS+Dex promoted miR-127-3p expression and inhibited PI3K, p-AKT, and p-mTOR expression in SP cells. Knockdown of miR-127-3p expression weakened the effect of DATS+Dex on cell proliferation, colony formation, apoptosis, and cell cycle of MM SP cells. Additionally, knockdown of miR-127-3p activated the PI3K/AKT/mTOR signaling pathway in MM SP cells cotreated with DATS+Dex. CONCLUSION: We demonstrated that cotreatment with DATS+Dex reduced cell proliferation, promoted apoptosis, and caused cell cycle arrest of MM SP cells by promoting miR-127-3p expression and deactivating the PI3K/AKT/mTOR signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Dexametasona/farmacologia , Dissulfetos/farmacologia , MicroRNAs/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Fosfatidilinositol 3-Quinase/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Células da Side Population/efeitos dos fármacos , Ácidos Sulfínicos/farmacologia , Família Aldeído Desidrogenase 1/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Bases de Dados Genéticas , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular , Proteína da Região Y Determinante do Sexo/metabolismo , Células da Side Population/metabolismo , Células da Side Population/patologia , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/patologia , Serina-Treonina Quinases TOR/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
13.
FASEB J ; 34(4): 5642-5657, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32100368

RESUMO

The adult mammalian heart has a limited regenerative capacity. Therefore, identification of endogenous cells and mechanisms that contribute to cardiac regeneration is essential for the development of targeted therapies. The side population (SP) phenotype has been used to enrich for stem cells throughout the body; however, SP cells isolated from the heart have been studied exclusively in cell culture or after transplantation, limiting our understanding of their function in vivo. We generated a new Abcg2-driven lineage-tracing mouse model with efficient labeling of SP cells. Labeled SP cells give rise to terminally differentiated cells in bone marrow and intestines. In the heart, labeled SP cells give rise to lineage-traced cardiomyocytes under homeostatic conditions with an increase in this contribution following cardiac injury. Instead of differentiating into cardiomyocytes like proposed cardiac progenitor cells, cardiac SP cells fuse with preexisting cardiomyocytes to stimulate cardiomyocyte cell cycle reentry. Our study is the first to show that fusion between cardiomyocytes and non-cardiomyocytes, identified by the SP phenotype, contribute to endogenous cardiac regeneration by triggering cardiomyocyte cell cycle reentry in the adult mammalian heart.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Diferenciação Celular , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Regeneração , Células da Side Population/citologia , Animais , Transplante de Medula Óssea , Linhagem da Célula , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Células da Side Population/metabolismo
14.
Bioorg Med Chem ; 31: 115986, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33412412

RESUMO

Sinomenine is an alkaloid derived from Chinese medicinal plant Sinomenium acutum. Our previous studies suggested that sinomenine can inhibit the metastasis of breast cancer. However, whether sinomenine can inhibit the metastasis characteristics of breast cancer side population (SP) cells is still unknown. In present study, we isolated the side population (SP) cells from MDA-MB-231 cells by fluorescence-activated cell sorting (FACS). MDA-MB-231 SP cells were treated with different concentrations of sinomenine at the absence or presence of hypoxia, and cell viability were measured by CCK-8 assay. The transwell invasive assay were conducted to assess of the effect of sinomenine on the invasion of hypoxic MDA-MB-231 SP cells. The protein expression was detected by Western blot assay. Sinomenine inhibited the cell viability and invasion of hypoxic MDA-MB-231 SP cells. Western blot assay results showed that the upregulation of MMP-2 and MMP-9 by hypoxia was inversed by sinomenine. Additionally, it was found that sinomenine suppressed the activation of PI3K/Akt/mTOR pathway under hypoxia in MDA-MB-231 SP cells. Moreover, the inhibiton of sinomenine on metastasis of hypoxic MDA-MB-231SP cells and PI3K/Akt/mTOR pathway could be rescued by PI3K activator IGF-1. Our study suggested that sinomenine inhibits invasion of breast cancer SP cells under hypoxia through PI3K/Akt/mTOR pathway.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Hipóxia Celular/efeitos dos fármacos , Morfinanos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
15.
Adv Exp Med Biol ; 1330: 151-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339036

RESUMO

Ovarian cancer is a heterogenous disease with variable clinicopathological and molecular mechanisms being responsible for tumorigenesis. Despite substantial technological improvement, lack of early diagnosis contributes to its highest mortality. Ovarian cancer is considered to be the most lethal female gynaecological cancer across the world. Conventional treatment modules with platinum- and Taxane-based chemotherapy can cause an initial satisfactory improvement in ovarian cancer patients. However, approximately 75-80% patients of advanced stage ovarian cancer, experience relapse and nearly 40% have overall poor survival rate. It has been observed that a subpopulation of cells referred as cancer stem cells (CSCs), having self renewal property, escape the conventional chemotherapy because of their quiescent nature. Later, these CSCs following its interaction with microenvironment and release of various inflammatory cytokines, chemokines and matrix metalloproteinases, induce invasion and propagation to distant organs of the body mainly peritoneal cavity. These CSCs can be enriched by their specific surface markers such as CD44, CD117, CD133 and intracellular enzyme such as aldehyde dehydrogenase. This tumorigenicity is further aggravated by the epithelial to mesenchymal transition of CSCs and neovascularisation via epigenetic reprogramming and over-expression of various signalling cascades such as Wnt/ß-catenin, NOTCH, Hedgehog, etc. to name a few. Hence, a comprehensive understanding of various cellular events involving interaction between cancer cells and cancer stem cells as well as its surrounding micro environmental components would be of unmet need to achieve the ultimate goal of better management of ovarian cancer patients. This chapter deals with the impact of ovarian cancer stem cells in tumorigenesis which would help in the implementation of basic research into the clinical field in the form of translational research in order to reduce the morbidity and mortality in ovarian cancer patients through amelioration of diagnosis and impoverishment of therapeutic resistance.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Ovarianas , Transformação Celular Neoplásica , Feminino , Humanos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Microambiente Tumoral
16.
J Hepatol ; 72(1): 104-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541681

RESUMO

BACKGROUND & AIMS: Hepatic resection and liver transplantation with adjuvant chemo- and radiotherapy are the mainstay of hepatocellular carcinoma (HCC) treatment, but the 5-year survival rate remains poor because of frequent recurrence and intrahepatic metastasis. Only sorafenib and lenvatinib are currently approved for the first-line treatment of advanced, unresected HCC, but they yield modest survival benefits. Thus, there is a need to identify new therapeutic targets to improve current HCC treatment modalities. METHODS: The HCC tumor model was generated by hydrodynamic transfection of AKT1 and ß-catenin (CTNNB1) oncogenes. Cancer cells with stemness properties were characterized following isolation using side population (SP) and CD44 surface markers by flow cytometry. The effect of Jak/Stat inhibitors was analyzed in vitro by using tumorsphere culture and in vivo using an allograft mouse model. RESULTS: Co-activation of both Wnt/ß-catenin and Akt/mTOR pathways was found in 14.4% of our HCC patient cohort. More importantly, these patients showed poorer survival than those with either Wnt/ß-catenin or Akt/mTOR pathway activation alone, demonstrating the clinical relevance of our study. In addition, we observed that Akt/ß-catenin tumors contained a subpopulation of cells with stem/progenitor-like characteristics identified through SP analysis and expression of the cancer stem cell-like marker CD44, which may contribute to tumor self-renewal and drug resistance. Consequently, we identified small molecule inhibitors of the Jak/Stat pathway that demonstrated efficacy in mitigating tumor proliferation and formation in Akt/ß-catenin-driven HCC. CONCLUSIONS: In conclusion, we have shown that Akt/ß-catenin tumors contain a subpopulation of tumor-initiating cells with stem/progenitor-like characteristics which can be effectively targeted with inhibitors of the Jak/Stat pathway, demonstrating that inhibition of the Jak/Stat pathway could be an alternative method to overcome drug resistance and effectively treat Akt/ß-catenin-driven HCC tumors. LAY SUMMARY: The prognosis for patients with hepatocellular carcinoma is poor, partly because of the lack of effective treatment options for those with more advanced disease. In this study, we identified a subpopulation of cancer cells with stem cell-like properties that were critical for tumor maintenance and growth in a mouse model of hepatocellular carcinoma. Through further experiments, we demonstrated that the Jak/Stat pathway is a promising therapeutic target in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Receptores de Hialuronatos/metabolismo , Janus Quinases/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Aminopiridinas/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Feminino , Humanos , Janus Quinases/antagonistas & inibidores , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Transfecção , Transplante Homólogo , Carga Tumoral/efeitos dos fármacos , beta Catenina/genética
17.
Biochem Biophys Res Commun ; 521(1): 152-157, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31653342

RESUMO

Epithelial-mesenchymal transition (EMT) is associated with cancer malignancies such as invasion, metastasis, and drug resistance. In this study, HCT116 human colorectal cancer cells were transduced with SLUG or SNAIL retroviruses, and EMT cells with mesenchymal morphology were established. The EMT cells showed a high invasive activity and resistance to several anticancer agents such as methotrexate, SN-38, and cisplatin. Furthermore, they contained about 1-10% side population (SP) cells that were not stained by Hoechst 33342. This SP phenotype was not stable; the isolated SP cells generated both SP and non-SP cells, suggesting a potential for differentiation. Gene expression analysis of SP cells suggested the alteration of genes that are involved in epigenetic changes. Therefore, we examined the effect of 74 epigenetic inhibitors, and found that two inhibitors, namely I-BET151 and bromosporine, targeting the bromodomain and extra-terminal motif (BET) proteins, decreased the ratio of SP cells to <50% compared with the control, without affecting the immediate efflux of Hoechst 33342 by transporters. In addition, compared with the parental cells, the EMT cells showed a higher sensitivity to I-BET151 and bromosporine. This study suggests that EMT development and SP phenotype can be independent events but both are regulated by BET inhibitors in SLUG- or SNAIL-transducted HCT116 cells.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteínas/antagonistas & inibidores , Fatores de Transcrição da Família Snail/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células HCT116 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Fenótipo , Proteínas/metabolismo , Fatores de Transcrição da Família Snail/metabolismo
18.
Genes Cells ; 24(10): 674-681, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31433897

RESUMO

Forkhead box (FOX) proteins constitute a family of transcription factors that are evolutionarily conserved in various species ranging from yeast to humans. These proteins have functions during development as well as in adulthood. To date, many reports have described the functions of FOX family genes in cancer cells, but the role of FOXB2 is not well understood. In one of the pancreas ductal adenocarcinoma cell lines, Panc-1 cells, we showed here that FOXB2 expression is barely detectable and that CpG islands in the 5' regions of the FOXB2 are highly methylated. These findings led us to hypothesize that FOXB2 acts as a tumor suppressor. To clarify our hypotheses, we investigated the effects of FOXB2 over-expression in Panc-1 cells. We obtained FOXB2 stable transfectants, and these clones exhibited reduced spheroid formation ability. Expression of ß-catenin, which is reported to be over-expressed in various cancer cells, was highly suppressed in FOXB2 stable transfectants. Moreover, side population (SP) cell fractions, which have a high tumorigenesis and metastatic potential, as well as anchorage-independent growth ability, were reduced. These results suggest that FOXB2 has the ability to inhibit the malignant characteristics of Panc-1 in vitro.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral/metabolismo , Proliferação de Células/genética , Fatores de Transcrição Forkhead/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
19.
Exp Cell Res ; 374(1): 104-113, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465733

RESUMO

Comparison of studies of cells derived from normal and pathological tissues of the same organ can be fraught with difficulties, particular with cancer where a number of different diseases are considered cancer within the same tissue. In the thyroid, there are 4 main types of cancer, three of which arise from follicular epithelial cells; papillary and follicular which are classified as differentiated, and anaplastic which is classified as undifferentiated. One assay that can be utilised for isolation of cancer stem cells is the side population (SP) assay. However, SP studies have been limited in part due to lack of optimal isolation strategies and in the case of anaplastic thyroid cancer (ATC) are further compounded by lack of access to ATC tumors. We have used thyroid cell lines to determine the optimal conditions to isolate viable SP cells. We then compared SP cells and NSP cells (bulk tumour cells without the SP) of a normal thyroid cell line N-thy ori-3-1 and an anaplastic thyroid cancer cell line SW1736 and showed that both SP cell populations displayed higher levels of stem cell characteristics than the NSP. When we compared SP cells of the N-thy ori-3-1 and the SW1736, the SW1736 SP had a higher colony forming potential, expressed higher levels of stem cell markers and CXCR4 and where more migratory and invasive, invasiveness increasing in response to CXCL12. This is the first report showing functional differences between ATC SP and normal thyroid SP and could lead to the identification of new therapeutic targets to treat ATC.


Assuntos
Células da Side Population/patologia , Carcinoma Anaplásico da Tireoide/patologia , Glândula Tireoide/patologia , Divisão Celular Assimétrica/efeitos dos fármacos , Benzimidazóis/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Corantes/metabolismo , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Células da Side Population/efeitos dos fármacos , Células da Side Population/metabolismo , Tireoglobulina/metabolismo , Carcinoma Anaplásico da Tireoide/genética , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Ensaio Tumoral de Célula-Tronco
20.
Int J Med Sci ; 17(14): 2063-2076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922167

RESUMO

Background: Multiple myeloma (MM) is the second most common hematological malignancy, which is still incurable and relapses inevitably, highlighting further understanding of the possible mechanisms. Side population (SP) cells are a group of enriched progenitor cells showing stem-like phenotypes with a distinct low-staining pattern with Hoechst 33342. Compared to main population (MP) cells, the underlying molecular characteristics of SP cells remain largely unclear. This bioinformatics analysis aimed to identify key genes and pathways in myeloma SP cells to provide novel biomarkers, predict MM prognosis and advance potential therapeutic targets. Methods: The gene expression profile GSE109651 was obtained from Gene Expression Omnibus database, and then differentially expressed genes (DEGs) with P-value <0.05 and |log2 fold-change (FC)| > 2 were selected by the comparison of myeloma light-chain (LC) restricted SP (LC/SP) cells and MP CD138+ cells. Subsequently, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) network analysis were performed to identify the functional enrichment analysis of the DEGs and screen hub genes. Cox proportional hazards regression was used to select the potential prognostic DEGs in training dataset (GSE2658). The prognostic value of the potential prognostic genes was evaluated by Kaplan-Meier curve and validated in another external dataset (MMRF-CoMMpass cohort from TCGA). Results: Altogether, 403 up-regulated and 393 down-regulated DEGs were identified. GO analysis showed that the up-regulated DEGs were significantly enriched in innate immune response, inflammatory response, plasma membrane and integral component of membrane, while the down-regulated DEGs were mainly involved in protoporphyrinogen IX and heme biosynthetic process, hemoglobin complex and erythrocyte differentiation. KEGG pathway analysis suggested that the DEGs were significantly enriched in osteoclast differentiation, porphyrin and chlorophyll metabolism and cytokine-cytokine receptor interaction. The top 10 hub genes, identified by the plug-in cytoHubba of the Cytoscape software using maximal clique centrality (MCC) algorithm, were ITGAM, MMP9, ITGB2, FPR2, C3AR1, CXCL1, CYBB, LILRB2, HP and FCER1G. Modules and corresponding GO enrichment analysis indicated that myeloma LC/SP cells were significantly associated with immune system, immune response and cell cycle. The predictive value of the prognostic model including TFF3, EPDR1, MACROD1, ARHGEF12, AMMECR1, NFATC2, HES6, PLEK2 and SNCA was identified, and validated in another external dataset (MMRF-CoMMpass cohort from TCGA). Conclusions: In conclusion, this study provides reliable molecular biomarkers for screening, prognosis, as well as novel therapeutic targets for myeloma LC/SP cells.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Células-Tronco Neoplásicas/patologia , Células da Side Population/patologia , Biologia Computacional , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA