Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angiogenesis ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965173

RESUMO

Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified "Häutchen method" for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE-/- model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.

2.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38928086

RESUMO

Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Aterosclerose/metabolismo , Aterosclerose/patologia , Animais , Camundongos , Humanos , Hemodinâmica , Artérias/patologia , Artérias/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569733

RESUMO

Uridine diphosphate glycosyltransferases (UGTs) are known for promiscuity towards sugar acceptors, a valuable characteristic for host plants but not desirable for heterologous biosynthesis. UGTs characterized for the O-glycosylation of isoflavonoids have shown a variable efficiency, substrate preference, and OH site specificity. Thus, 22 UGTs with reported isoflavonoid O-glycosylation activity were analyzed and ranked for OH site specificity and catalysis efficiency. Multiple-sequence alignment (MSA) showed a 33.2% pairwise identity and 4.5% identical sites among selected UGTs. MSA and phylogenetic analysis highlighted a comparatively higher amino acid substitution rate in the N-terminal domain that likely led to a higher specificity for isoflavonoids. Based on the docking score, OH site specificity, and physical and chemical features of active sites, selected UGTs were divided into three groups. A significantly high pairwise identity (67.4%) and identical sites (31.7%) were seen for group 1 UGTs. The structural and chemical composition of active sites highlighted key amino acids that likely define substrate preference, OH site specificity, and glycosylation efficiency towards selected (iso)flavonoids. In conclusion, physical and chemical parameters of active sites likely control the position-specific glycosylation of isoflavonoids. The present study will help the heterologous biosynthesis of glycosylated isoflavonoids and protein engineering efforts to improve the substrate and site specificity of UGTs.


Assuntos
Flavonas , Glicosiltransferases , Glicosilação , Domínio Catalítico , Filogenia , Glicosiltransferases/metabolismo , Difosfato de Uridina/metabolismo , Especificidade por Substrato
4.
Genesis ; 60(8-9): e23500, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36106755

RESUMO

Since the initial description of medication-related osteonecrosis of the jaw (MRONJ) almost two decades ago, the potential pathophysiology and risk factors have been elaborated on in many investigations and guidelines. However, the definitive pathophysiology based on scientific evidence remains lacking. Consequently, the optimal clinical treatment and prevention strategies for MRONJ have not been established. Despite their different mechanisms of action, many drugs, including bisphosphonates, denosumab, angiogenesis inhibitors, and other medications, have been reported to be associated with MRONJ lesions in cancer and osteoporosis patients. Importantly, MRONJ occurs predominantly in the jawbones and other craniofacial regions, but not in the appendicular skeleton. In this up-to-date review, the currently available information and theories regarding MRONJ are presented from both clinical and basic science perspectives. The definition and epidemiology of MRONJ, triggering medication, and histopathology are comprehensively summarized. The immunopathology and the potential pathophysiology based on immune cells such as neutrophils, T and B cells, macrophages, dendritic cells, and natural killer cells are also discussed. In addition, antiangiogenesis, soft tissue toxicity, necrotic bone, osteocyte death, and single-nucleotide polymorphisms are examined. Moreover, other possible mechanisms of MRONJ development are considered based on the unique embryological characteristics, different cell behaviors between jawbones and appendicular skeleton, unique anatomical structures, and sustained bacterial exposure in the oral cavity as a basis for MRONJ site specificity. Based on the literature review, it was concluded that multiple factors may contribute to the development of MRONJ, although which one is the key player triggering MRONJ in the craniofacial region remains unknown.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Humanos , Inibidores da Angiogênese/efeitos adversos , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/prevenção & controle , Conservadores da Densidade Óssea/efeitos adversos , Denosumab/efeitos adversos , Difosfonatos/efeitos adversos
5.
J Struct Biol ; 214(4): 107918, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343842

RESUMO

C/EBPß is a key regulator of numerous cellular processes, but it can also contribute to tumorigenesis and viral diseases. It binds to specific DNA sequences (C/EBP sites) and interacts with other transcription factors to control expression of multiple eukaryotic genes in a tissue and cell-type dependent manner. A body of evidence has established that cell-type-specific regulatory information is contained in the local DNA sequence of the binding motif. In human epithelial cells, C/EBPß is an essential cofactor for TGFß signaling in the case of Smad2/3/4 and FoxO-dependent induction of the cell cycle inhibitor, p15INK4b. In the TGFß-responsive region 2 of the p15INK4b promoter, the Smad binding site is flanked by a C/EBP site, CTTAA•GAAAG, which differs from the canonical, palindromic ATTGC•GCAAT motif. The X-ray crystal structure of C/EBPß bound to the p15INK4b promoter fragment shows how GCGC-to-AAGA substitution generates changes in the intermolecular interactions in the protein-DNA interface that enhances C/EBPß binding specificity, limits possible epigenetic regulation of the promoter, and generates a DNA element with a unique pattern of methyl groups in the major groove. Significantly, CT/GA dinucleotides located at the 5'ends of the double stranded element maintain local narrowing of the DNA minor groove width that is necessary for DNA recognition. Our results suggest that C/EBPß would accept all forms of modified cytosine in the context of the CpT site. This contrasts with the effect on the consensus motif, where C/EBPß binding is modestly increased by cytosine methylation, but substantially decreased by hydroxymethylation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Epigênese Genética , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/genética , Ciclo Celular , Citosina , DNA/genética
6.
J Cardiovasc Electrophysiol ; 33(4): 629-637, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35048463

RESUMO

INTRODUCTION: Ectopic beats originating from the pulmonary vein (PV) trigger atrial fibrillation (AF). The purpose of this study was to clarify the electrophysiological determinant of AF initiation from the PVs. METHODS: Pacing studies were performed with a single extra stimulus mimicking an ectopic beat in the left superior PVs (LSPVs) in 62 patients undergoing AF ablation. Inducibility of AF, effective refractory period (ERP), and conduction properties within the PVs were analyzed. RESULTS: A single extra stimulus in LSPV induced AF in 20 patients (32% of all patients) at the mean coupling interval (CI) of 172 ms. A CI-dependent anisotropic conduction at the AF onset was visualized in a three-dimensional mapping. Onset of AF was site-specific with reproducibility in each individual. Mean ERP in LSPV in the AF-inducible group was shorter than that in the AF-noninducible group (182 ± 55 vs. 254 ± 51 ms, p < .0001). LSPV ERP dispersion was greater in the AF-inducible group than in the AF-noninducible group (45 ± 28 vs. 27 ± 19 ms, p < .01). Circumferential intra-PV conduction time (IPVCT) exhibited decremental properties in response to shortening of CI and the prolongation of IPVCT in the AF-inducible site was greater than that in the AF-noninducible site (p < .05) in each individual. CONCLUSIONS: Location and CI of an ectopic excitation ultimately determine the initiation of AF from the PVs. ERP dispersion and circumferential conduction delay may lead to anisotropic conduction and reentry within the PVs that initiate AF.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Complexos Cardíacos Prematuros , Ablação por Cateter/métodos , Humanos , Veias Pulmonares/cirurgia , Reprodutibilidade dos Testes
7.
Microb Ecol ; 83(4): 989-1006, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34342698

RESUMO

The endophytic diversity of a host plant has been shown to vary across various spatio-temporal scales and between different organs of a plant, but no such study has been carried out on the economically important plant Crocus sativus (saffron). To fill this knowledge gap, the present study was undertaken to document the diversity of culturable bacterial, actinomycete and fungal endophytes at multiple sites from vegetative and reproductive organs of C. sativus. A total of 1170 culturable endophytic isolates were recovered from 6480 tissue segments of C. sativus collected from six different study sites in Pampore region of Kashmir valley in India. These isolates were identified using 16S and ITS (internal transcribed spacer) rDNA barcode sequence analysis and were classified into 84 operational taxonomic units (OTUs), including 52 bacterial OTUs, 7 actinomycete OTUs and 25 fungal OTUs. The phylogenetic analysis of sequences separated them into four phyla, namely, Firmicutes (46%), Ascomycota (30%), Proteobacteria (16%) and Actinobacteria (8%). Significant differences were observed in the diversity of endophytic assemblages across various study sites and different plant organs (P ≤ 0.001). Species richness was highest at the Baroosa site and lowest at the Chandhar site while the Shannon index was highest at the Baroosa site and lowest at the Letpur site. Among organs, species richness was highest in stigma and lowest in leaf. Similarly, Shannon index was highest for root and lowest for leaf. Further, 15 culturable endophytic OTUs showed organ specificity. The present study is the first comprehensive report that not only brings out differences in the diversity of endophytes associated with different organs and at different sites but also highlights the complexity of host-endophyte interaction at multiple scales.


Assuntos
Crocus , Bactérias , Crocus/genética , Crocus/microbiologia , DNA Ribossômico/genética , Endófitos , Filogenia
8.
Environ Sci Technol ; 56(15): 11051-11060, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35861449

RESUMO

Methods for identifying origin, movement, and foraging areas of animals are essential for understanding ecosystem connectivity, nutrient flows, and other ecological processes. Telemetric methods can provide detailed spatial coverage but are limited to a minimum body size of specimen for tagging. In recent years, stable isotopes have been increasingly used to track animal migration by linking landscape isotope patterns into movement (isoscapes). However, compared to telemetric methods, the spatial resolution of bulk stable isotopes is low. Here, we examined a novel approach by evaluating the use of compound-specific hydrogen and carbon stable isotopes of fatty acids (δ2HFA and δ13CFA) from fish liver, muscle, brain, and eye tissues for identifying site specificity in a 254 km2 sub-alpine river catchment. We analyzed 208 fish (European bullhead, rainbow trout, and brown trout) collected in 2016 and 2018 at 15 different sites. δ13CFA values of these fish tissues correlated more among each other than those of δ2HFA values. Both δ2HFA and δ13CFA values showed tissue-dependent isotopic fractionation, while fish taxa had only small effects. The highest site specificity was for δ13CDHA values, while the δ2H isotopic difference between linoleic acid and alpha-linolenic acid resulted in the highest site specificity. Using linear discrimination analysis of FA isotope values, over 90% of fish could be assigned to their location of origin; however, the accuracy dropped to about 56% when isotope data from 2016 were used to predict the sites for samples collected in 2018, suggesting temporal shifts in site specificity of δ2HFA and δ13CFA. However, the predictive power of δ2HFA and δ13CFA over this time interval was still higher than site specificity of bulk tissue isotopes for a single time point. In summary, compound-specific isotope analysis of fatty acids may become a highly effective tool for assessing fine and large-scale movement and foraging areas of animals.


Assuntos
Ecossistema , Ácidos Graxos , Animais , Isótopos de Carbono , Isótopos de Nitrogênio/análise , Truta
9.
Angew Chem Int Ed Engl ; 61(11): e202116672, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35018698

RESUMO

Transpeptidase-catalyzed protein and peptide modifications have been widely utilized for generating conjugates of interest for biological investigation or therapeutic applications. However, all known transpeptidases are constrained to ligating in the N-to-C orientation, limiting the scope of attainable products. Here, we report that an engineered asparaginyl ligase accepts diverse incoming nucleophile substrate mimetics, particularly when a means of selectively quenching the reactivity of byproducts released from the recognition sequence is employed. In addition to directly catalyzing formation of l-/d- or α-/ß-amino acid junctions, we find C-terminal Leu-ethylenediamine (Leu-Eda) motifs to be bona fide mimetics of native N-terminal Gly-Leu sequences. Appending a C-terminal Leu-Eda to synthetic peptides or, via an intein-splicing approach, to recombinant proteins enables direct transpeptidase-catalyzed C-to-C ligations. This work significantly expands the synthetic scope of enzyme-catalyzed protein transpeptidation reactions.


Assuntos
Aminoácidos/biossíntese , Cisteína Endopeptidases/metabolismo , Aminoácidos/química , Biocatálise , Cisteína Endopeptidases/química , Engenharia de Proteínas
10.
Chem Rec ; 21(8): 1941-1956, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34184826

RESUMO

Are chemical methods capable of precisely engineering the native proteins? Is it possible to develop platforms that can empower the regulation of chemoselectivity, site-selectivity, modularity, protein-specificity, and site-specificity? This account delineates our research journey in the last ten years on the developments revolving around these questions. It will range from the realization of chemoselective and site-selective labeling of reactivity hotspots to modular linchpin directed modification (LDM®) platform and site-specific Gly-tag® technology. Also, we outline a few biotechnology tools, including Maspecter®, that accelerated the detailed analysis of the bioconjugates and rendered a powerful toolbox for homogeneous antibody-drug conjugates (ADCs).


Assuntos
Proteínas/química , Coloração e Rotulagem/métodos , Cobre/química , Glicina/química , Histidina/química , Imunoconjugados/química , Imunoconjugados/metabolismo , Ligantes , Lisina/química , Proteínas/síntese química , Proteínas/metabolismo
11.
Angew Chem Int Ed Engl ; 60(26): 14360-14364, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33871123

RESUMO

Methyl groups are ubiquitous in biologically active molecules. Thus, new tactics to introduce this alkyl fragment into polyfunctional structures are of significant interest. With this goal in mind, a direct method for the Markovnikov hydromethylation of alkenes is reported. This method exploits the degenerate metathesis reaction between the titanium methylidene unveiled from Cp2 Ti(µ-Cl)(µ-CH2 )AlMe2 (Tebbe's reagent) and unactivated alkenes. Protonolysis of the resulting titanacyclobutanes in situ effects hydromethylation in a chemo-, regio-, and site-selective manner. The broad utility of this method is demonstrated across a series of mono- and di-substituted alkenes containing pendant alcohols, ethers, amides, carbamates, and basic amines.


Assuntos
Alcenos/síntese química , Ciclobutanos/química , Prótons , Alcenos/química , Metilação , Estrutura Molecular
12.
Angew Chem Int Ed Engl ; 60(8): 4004-4008, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33202079

RESUMO

The use of enzymes for the site-specific modification of proteins/peptides has become a highly accessible, widespread approach to study protein/peptide functions or to generate therapeutic conjugates. Asparaginyl endopeptidases (AEPs) that preferentially catalyze transpeptidation reactions (AEP ligases) have emerged as enticing alternatives to established approaches, such as bacterial sortases, due to their catalytic efficiency and short tripeptide recognition motifs. However, under standard conditions, a substantial excess of the nucleophile to be conjugated is needed to reach desirable yields. Herein we report a versatile approach to shift the AEP-catalyzed transpeptidation equilibrium toward product formation via selectively quenching the nucleophilicity of the competing leaving-group peptide. Our metal-complexation-based strategy enables efficient peptide/protein labeling at the N- or C-terminus with near-equimolar concentrations of nucleophile label. Furthermore, we show that this approach can enhance protein-protein ligation and facilitate the formation of transpeptidation products that are otherwise unattainable.


Assuntos
Cisteína Endopeptidases/metabolismo , Peptídeos/metabolismo , Motivos de Aminoácidos , Biocatálise , Cobre/química , Cobre/metabolismo , Humanos , Níquel/química , Níquel/metabolismo , Peptídeos/química , Ligação Proteica , Engenharia de Proteínas , Albumina Sérica/química , Albumina Sérica/metabolismo
13.
J Cell Mol Med ; 24(16): 9457-9465, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32649057

RESUMO

Gastric cancer (GC) is a heterogeneous tumour with numerous differences of epidemiologic and clinicopathologic features between cardia cancer and non-cardia cancer. However, few studies were performed to construct site-specific GC prognostic models. In this study, we identified site-specific GC transcriptomic prognostic biomarkers using genetic algorithm (GA)-based support vector machine (GA-SVM) and GA-based Cox regression method (GA-Cox) in the Cancer Genome Atlas (TCGA) database. The area under time-dependent receive operating characteristic (ROC) curve (AUC) regarding 5-year survival and concordance index (C-index) was used to evaluate the predictive ability of Cox regression models. Finally, we identified 10 and 13 prognostic biomarkers for cardia cancer and non-cardia cancer, respectively. Compared to traditional models, the addition of these site-specific biomarkers could notably improve the model preference (cardia: AUCtraditional vs AUCcombined  = 0.720 vs 0.899, P = 8.75E-08; non-cardia: AUCtraditional vs AUCcombined  = 0.798 vs 0.994, P = 7.11E-16). The combined nomograms exhibited superior performance in cardia and non-cardia GC survival prediction (C-indexcardia  = 0.816; C-indexnoncardia  = 0.812). We also constructed a user-friendly GC site-specific molecular system (GC-SMS, https://njmu-zhanglab.shinyapps.io/gc_sms/), which is freely available for users. In conclusion, we developed site-specific GC prognostic models for predicting cardia cancer and non-cardia cancer survival, providing more support for the individualized therapy of GC patients.


Assuntos
Algoritmos , Biomarcadores Tumorais/genética , Cárdia/patologia , Regulação Neoplásica da Expressão Gênica , Nomogramas , Neoplasias Gástricas/patologia , Transcriptoma , Cárdia/metabolismo , Estudos de Casos e Controles , Biologia Computacional , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , Curva ROC , Neoplasias Gástricas/genética , Taxa de Sobrevida
14.
Chemistry ; 26(60): 13568-13572, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32649777

RESUMO

Staphylococcus aureus sortase A (SaSrtA) is widely used for site-specific protein modifications, but it lacks the robustness for performing bioconjugation reactions at elevated temperatures or in presence of denaturing agents. Loop engineering and subsequent head-to-tail backbone cyclization of SaSrtA yielded the cyclized variant CyM6 that has a 7.5 °C increased melting temperature and up to 4.6-fold increased resistance towards denaturants when compared to the parent rM4. CyM6 gained up to 2.6-fold (vs. parent rM4) yield of conjugate in ligation of peptide and primary amine under denaturing conditions.

15.
Vet Res ; 51(1): 90, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678057

RESUMO

Avian coccidian parasites exhibit a high degree of site specificity in different Eimeria species. Although the underlying mechanism is unclear, an increasing body of evidence suggests that site specificity is due to the interaction between microneme proteins (MICs) and their receptors on the surface of target host cells. In this study, the binding ability of E. tenella MICs (EtMICs) to different intestinal tissue was observed by immunofluorescence to identify the key surface molecule on the parasite responsible for the site specificity. Subsequently, we identified the corresponding host-cell receptors by yeast two-hybrid screening and glutathione-S-transferase pull-down experiments and the distribution of these receptors was observed by immunofluorescence in chicken intestinal tissues. Finally, we evaluated the efficacy of receptor antiserum against the infection of E. tenella in chickens. The results showed that EtMIC3 could only bind to the caecum while EtMIC1, EtMIC2, and EtAMA1 did not bind to any other intestinal tissues. Anti-serum to EtMIC3 was able to block the invasion of sporozoites with a blocking rate of 66.3%. The receptors for EtMIC3 were BCL2-associated athanogene 1 (BAG1) and Endonuclease polyU-specific-like (ENDOUL), which were mainly distributed in the caecum. BAG1 and ENDOUL receptor antiserum reduced weight loss and oocyst output following E. tenella infection, showing partial inhibition of E. tenella infection. These data elucidate the mechanism of site specificity for Eimeria infection and reveal a potential therapeutic avenue.


Assuntos
Galinhas , Coccidiose/veterinária , Eimeria tenella/fisiologia , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/genética , Animais , Coccidiose/parasitologia , Eimeria tenella/genética , Proteínas de Protozoários/metabolismo
16.
Small ; 15(26): e1804044, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30645016

RESUMO

Nucleic acids and proteins are the two primary building materials of living organisms. Over the past decade, artificial DNA-protein hybrid structures have been pursued for a wide range of applications. DNA nanotechnology, in particular, has dramatically expanded nanoscale molecule engineering and contributed to the spatial arrangement of protein components. Strategies for designing site-specific coupling of DNA oligomers to proteins are needed in order to allow for precise control over stoichiometry and position. Efforts have also been focused on coassembly of protein-DNA complexes by engineering their fundamental molecular recognition interactions. This Concept focuses on the precise manipulation of DNA-protein nanoarchitectures. Particular attention is paid to site-selectivity within DNA-protein conjugates, regulation of protein orientation using DNA scaffolds, and coassembly principles upon unique structural motifs. Current challenges and future directions are also discussed in the design and application of DNA-protein nanoarchitectures.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Proteínas/química , Alicerces Teciduais/química
17.
Angew Chem Int Ed Engl ; 58(21): 6916-6920, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30861588

RESUMO

The post-transition-state dynamics in CO oxidation on Pt surfaces are investigated using DFT-based ab initio molecular dynamics simulations. While the initial CO2 formed on a terrace site on Pt(111) desorbs directly, it is temporarily trapped in a chemisorption well on a Pt(332) step site. These two reaction channels thus produce CO2 with hyperthermal and thermal velocities with drastically different angular distributions, in agreement with recent experiments (Nature, 2018, 558, 280-283). The chemisorbed CO2 is formed by electron transfer from the metal to the adsorbate, resulting in a bent geometry. While chemisorbed CO2 on Pt(111) is unstable, it is stable by 0.2 eV on a Pt(332) step site. This helps explain why newly formed CO2 produced at step sites desorbs with far lower translational energies than those formed at terraces. This work shows that steps and other defects could be potentially important in finding optimal conditions for the chemical activation and dissociation of CO2 .

18.
Adv Exp Med Biol ; 977: 233-240, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685451

RESUMO

Our previous studies have shown that water immersion (WI) changes sensorimotor processing and cortical excitability in the sensorimotor regions of the brain. The present study examined the site specificity of the brain activation during WI using functional near infrared spectroscopy (fNIRS). Cortical oxyhaemoglobin (O2Hb) levels in the anterior and posterior parts of the supplementary motor area (pre-SMA and SMA), primary motor cortex (M1), primary somatosensory cortex (S1), and posterior parietal cortex (PPC) were recorded using fNIRS (OMM-3000; Shimadzu Co.) before, during, and after WI in nine healthy participants. The cortical O2Hb levels in SMA, M1, S1, and PPC significantly increased during the WI and increased gradually along with the filling of the WI tank. These changes were not seen in the pre-SMA. The results show that WI-induced increases in cortical O2Hb levels are at least somewhat site specific: there was little brain activation in response to somatosensory input in the pre-SMA, but robust activation in other areas.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/metabolismo , Imersão , Oxiemoglobinas/metabolismo , Adulto , Química Encefálica , Mapeamento Encefálico/métodos , Córtex Cerebral/química , Humanos , Masculino , Córtex Motor/química , Córtex Motor/metabolismo , Especificidade de Órgãos , Oxiemoglobinas/análise , Córtex Somatossensorial/química , Córtex Somatossensorial/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Água , Adulto Jovem
19.
Aust Crit Care ; 30(1): 29-36, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26861142

RESUMO

INTRODUCTION: In critically ill patients, excessive bed rest and immobilisation have been shown to cause disuse muscle atrophy, which contributes to prolonged hospitalisation and decreased activity of daily living (ADL) levels. However, the degree and site specificity of acute disuse muscle atrophy in critically ill patients during a relatively short intensive care unit (ICU) stay have not been fully elucidated. METHODS: Critically ill patients, who required bed rest on ICU admission, were eligible for this study. The degree of skeletal muscle atrophy was evaluated on the day of, and 72 and 144h after ICU admission by measuring the limb circumference in ADL-dependent or -independent patients separately at five different sites: the midpoint of the upper limb between the acromion and the olecranon, the maximum diameter of the triceps surae in the lower leg, and three different sites in the thigh at 5, 10, and 15cm above the superior pole of the patella. Value of the limb circumference was presented as a percentage relative to the baseline (median). RESULTS: In ADL-dependent patients, limb circumferences at all five sites were decreased significantly at 144h compared with the baseline (98.9-100% in the upper limbs, 97.1-97.2% in the lower legs, and 96.5-99.1% in the thighs), but not at 72h. In contrast, the limb circumferences at almost all sites decreased significantly at both 72 and 144h (100% in the upper limbs, 94.5-94.7% in the lower legs, and 89.7-94.7% in the thighs), compared with the baseline in ADL-independent patients. Muscle atrophy was greater at the four different lower-limb sites compared to the upper limb during 144h in the ICU in the ADL-independent, but not in the ADL-dependent patients. CONCLUSIONS: Compared to ADL-dependent patients, ADL-independent patients are prone to develop muscle weakness, especially in the lower limbs.


Assuntos
Atividades Cotidianas , Estado Terminal , Extremidades , Atrofia Muscular/etiologia , Atrofia Muscular/fisiopatologia , Doença Aguda , Idoso , Repouso em Cama , Feminino , Humanos , Imobilização , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
20.
Glycoconj J ; 33(6): 907-915, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27384337

RESUMO

The bark of Sambucus nigra contains a complex mixture of glycoproteins that are characterized as chimeric lectins known as type II ribosome inactivating proteins and holo lectins. These type II ribosome inactivating proteins possess RNA N-glycosidase activity in subunit A and lectin activity associated with subunit B exhibiting distinct sugar specificities to NeuAc(α2-6)-Gal/GalNAc and Gal/GalNAc. In the present study we have determined the N-glycosylation pattern of type II ribosome inactivating protein specific to NeuAc(α2-6)-Gal/GalNAc (Sambucus nigra agglutinin I) by subjecting it to digestion with multiple proteases. The resulting mixture of peptides and N-glycopeptides were analyzed on liquid chromatography coupled to electro spray ionization-iontrap mass spectrometry in MSn mode. MS2 of precursor ions was carried out using CID which provided information on glycan sequence. In subsequent MS3 of Y1/Y1α ions (peptide + HexNAc)+n of corresponding N-glycopeptides, resulted in the fragmentation of peptide backbone confirming the site of attachment. We observed microheterogeneity in each glycan occupied site with subunit A possessing four N-glycans out of six sites with complex and paucimannose types while subunit B comprises occupancy of two sites with a paucimannose and a high mannose type. The differential N-glycosylation of subunits in SNA is discussed in the context of other type II RIPs glycans.


Assuntos
Glicopeptídeos/química , Oligossacarídeos/química , Lectinas de Plantas/química , Proteínas Inativadoras de Ribossomos/química , Sambucus nigra/química , Glicosilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA