Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(30): 9289-9295, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018360

RESUMO

Solid state quantum emitters are a prime candidate in distributed quantum technologies since they inherently provide a spin-photon interface. An ongoing challenge in the field, however, is the low photon extraction due to the high refractive index of typical host materials. This challenge can be overcome using photonic structures. Here, we report the integration of V2 centers in a cavity-based optical antenna. The structure consists of a silver-coated, 135 nm-thin 4H-SiC membrane functioning as a planar cavity with a broadband resonance yielding a theoretical photon collection enhancement factor of ∼34. The planar geometry allows us to identify over 20 single V2 centers at room temperature with a mean (maximum) count rate enhancement factor of 9 (15). Moreover, we observe 10 V2 centers with a mean absorption line width below 80 MHz at cryogenic temperatures. These results demonstrate a photon collection enhancement that is robust to the lateral emitter position.

2.
Nano Lett ; 24(37): 11669-11675, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39248392

RESUMO

Silicon vacancy (VSi) centers in 4H-silicon carbide have emerged as a strong candidate for quantum networking applications due to their robust electronic and optical properties, including a long spin coherence lifetime and bright, stable emission. Here, we report the integration of VSi centers with a plasmonic nanocavity to Purcell enhance the emission, which is critical for scalable quantum networking. Employing a simple fabrication process, we demonstrate plasmonic cavities that support a nanoscale mode volume and exhibit an increase in the spontaneous emission rate with a measured Purcell factor of up to 48. In addition to investigating the optical resonance modes, we demonstrate an improvement in the optical stability of the spin-preserving resonant optical transitions relative to the radiation-limited value. The results highlight the potential of nanophotonic structures for advancing quantum networking technologies and emphasize the importance of optimizing emitter-cavity interactions for efficient quantum photonic applications.

3.
Nano Lett ; 24(1): 114-121, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164942

RESUMO

Extended defects in wide-bandgap semiconductors have been widely investigated using techniques providing either spectroscopic or microscopic information. Nano-Fourier transform infrared spectroscopy (nano-FTIR) is a nondestructive characterization method combining FTIR with nanoscale spatial resolution (∼20 nm) and topographic information. Here, we demonstrate the capability of nano-FTIR for the characterization of extended defects in semiconductors by investigating an in-grown stacking fault (IGSF) present in a 4H-SiC epitaxial layer. We observe a local spectral shift of the mid-infrared near-field response, consistent with the identification of the defect stacking order as 3C-SiC (cubic) from comparative simulations based on the finite dipole model (FDM). This 3C-SiC IGSF contrasts with the more typical 8H-SiC IGSFs reported previously and is exemplary in showing that nanoscale spectroscopy with nano-FTIR can provide new insights into the properties of extended defects, the understanding of which is crucial for mitigating deleterious effects of such defects in alternative semiconductor materials and devices.

4.
Chemphyschem ; 25(9): e202300604, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426668

RESUMO

We have performed in situ X-ray diffraction measurements of cubic silicon carbide (SiC) with a zinc-blende crystal structure (B3) at high pressures and temperatures using multi-anvil apparatus. The ambient volume inferred from the compression curves is smaller than that of the starting material. Using the 3rd-order Birch-Murnaghan equation of state and the Mie-Grüneisen-Debye model, we have determined the thermoelastic parameters of the B3-SiC to be K0=228±3 GPa, K0',=4.4±0.4, q=0.27±0.37, where K0, K0' and q are the isothermal bulk modulus, its pressure derivative and logarithmic volume dependence of the Grüneisen parameter, respectively. Using the 3rd-order Birch-Murnaghan EOS with the thermal expansion coefficient, the thermoelastic parameters have been found as K0=221±3 GPa, K0',=5.2±0.4, α0=0.90±0.02 ⋅ 10-5 ⋅ K-1, where α0 is the thermal expansion coefficient at room pressure and temperature. We have determined that paired B3-SiC - MgO calibrants can be used to estimate pressure and temperature simultaneously in ultrahigh-pressure experiments up to 60 GPa.

5.
Proc Natl Acad Sci U S A ; 118(12)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33731479

RESUMO

The negatively charged silicon monovacancy [Formula: see text] in 4H silicon carbide (SiC) is a spin-active point defect that has the potential to act as a qubit in solid-state quantum information applications. Photonic crystal cavities (PCCs) can augment the optical emission of the [Formula: see text], yet fine-tuning the defect-cavity interaction remains challenging. We report on two postfabrication processes that result in enhancement of the [Formula: see text] optical emission from our PCCs, an indication of improved coupling between the cavity and ensemble of silicon vacancies. Below-bandgap irradiation at 785-nm and 532-nm wavelengths carried out at times ranging from a few minutes to several hours results in stable enhancement of emission, believed to result from changing the relative ratio of [Formula: see text] ("dark state") to [Formula: see text] ("bright state"). The much faster change effected by 532-nm irradiation may result from cooperative charge-state conversion due to proximal defects. Thermal annealing at 100 °C, carried out over 20 min, also results in emission enhancements and may be explained by the relatively low-activation energy diffusion of carbon interstitials [Formula: see text], subsequently recombining with other defects to create additional [Formula: see text]s. These PCC-enabled experiments reveal insights into defect modifications and interactions within a controlled, designated volume and indicate pathways to improved defect-cavity interactions.

6.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38676113

RESUMO

Polylactic acid (PLA) is one of the most widely used materials for fused deposition modeling (FDM) 3D printing. It is a biodegradable thermoplastic polyester, derived from natural resources such as corn starch or sugarcane, with low environmental impact and good mechanical properties. One important feature of PLA is that its properties can be modulated by the inclusion of nanofillers. In this work, we investigate the influence of SiC and ZnO doping of PLA on the triboelectric performance of PLA-based tribogenerators. Our results show that the triboelectric signal in ZnO-doped PLA composites increases as the concentration of ZnO in PLA increases, with an enhancement in the output power of 741% when the ZnO concentration in PLA is 3 wt%. SiC-doped PLA behaves in a different manner. Initially the triboelectric signal increases, reaching a peak value with enhanced output power by 284% compared to undoped PLA, when the concentration of SiC in PLA is 1.5 wt%. As the concentration increases to 3 wt%, the triboelectric signal reduces significantly and is comparable to or less than that of the undoped PLA. Our results are consistent with recent data for PVDF doped with silicon carbide nanoparticles and are attributed to the reduction in the contact area between the triboelectric surfaces.

7.
Nano Lett ; 23(10): 4334-4343, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155148

RESUMO

Optically addressable spin defects in silicon carbide (SiC) have emerged as attractable platforms for various quantum technologies. However, the low photon count rate significantly limits their applications. We strongly enhanced the brightness by 7 times and spin-control strength by 14 times of single divacancy defects in 4H-SiC membranes using a surface plasmon generated by gold film coplanar waveguides. The mechanism of the plasmonic-enhanced effect is further studied by tuning the distance between single defects and the surface of the gold film. A three-energy-level model is used to determine the corresponding transition rates consistent with the enhanced brightness of single defects. Lifetime measurements also verified the coupling between defects and surface plasmons. Our scheme is low-cost, without complicated microfabrication and delicate structures, which is applicable for other spin defects in different materials. This work would promote developing spin-defect-based quantum applications in mature SiC materials.

8.
Nano Lett ; 23(7): 2816-2821, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37011402

RESUMO

Silicon carbide nanowires (SiC NWs) exhibit promising features to allow solution-processable electronics to be deployed in harsh environments. By utilizing a nanoscale form of SiC, we were able to disperse the material into liquid solvents, while maintaining the resilience of bulk SiC. This letter reports the fabrication of SiC NW Schottky diodes. Each diode consisted of just one nanowire with an approximate diameter of 160 nm. In addition to analyzing the diode performance, the effects of elevated temperatures and proton irradiation on the current-voltage characteristics of SiC NW Schottky diodes were also examined. The device could maintain similar values for ideality factor, barrier height, and effective Richardson constant upon proton irradiation with a fluence of 1016 ion/cm2 at 873 K. As a result, these metrics have clearly demonstrated the high-temperature tolerance and irradiation resistance of SiC NWs, ultimately indicating that they may provide utility in allowing solution-processable electronics in harsh environments.

9.
J Environ Manage ; 363: 121364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850917

RESUMO

Recycling silicon cutting waste (SCW) plays a pivotal role in reducing environmental impact and enhancing resource efficiency within the semiconductor industry. Herein SCW was utilized to prepare SiC and ultrasound-assisted leaching was investigated to purify the obtained SiC and the leaching factors were optimized. The mixed acids of HF/H2SO4 works efficiently on the removal of Fe and SiO2 due to that HF can react with SiO2 and Si and then expose the Fe to H+. The assistance of ultrasound can greatly improve the leaching of Fe, accelerate the leaching rate, and lower the leaching temperature. The optimal leaching conditions are HF-H2SO4 ratio of 1:3, acid concentration of 3 mol/L, temperature of 50 °C, ultrasonic frequency of 45 kHz and power of 210 W, and stirring speed of 300 rpm. The optimal leaching ratio of Fe is 99.38%. Kinetic analysis shows that the leaching process fits the chemical reaction-controlled model.


Assuntos
Reciclagem , Silício , Silício/química , Compostos de Silício/química , Compostos Inorgânicos de Carbono/química , Dióxido de Silício/química , Cinética , Temperatura
10.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998983

RESUMO

High-spin defects (color centers) in wide-gap semiconductors are considered as a basis for the implementation of quantum technologies due to the unique combination of their spin, optical, charge, and coherent properties. A silicon carbide (SiC) crystal can act as a matrix for a wide variety of optically active vacancy-type defects, which manifest themselves as single-photon sources or spin qubits. Among the defects, the nitrogen-vacancy centers (NV) are of particular importance. This paper is devoted to the application of the photoinduced electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) techniques at a high-frequency range (94 GHz) to obtain unique information about the nature and properties of NV defects in SiC crystal of the hexagonal 4H and 6H polytypes. Selective excitation by microwave and radio frequency pulses makes it possible to determine the microscopic structure of the color center, the zero-field splitting constant (D = 1.2-1.3 GHz), the phase coherence time (T2), and the values of hyperfine (≈1.1 MHz) and quadrupole (Cq ≈ 2.45 MHz) interactions and to define the isotropic (a = -1.2 MHz) and anisotropic (b = 10-20 kHz) contributions of the electron-nuclear interaction. The obtained data are essential for the implementation of the NV defects in SiC as quantum registers, enabling the optical initialization of the electron spin to establish spin-photon interfaces. Moreover, the combination of optical, microwave, and radio frequency resonant effects on spin centers within a SiC crystal shows the potential for employing pulse EPR and ENDOR sequences to implement protocols for quantum computing algorithms and gates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA