Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(12): 3109-3124.e22, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004145

RESUMO

Glycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life. RNA is not thought to be a major target of glycosylation. Here, we challenge this view with evidence that mammals use RNA as a third scaffold for glycosylation. Using a battery of chemical and biochemical approaches, we found that conserved small noncoding RNAs bear sialylated glycans. These "glycoRNAs" were present in multiple cell types and mammalian species, in cultured cells, and in vivo. GlycoRNA assembly depends on canonical N-glycan biosynthetic machinery and results in structures enriched in sialic acid and fucose. Analysis of living cells revealed that the majority of glycoRNAs were present on the cell surface and can interact with anti-dsRNA antibodies and members of the Siglec receptor family. Collectively, these findings suggest the existence of a direct interface between RNA biology and glycobiology, and an expanded role for RNA in extracellular biology.


Assuntos
Membrana Celular/metabolismo , Polissacarídeos/metabolismo , RNA/metabolismo , Animais , Anticorpos/metabolismo , Sequência de Bases , Vias Biossintéticas , Linhagem Celular , Sobrevivência Celular , Humanos , Espectrometria de Massas , Ácido N-Acetilneuramínico/metabolismo , Poliadenilação , Polissacarídeos/química , RNA/química , RNA/genética , RNA não Traduzido/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Coloração e Rotulagem
2.
Cell ; 177(7): 1814-1826.e15, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31178120

RESUMO

It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally.


Assuntos
Comportamento Animal , Caenorhabditis elegans , Neurônios/metabolismo , RNA de Helmintos , Pequeno RNA não Traduzido , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neurônios/citologia , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/genética
3.
Cell ; 173(1): 234-247.e7, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551264

RESUMO

Dicer proteins are known to produce small RNAs (sRNAs) from long double-stranded RNA (dsRNA) templates. These sRNAs are bound by Argonaute proteins, which select the guide strand, often with a 5' end sequence bias. However, Dicer proteins have never been shown to have sequence cleavage preferences. In Paramecium development, two classes of sRNAs that are required for DNA elimination are produced by three Dicer-like enzymes: Dcl2, Dcl3, and Dcl5. Through in vitro cleavage assays, we demonstrate that Dcl2 has a strict size preference for 25 nt and a sequence preference for 5' U and 5' AGA, while Dcl3 has a sequence preference for 5' UNG. Dcl5, however, has cleavage preferences for 5' UAG and 3' CUAC/UN, which leads to the production of RNAs precisely matching short excised DNA elements with corresponding end base preferences. Thus, we characterize three Dicer-like enzymes that are involved in Paramecium development and propose a biological role for their sequence-biased cleavage products.


Assuntos
Paramecium/genética , Proteínas de Protozoários/metabolismo , Ribonuclease III/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Elementos de DNA Transponíveis/genética , Paramecium/metabolismo , Filogenia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Clivagem do RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ribonuclease III/classificação , Ribonuclease III/genética , Alinhamento de Sequência , Análise de Sequência de RNA
4.
Mol Cell ; 82(20): 3872-3884.e9, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36150386

RESUMO

MicroRNAs (miRNAs) typically direct degradation of their mRNA targets. However, some targets have unusual miRNA-binding sites that direct degradation of cognate miRNAs. Although this target-directed miRNA degradation (TDMD) is thought to shape the levels of numerous miRNAs, relatively few sites that endogenously direct degradation have been identified. Here, we identify six sites, five in mRNAs and one in a noncoding RNA named Marge, which serve this purpose in Drosophila cells or embryos. These six sites direct miRNA degradation without collateral target degradation, helping explain the effectiveness of this miRNA-degradation pathway. Mutations that disrupt this pathway are lethal, with many flies dying as embryos. Concomitant derepression of miR-3 and its paralog miR-309 appears responsible for some of this lethality, whereas the loss of Marge-directed degradation of miR-310 miRNAs causes defects in embryonic cuticle development. Thus, TDMD is implicated in the viability of an animal and is required for its proper development.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Drosophila/genética , Drosophila/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Desenvolvimento Embrionário/genética
5.
Annu Rev Genet ; 55: 427-452, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34530640

RESUMO

One of the major cell fate transitions in eukaryotes is entry into meiosis. While in single-celled yeast this decision is triggered by nutrient starvation, in multicellular eukaryotes, such as plants, it is under developmental control. In contrast to animals, plants have only a short germline and instruct cells to become meiocytes in reproductive organs late in development. This situation argues for a fundamentally different mechanism of how plants recruit meiocytes, and consistently, none of the regulators known to control meiotic entry in yeast and animals are present in plants. In recent years, several factors involved in meiotic entry have been identified, especially in the model plant Arabidopsis, and pieces of a regulatory network of germline control in plants are emerging. However, the corresponding studies also show that the mechanisms of meiotic entry control are diversified in flowering plants, calling for further analyses in different plant species.


Assuntos
Arabidopsis , Meiose , Animais , Arabidopsis/genética , Diferenciação Celular , Células Germinativas/fisiologia , Meiose/genética , Mitose/genética
6.
Mol Cell ; 81(3): 546-557.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33378643

RESUMO

Eukaryotic cells regulate 5'-triphosphorylated RNAs (ppp-RNAs) to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR-1 (phosphatase that interacts with RNA and ribonucleoprotein particle 1) family of RNA polyphosphatases remove both the ß and γ phosphates from ppp-RNAs. Here, we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RNA-dependent RNA polymerases (RdRPs) and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and Dicer-independent Argonaute pathways and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Monoéster Fosfórico Hidrolases/genética , Fosforilação , RNA/genética , Capuzes de RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Espermatogênese , Especificidade por Substrato
7.
Mol Cell ; 77(2): 411-425.e7, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31761494

RESUMO

Base pairing RNAs modulate gene expression in all studied organisms. In many bacteria, the base pairing between most small regulatory RNAs (sRNAs) and their targets is mediated by the Hfq RNA chaperone. However, recent studies have shown FinO-domain proteins also bind sRNAs. To examine the global contribution of the FinO-domain ProQ protein in Escherichia coli, we carried out RIL-seq to identify RNA pairs bound to this protein. The RNA-RNA interactome for ProQ contains hundreds of pairs. Intriguingly, a significant fraction of the ProQ-bound RNA pairs are also found associated with Hfq, indicating overlapping, complementary, or competing roles for the two proteins. Characterization of one novel RNA pair bound by both chaperones revealed that while Hfq is required for RNA sponge-mediated downregulation of the sRNA, ProQ can inhibit this regulation. Overall, our results uncover increased complexity in RNA regulatory networks involving RNA chaperone proteins, RNases, sRNAs, and mRNAs.


Assuntos
DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Pareamento de Bases/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Chaperonas Moleculares/genética , Domínios Proteicos/genética , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética
8.
EMBO J ; 42(20): e114400, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37735935

RESUMO

Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.


Assuntos
RNA Longo não Codificante , Transcriptoma , RNA Longo não Codificante/genética , Regulação da Expressão Gênica de Plantas , RNA não Traduzido/genética , Estresse Fisiológico/genética , RNA de Plantas/genética
9.
Annu Rev Genet ; 53: 289-311, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31150586

RESUMO

In animals, small noncoding RNAs that are expressed in the germline and transmitted to progeny control gene expression to promote fertility. Germline-expressed small RNAs, including endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), drive the repression of deleterious transcripts such as transposons, repetitive elements, and pseudogenes. Recent studies have highlighted an important role for small RNAs in transgenerational epigenetic inheritance via regulation of heritable chromatin marks; therefore, small RNAs are thought to convey an epigenetic memory of genomic self and nonself elements. Small RNA pathways are highly conserved in metazoans and have been best described for the model organism Caenorhabditis elegans. In this review, we describe the biogenesis, regulation, and function of C. elegans endo-siRNAs and piRNAs, along with recent insights into how these distinct pathways are integrated to collectively regulate germline gene expression, transgenerational epigenetic inheritance, and ultimately, animal fertility.


Assuntos
Caenorhabditis elegans/genética , Cromatina/genética , Células Germinativas/fisiologia , Pequeno RNA não Traduzido/genética , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/genética , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Masculino , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transgenes
10.
Annu Rev Genet ; 53: 195-215, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31424971

RESUMO

Plant genomes interact when genetically distinct individuals join, or are joined, together. Individuals can fuse in three contexts: artificial grafts, natural grafts, and host-parasite interactions. Artificial grafts have been studied for decades and are important platforms for studying the movement of RNA, DNA, and protein. Yet several mysteries about artificial grafts remain, including the factors that contribute to graft incompatibility, the prevalence of genetic and epigenetic modifications caused by exchanges between graft partners, and the long-term effects of these modifications on phenotype. Host-parasite interactions also lead to the exchange of materials, and RNA exchange actively contributes to an ongoing arms race between parasite virulence and host resistance. Little is known about natural grafts except that they can be frequent and may provide opportunities for evolutionary innovation through genome exchange. In this review, we survey our current understanding about these three mechanisms of contact, the genomic interactions that result, and the potential evolutionary implications.


Assuntos
Genoma de Planta , Interações Hospedeiro-Parasita/genética , Melhoramento Vegetal/métodos , Plantas/parasitologia , Evolução Biológica , Variação Biológica da População , Quimera , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/fisiologia , Plantas/genética
11.
Mol Cell ; 76(4): 574-589.e7, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31540875

RESUMO

RNA localization in eukaryotes is a mechanism to regulate transcripts fate. Conversely, bacterial transcripts were not assumed to be specifically localized. We previously demonstrated that E. coli mRNAs may localize to where their products localize in a translation-independent manner, thus challenging the transcription-translation coupling extent. However, the scope of RNA localization in bacteria remained unknown. Here, we report the distribution of the E. coli transcriptome between the membrane, cytoplasm, and poles by combining cell fractionation with deep-sequencing (Rloc-seq). Our results reveal asymmetric RNA distribution on a transcriptome-wide scale, significantly correlating with proteome localization and prevalence of translation-independent RNA localization. The poles are enriched with stress-related mRNAs and small RNAs, the latter becoming further enriched upon stress in an Hfq-dependent manner. Genome organization may play a role in localizing membrane protein-encoding transcripts. Our results show an unexpected level of intricacy in bacterial transcriptome organization and highlight the poles as hubs for regulation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Mensageiro/genética , Transcriptoma , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Transporte Proteico , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
12.
Proc Natl Acad Sci U S A ; 121(10): e2311321121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408251

RESUMO

Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.


Assuntos
Euryarchaeota , Vesículas Extracelulares , Haloferax volcanii , Proteínas Monoméricas de Ligação ao GTP , Euryarchaeota/genética , Archaea/genética , RNA , Haloferax volcanii/genética , Vesículas Extracelulares/genética
13.
Trends Genet ; 39(12): 908-923, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783604

RESUMO

Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.


Assuntos
RNA Longo não Codificante , RNA Nucleolar Pequeno , Animais , RNA Nucleolar Pequeno/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Genoma , Mamíferos/genética
14.
EMBO J ; 41(22): e111839, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36221862

RESUMO

Small RNAs mediate the silencing of transposable elements and other genomic loci, increasing nucleosome density and preventing undesirable gene expression. The unicellular ciliate Paramecium is a model to study dynamic genome organization in eukaryotic cells, given its unique feature of nuclear dimorphism. Here, the formation of the somatic macronucleus during sexual reproduction requires eliminating thousands of transposon remnants (IESs) and transposable elements scattered throughout the germline micronuclear genome. The elimination process is guided by Piwi-associated small RNAs and leads to precise cleavage at IES boundaries. Here we show that IES recognition and precise excision are facilitated by recruiting ISWI1, a Paramecium homolog of the chromatin remodeler ISWI. ISWI1 knockdown substantially inhibits DNA elimination, quantitatively similar to development-specific sRNA gene knockdowns but with much greater aberrant IES excision at alternative boundaries. We also identify key development-specific sRNA biogenesis and transport proteins, Ptiwi01 and Ptiwi09, as ISWI1 cofactors in our co-immunoprecipitation studies. Nucleosome profiling indicates that increased nucleosome density correlates with the requirement for ISWI1 and other proteins necessary for IES excision. We propose that chromatin remodeling together with small RNAs is essential for efficient and precise DNA elimination in Paramecium.


Assuntos
Paramecium , Paramecium/genética , Paramecium/metabolismo , Elementos de DNA Transponíveis/genética , Montagem e Desmontagem da Cromatina , Nucleossomos/genética , DNA de Protozoário/genética , DNA de Protozoário/metabolismo
15.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38009921

RESUMO

RNA silencing pathways are complex, highly conserved, and perform crucial regulatory roles. In Caenorhabditis elegans germlines, RNA surveillance occurs through a series of perinuclear germ granule compartments - P granules, Z granules, SIMR foci, and Mutator foci - multiple of which form via phase separation. Although the functions of individual germ granule proteins have been extensively studied, the relationships between germ granule compartments (collectively, 'nuage') are less understood. We find that key germ granule proteins assemble into separate but adjacent condensates, and that boundaries between germ granule compartments re-establish after perturbation. We discover a toroidal P granule morphology, which encircles the other germ granule compartments in a consistent exterior-to-interior spatial organization, providing broad implications for the trajectory of an RNA as it exits the nucleus. Moreover, we quantify the stoichiometric relationships between germ granule compartments and RNA to reveal discrete populations of nuage that assemble in a hierarchical manner and differentially associate with RNAi-targeted transcripts, possibly suggesting functional differences between nuage configurations. Our work creates a more accurate model of C. elegans nuage and informs the conceptualization of RNA silencing through the germ granule compartments.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Grânulos de Ribonucleoproteínas de Células Germinativas , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , RNA/metabolismo , Grânulos Citoplasmáticos/metabolismo
16.
Plant J ; 118(6): 1848-1863, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488203

RESUMO

Noncoding and coding RNAs are key regulators of plant growth, development, and stress responses. To investigate the types of transcripts accumulated during the vegetative to reproductive transition and floral development in the Coffea arabica L., we sequenced small RNA libraries from eight developmental stages, up to anthesis. We combined these data with messenger RNA and PARE sequencing of two important development stages that marks the transition of an apparent latent to a rapid growth stage. In addition, we took advantage of multiple in silico tools to characterize genomic loci producing small RNAs such as phasiRNAs, miRNAs, and tRFs. Our differential and co-expression analysis showed that some types of small RNAs such as tRNAs, snoRNAs, snRNAs, and phasiRNAs preferentially accumulate in a stage-specific manner. Members of the miR482/miR2118 superfamily and their 21-nucleotide phasiRNAs originating from resistance genes show a robust co-expression pattern that is maintained across all the evaluated developmental stages. Finally, the majority of miRNAs accumulate in a family stage-specific manner, related to modulated hormonal responses and transcription factor expression.


Assuntos
Coffea , Flores , Regulação da Expressão Gênica de Plantas , MicroRNAs , RNA de Plantas , Coffea/genética , Coffea/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , RNA de Plantas/genética , MicroRNAs/genética , Tetraploidia
17.
Mol Microbiol ; 121(1): 129-141, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38082493

RESUMO

Brucella abortus is a facultative, intracellular, zoonotic pathogen that resides inside macrophages during infection. This is a specialized niche where B. abortus encounters various stresses as it navigates through the macrophage. In order to survive this harsh environment, B. abortus utilizes post-transcriptional regulation of gene expression through the use of small regulatory RNAs (sRNAs). Here, we characterize a Brucella sRNAs called MavR (for MurF- and virulence-regulating sRNA), and we demonstrate that MavR is required for the full virulence of B. abortus in macrophages and in a mouse model of chronic infection. Transcriptomic and proteomic studies revealed that a major regulatory target of MavR is MurF. MurF is an essential protein that catalyzes the final cytoplasmic step in peptidoglycan (PG) synthesis; however, we did not detect any differences in the amount or chemical composition of PG in the ΔmavR mutant. A 6-nucleotide regulatory seed region within MavR was identified, and mutation of this seed region resulted in dysregulation of MurF production, as well as significant attenuation of infection in a mouse model. Overall, the present study underscores the importance of sRNA regulation in the physiology and virulence of Brucella.


Assuntos
Brucelose , Pequeno RNA não Traduzido , Animais , Camundongos , Brucella abortus/metabolismo , Regulação da Expressão Gênica , Macrófagos , Camundongos Endogâmicos BALB C , Proteômica , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
18.
RNA ; 29(11): 1772-1791, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607742

RESUMO

RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and noncoding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70, and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Aminoácidos/metabolismo , RNA Bacteriano/metabolismo
19.
Exp Cell Res ; 435(2): 113923, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190870

RESUMO

Atrial fibrillation (AF) is an extremely common clinical arrhythmia disease, but whether its mechanism is associated with ferroptosis remains unclear. The tRNA-derived small RNAs (tsRNAs) are involved in a variety of cardiovascular diseases, however, their role and mechanism in atrial remodeling in AF have not been studied. We aimed to explore whether tsRNAs mediate ferroptosis in AF progression. The AF models were constructed to detect ferroptosis-related indicators, and Ferrostatin-1 (Fer-1) was introduced to clarify the relationship between ferroptosis and AF. Atrial myocardial tissue was used for small RNA sequencing to screen potential tsRNAs. tsRNA functioned on ferroptosis and AF was explored. Atrial fibrosis and changes in the cellular structures and arrangement were observed in AF mice model, and these alterations were accompanied by ferroptosis occurrence, exhibited by the accumulation of Fe2+ and MDA levels and the decrease of expression of FTH1, GPX4, and SLC7A11. Blocking above ferroptosis activation with Fer-1 resulted in a significant improvement for AF. A total of 7 tsRNAs were upregulated (including tsRNA-5008a) and 2 tsRNAs were downregulated in atrial myocardial tissue in the AF group compared with the sham group. We constructed a tsRNA-mRNA regulated network, which showed tsRNA-5008a targeted 16 ferroptosis-related genes. Knockdown of tsRNA-5008a significantly suppressed ferroptosis through targeting SLC7A11 and diminished myocardial fibrosis both in vitro and in vivo. On the contrary, tsRNA-5008a mimics promoted ferroptosis in cardiomyocytes. Collectively, tsRNA-5008a involved in AF through ferroptosis. Our study provides novel insights into the role of tsRNA-5008a mediated ferroptosis in AF progression.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Cicloexilaminas , Ferroptose , Fenilenodiaminas , Animais , Camundongos , Fibrilação Atrial/genética , Miócitos Cardíacos , Remodelamento Atrial/genética , Ferroptose/genética , Átrios do Coração
20.
Semin Cell Dev Biol ; 127: 121-132, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34426067

RESUMO

Inherited epigenetic information has been observed to regulate a variety of complex organismal phenotypes across diverse taxa of life. This continually expanding body of literature suggests that epigenetic inheritance plays a significant, and potentially fundamental, role in inheritance. Despite the important role these types of effects play in biology, the molecular mediators of this non-genetic transmission of information are just now beginning to be deciphered. Here we provide an intellectual framework for interpreting these findings and how they can interact with each other. We also define the different types of mechanisms that have been found to mediate epigenetic inheritance and to regulate whether epigenetic information persists for one or many generations. The field of epigenetic inheritance is entering an exciting phase, in which we are beginning to understand the mechanisms by which non-genetic information is transmitted to, and deciphered by, subsequent generations to maintain essential environmental information without permanently altering the genetic code. A more complete understanding of how and when epigenetic inheritance occurs will advance our understanding of numerous different aspects of biology ranging from how organisms cope with changing environments to human pathologies influenced by a parent's environment.


Assuntos
Epigênese Genética , Hereditariedade , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Padrões de Herança/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA