Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894452

RESUMO

BACKGROUND: Monitoring the lifestyles of older adults helps promote independent living and ensure their well-being. The common technologies for home monitoring include wearables, ambient sensors, and smart household meters. While wearables can be intrusive, ambient sensors require extra installation, and smart meters are becoming integral to smart city infrastructure. Research Gap: The previous studies primarily utilized high-resolution smart meter data by applying Non-Intrusive Appliance Load Monitoring (NIALM) techniques, leading to significant privacy concerns. Meanwhile, some Japanese power companies have successfully employed low-resolution data to monitor lifestyle patterns discreetly. SCOPE AND METHODOLOGY: This study develops a lifestyle monitoring system for older adults using low-resolution smart meter data, mapping electricity consumption to appliance usage. The power consumption data are collected at 15-min intervals, and the background power threshold distinguishes between the active and inactive periods (0/1). The system quantifies activity through an active score and assesses daily routines by comparing these scores against the long-term norms. Key Outcomes/Contributions: The findings reveal that low-resolution data can effectively monitor lifestyle patterns without compromising privacy. The active scores and regularity assessments calculated using correlation coefficients offer a comprehensive view of residents' daily activities and any deviations from the established patterns. This study contributes to the literature by validating the efficacy of low-resolution data in lifestyle monitoring systems and underscores the potential of smart meters in enhancing elderly people's care.


Assuntos
Vida Independente , Estilo de Vida , Humanos , Idoso , Feminino , Masculino , Atividades Cotidianas , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/métodos , Idoso de 80 Anos ou mais , Dispositivos Eletrônicos Vestíveis
2.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474991

RESUMO

Static flow sensors (e.g., thermal gas micro electro-mechanical sensors-MEMS-and ultrasonic time of flight) are becoming the prevailing technology for domestic gas metering and billing since they show advantages in respect to the traditional volumetric ones. However, they are expected to be influenced in-service by changes in gas composition, which in the future could be more frequent due to the spread of hydrogen admixtures in gas networks. In this paper, the authors present the results of an experimental campaign aimed at analyzing the in-service reliability of both static and volumetric gas meters with different hydrogen admixtures. The results show that the accuracy of volumetric and ultrasonic meters is always within the admitted limits for subsequent verification and even within those narrower of the initial verification. On the other hand, the accuracy of the first generation of thermal mass gas flow sensors is within the limits of the verification only when the hydrogen admixture is below 2%vol. At higher hydrogen content, in fact, the absolute weighted mean error ranges between 3.5% (with 5%vol of hydrogen) and 15.8% (with 10%vol of hydrogen).

3.
Sensors (Basel) ; 23(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37631747

RESUMO

Developing a low-cost wireless energy meter with power quality measurements for smart grid applications represents a significant advance in efficient and accurate electric energy monitoring. In increasingly complex and interconnected electric systems, this device will be essential for a wide range of applications, such as smart grids, by introducing a real-time energy monitoring system. In light of this, smart meters can offer greater opportunities for sustainable and efficient energy use and improve the utilization of energy sources, especially those that are nonrenewable. According to the 2020 International Energy Agency (IEA) report, nonrenewable energy sources represent 65% of the global supply chain. The smart meter developed in this work is based on the ESP32 microcontroller and easily accessible components since it includes a user-friendly development platform that offers a cost-effective solution while ensuring reliable performance. The main objective of developing the smart meters was to enhance the software and simplify the hardware. Unlike traditional meters that calculate electrical parameters by means of complex circuits in hardware, this project performed the calculations directly on the microcontroller. This procedure reduced the complexity of the hardware by simplifying the meter design. Owing to the high-performance processing capability of the microcontroller, efficient and accurate calculations of electrical parameters could be achieved without the need for additional circuits. This software-driven approach with simplified hardware led to benefits, such as reduced production costs, lower energy consumption, and a meter with improved accuracy, as well as updates on flexibility. Furthermore, the integrated wireless connectivity in the microcontroller enables the collected data to be transmitted to remote monitoring systems for later analysis. The innovative feature of this smart meter lies in the fact that it has readily available components, along with the ESP32 chip, which results in a low-cost smart meter with performance that is comparable to other meters available on the market. Moreover, it is has the capacity to incorporate IoT and artificial intelligence applications. The developed smart meter is cost effective and energy efficient, and offers benefits with regard to flexibility, and thus represents an innovative, efficient, and versatile solution for smart grid applications.

4.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139561

RESUMO

Water utilities in Japan face a number of challenges, including declining water demand due to a shrinking population, shrinking workforce, and aging water supply facilities. Widespread use of smart water meters is crucial for solving these problems. The widespread use of smart water meters is expected to bring many benefits such as reduced labor by automating meter reading, early identification of leaks, and visualization of pipeline data to strengthen the infrastructure of water services, business continuity, and customer service, as detailed data can be obtained using wireless communication. Demonstration tests are actively conducted in Japan; however, many problems have been reported with cast iron meter boxes blocking radio waves. To address the issue, a low-cost slit structure for cast iron meter boxes is investigated in this study. The results confirm that the L-shaped tapered slit array structure with a cavity, which can be fabricated in a cast iron integral structure, satisfies the design loads required for road installation. The proposed slit structure achieved gain characteristics from -3.32 to more than 9.54 dBi in the 800 to 920 MHz band. The gain characteristics of conventional cast iron meter boxes range from -15 to -20 dBi, and the gain has been significantly improved. Antennas with a gain of -2.0 to +1.5 dB (0.8 to 2.5 GHz) were used for the transmitter antenna, which was found to have a higher gain than the transmit antenna in the 800 to 880 MHz frequency band. In the 1.5 to 2.0 GHz band, a high peak gain of 4.25 dBi was achieved at 1660 MHz, with no null and the lowest gain confirmed that this is an improvement of more than 10 dBi over conventional products.

5.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991616

RESUMO

In the energy sector, since the adoption of remote device management for massive advanced metering infrastructure (AMI) devices and Internet of Things (IoT) technology using a representational state transfer (RESTful) architecture, a blurred boundary has been developed between traditional AMI and IoT. With respect to smart meters, the standard-based smart metering protocol, called the device language message specification (DLMS) protocol, still has a predominant role in the AMI industry. Thus, we aim to propose a novel data interworking model in this article that embraces the DLMS protocol in AMI using the most promising IoT protocol, the so-called lightweight machine-to-machine (LwM2M) protocol. We provide a 1:1 conversion model using the correlation of the two protocols with an analysis of the object modeling and resource management methods of both the LwM2M and DLMS protocols. The proposed model utilizes a complete RESTful architecture, which is the most beneficial in the LwM2M protocol. It improves the average packet transmission efficiency and packet delay on the plaintext and encrypted text (session establishment and authenticated encryption) by 52.9%p and 9.9%p, respectively, and by 11.86 ms for both cases, compared to the encapsulation method of the LwM2M protocol, KEPCO's current approach. This work provides the key idea to unify the protocol for the remote metering and device management of field devices into the LwM2M protocol, and it is expected that this work will improve the efficiency in the operation and management of KEPCO's AMI system.

6.
Sensors (Basel) ; 23(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616673

RESUMO

Many tasks that require a large workforce are automated. In many areas of the world, the consumption of utilities, such as electricity, gas and water, is monitored by meters that need to be read by humans. The reading of such meters requires the presence of an employee or a representative of the utility provider. Automatic meter reading is crucial in the implementation of smart grids. For this reason, with the aim to boost the implementation of the smart grid paradigm, in this paper, we propose a method aimed to automatically read digits from a dial meter. In detail, the proposed method aims to localise the dial meter from an image, to detect the digits and to classify the digits. Deep learning is exploited, and, in particular, the YOLOv5s model is considered for the localisation of digits and for their recognition. An experimental real-world case study is presented to confirm the effectiveness of the proposed method for automatic digit localisation recognition from dial meters.


Assuntos
Sistemas Computacionais , Eletricidade , Humanos
7.
Sensors (Basel) ; 22(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336439

RESUMO

Despite the benefits of smart grids, concerns about security and privacy arise when a large number of heterogeneous devices communicate via a public network. A novel privacy-preserving method for smart grid-based home area networks (HAN) is proposed in this research. To aggregate data from diverse household appliances, the proposed approach uses homomorphic Paillier encryption, Chinese remainder theorem, and one-way hash function. The privacy in Internet of things (IoT)-enabled smart homes is one of the major concerns of the research community. In the proposed scheme, the sink node not only aggregates the data but also enables the early detection of false data injection and replay attacks. According to the security analysis, the proposed approach offers adequate security. The smart grid distributes power and facilitates a two-way communications channel that leads to transparency and developing trust.


Assuntos
Internet das Coisas , Privacidade , Algoritmos , Comunicação , Segurança Computacional
8.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36236316

RESUMO

The security of Smart Meter (SM) systems will be a challenge in the era of quantum computing because a quantum computer might exploit characteristics of well-established cryptographic schemes to reach a successful security breach. From a practical perspective, this paper focuses on the feasibility of implementing a quantum-secure lattice-based key encapsulation mechanism in a SM, hardware-constrained equipment. In this regard, the post-quantum cryptography (PQC) scheme, FrodoKEM, an alternate candidate for the National Institute for Standards and Technology (NIST) post-quantum standardization process, is implemented using a System-on-a-Chip (SoC) device in which the Field Programmable Gate Array (FPGA) component is exploited to accelerate the most time-consuming routines in this scheme. Experimental results show that the execution time to run the FrodoKEM scheme in an SoC device reduces to one-third of that obtained by the benchmark implementation (i.e., the software implementation). Also, the attained execution time and hardware resource usage of this SoC-based implementation of the FrodoKEM scheme show that lattice-based cryptography may fit into SM equipment.

9.
Sensors (Basel) ; 22(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36236635

RESUMO

Electricity consumption is rising due to population growth, climate change, urbanization, and the increasing use of electronic devices. The trend of the Internet of Things has contributed to the creation of devices that promote the thrift and efficient use of electrical energy. Currently, most projects relating to this issue focus solely on monitoring energy consumption without providing relevant parameters or switching on/off electronic devices. Therefore, this paper presents in detail the design, construction, and validation of a smart meter with load control aimed at being part of a home energy management system. With its own electronic design, the proposal differs from others in many aspects. For example, it was developed using a simple IoT architecture with in-built WiFi technology to enable direct connection to the internet, while at the same time being big enough to be part of standardized electrical enclosures. Unlike other smart meters with load control, this one not only provides the amount of energy consumption, but rms current and voltage, active, reactive, and apparent power, reactive energy, and power factor-parameters that could be useful for future studies. In addition, this work presents evidence based on experimentation that the prototype in all its readings achieves an absolute percentage error of less than 1%. A real-life application of the device was also demonstrated in this document by measuring different appliances and switching them on/off manually and automatically using a web-deployed application.

10.
Sensors (Basel) ; 23(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616716

RESUMO

Nowadays the rationalization of electrical energy consumption is a serious concern worldwide. Energy consumption reduction and energy efficiency appear to be the two paths to addressing this target. To achieve this goal, many different techniques are promoted, among them, the integration of (artificial) intelligence in the energy workflow is gaining importance. All these approaches have a common need: data. Data that should be collected and provided in a reliable, accurate, secure, and efficient way. For this purpose, sensing technologies that enable ubiquitous data acquisition and the new communication infrastructure that ensure low latency and high density are the key. This article presents a sensing solution devoted to the precise gathering of energy parameters such as voltage, current, active power, and power factor for server farms and datacenters, computing infrastructures that are growing meaningfully to meet the demand for network applications. The designed system enables disaggregated acquisition of energy data from a large number of devices and characterization of their consumption behavior, both in real time. In this work, the creation of a complete multiport power meter system is detailed. The study reports all the steps needed to create the prototype, from the analysis of electronic components, the selection of sensors, the design of the Printed Circuit Board (PCB), the configuration and calibration of the hardware and embedded system, and the implementation of the software layer. The power meter application is geared toward data centers and server farms and has been tested by connecting it to a laboratory server rack, although its designs can be easily adapted to other scenarios where gathering the energy consumption information was needed. The novelty of the system is based on high scalability built upon two factors. Firstly, the one-on-one approach followed to acquire the data from each power source, even if they belong to the same physical equipment, so the system can correlate extremely well the execution of processes with the energy data. Thus, the potential of data to develop tailored solutions rises. Second, the use of temporal multiplexing to keep the real-time data delivery even for a very high number of sources. All these ensure compatibility with standard IoT networks and applications, as the data markup language is used (enabling database storage and computing system processing) and the interconnection is done by well-known protocols.

11.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36502025

RESUMO

Addressing data anomalies (e.g., garbage data, outliers, redundant data, and missing data) plays a vital role in performing accurate analytics (billing, forecasting, load profiling, etc.) on smart homes' energy consumption data. From the literature, it has been identified that the data imputation with machine learning (ML)-based single-classifier approaches are used to address data quality issues. However, these approaches are not effective to address the hidden issues of smart home energy consumption data due to the presence of a variety of anomalies. Hence, this paper proposes ML-based ensemble classifiers using random forest (RF), support vector machine (SVM), decision tree (DT), naive Bayes, K-nearest neighbor, and neural networks to handle all the possible anomalies in smart home energy consumption data. The proposed approach initially identifies all anomalies and removes them, and then imputes this removed/missing information. The entire implementation consists of four parts. Part 1 presents anomaly detection and removal, part 2 presents data imputation, part 3 presents single-classifier approaches, and part 4 presents ensemble classifiers approaches. To assess the classifiers' performance, various metrics, namely, accuracy, precision, recall/sensitivity, specificity, and F1 score are computed. From these metrics, it is identified that the ensemble classifier "RF+SVM+DT" has shown superior performance over the conventional single classifiers as well the other ensemble classifiers for anomaly handling.


Assuntos
Aprendizado de Máquina , Máquina de Vetores de Suporte , Teorema de Bayes , Redes Neurais de Computação , Análise por Conglomerados
12.
Sensors (Basel) ; 21(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668136

RESUMO

The growing demand for solutions related to measurement (e.g., digital sensors, smart meters, distributed measuring systems) imposes several concerns about information and process reliability. In this context, blockchain can play a crucial role as a platform to implement applications and activities in the context of legal metrology. In most countries, the National Metrology Institutes (NMIs) are responsible for promoting these initiatives. Thus, in this paper, we present a functional architecture to integrate NMIs in a collaborative blockchain network. We discuss the main aspects and features that an inter-NMI blockchain network must deliver. Furthermore, we implement our proposal using the Hyperledger Fabric platform. We connect peers from Physikalisch-Technische Bundesanstalt (PTB) (German NMI) and the National Institute of Metrology, Quality, and Technology (Inmetro) (Brazilian NMI) in a useful application that consists of a blockchain-based public-key infrastructure to identify and authenticate smart meters. Our preliminary results demonstrate that the proposed architecture meets the main requirements imposed by applications involving measurements. Furthermore, it opens the opportunity to integrate NMIs from other countries into the project, constituting an important global initiative in the metrology field.

13.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34640791

RESUMO

The IoT-enabled smart grid system provides smart meter data for electricity consumers to record their energy consumption behaviors, the typical features of which can be represented by the load patterns extracted from load data clustering. The changeability of consumption behaviors requires load pattern update for achieving accurate consumer segmentation and effective demand response. In order to save training time and reduce computation scale, we propose a novel incremental clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally, it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can be performed continuously with new coming data due to parameter updating and generalization. Extensive experiments are implemented on real-world dataset containing diverse consumer types in various districts. The experimental results are evaluated by both clustering validity indices and accuracy measures, which indicate that ICluster-PS outperforms other related incremental clustering algorithm. Additionally, according to the further case studies on pattern evolution analysis, ICluster-PS is able to present any pattern drifts through its incremental clustering results.


Assuntos
Algoritmos , Sistemas Computacionais , Análise por Conglomerados , Eletricidade , Probabilidade
14.
Sensors (Basel) ; 21(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063197

RESUMO

Load forecasting plays a crucial role in the world of smart grids. It governs many aspects of the smart grid and smart meter, such as demand response, asset management, investment, and future direction. This paper proposes time-series forecasting for short-term load prediction to unveil the load forecast benefits through different statistical and mathematical models, such as artificial neural networks, auto-regression, and ARIMA. It targets the problem of excessive computational load when dealing with time-series data. It also presents a business case that is used to analyze different clusters to find underlying factors of load consumption and predict the behavior of customers based on different parameters. On evaluating the accuracy of the prediction models, it is observed that ARIMA models with the (P, D, Q) values as (1, 1, 1) were most accurate compared to other values.

15.
Sensors (Basel) ; 21(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204334

RESUMO

This paper aims to present the analysis and development of a complete electronic smart meter that is able to perform four-quadrant measurements, act as a three-phase shunt active power filter (APF), and control three-phase induction motors by stator flux estimation. A transmission control protocol together with Internet protocol (TCP/IP) communication protocol for the remote access of measurement data is embedded into the application to securely transmit reliable information. An artificial neural network trained with particle swarm optimization is used for stator flux estimation, and a fuzzy logic controller is adopted to regulate the power converter DC bus voltage. The present work gathers knowledge from multidisciplinary fields, and all applied techniques have not been proposed altogether before. All control functions are embedded into a field-programmable gate array (FPGA) device, using VHSIC Hardware Description Language (VHDL), to enhance efficiency taking advantage of parallelism and high speed. An FPGA-in-the-loop cosimulation technique was first applied to prove the control functions' functionality, and, later, experimental evaluations are conducted to finally prove equipment operation and reliability.


Assuntos
Algoritmos , Lógica Fuzzy , Eletrônica , Redes Neurais de Computação , Reprodutibilidade dos Testes
16.
Sensors (Basel) ; 21(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671685

RESUMO

With the development of the internet of things (IoT), the power grid has become intelligent using massive IoT sensors, such as smart meters. Generally, installed smart meters can collect large amounts of data to improve grid visibility and situational awareness. However, the limited storage and communication capacities can restrain their infrastructure in the IoT environment. To alleviate these problems, efficient and various compression techniques are required. Deep learning-based compression techniques such as auto-encoders (AEs) have recently been deployed for this purpose. However, the compression performance of the existing models can be limited when the spectral properties of high-frequency sampled power data are widely varying over time. This paper proposes an AE compression model, based on a frequency selection method, which improves the reconstruction quality while maintaining the compression ratio (CR). For efficient data compression, the proposed method selectively applies customized compression models, depending on the spectral properties of the corresponding time windows. The framework of the proposed method involves two primary steps: (i) division of the power data into a series of time windows with specified spectral properties (high-frequency, medium-frequency, and low-frequency dominance) and (ii) separate training and selective application of the AE models, which prepares them for the power data compression that best suits the characteristics of each frequency. In simulations on the Dutch residential energy dataset, the frequency-selective AE model shows significantly higher reconstruction performance than the existing model with the same CR. In addition, the proposed model reduces the computational complexity involved in the analysis of the learning process.

17.
Sensors (Basel) ; 21(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34451092

RESUMO

The Advanced Metering Infrastructure (AMI) data represent a source of information in real time not only about electricity consumption but also as an indicator of other social, demographic, and economic dynamics within a city. This paper presents a Data Analytics/Big Data framework applied to AMI data as a tool to leverage the potential of this data within the applications in a Smart City. The framework includes three fundamental aspects. First, the architectural view places AMI within the Smart Grids Architecture Model-SGAM. Second, the methodological view describes the transformation of raw data into knowledge represented by the DIKW hierarchy and the NIST Big Data interoperability model. Finally, a binding element between the two views is represented by human expertise and skills to obtain a deeper understanding of the results and transform knowledge into wisdom. Our new view faces the challenges arriving in energy markets by adding a binding element that gives support for optimal and efficient decision-making. To show how our framework works, we developed a case study. The case implements each component of the framework for a load forecasting application in a Colombian Retail Electricity Provider (REP). The MAPE for some of the REP's markets was less than 5%. In addition, the case shows the effect of the binding element as it raises new development alternatives and becomes a feedback mechanism for more assertive decision making.


Assuntos
Big Data , Ciência de Dados , Sistemas Computacionais , Eletricidade , Previsões , Humanos
18.
Sensors (Basel) ; 21(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833509

RESUMO

Most smart meters are connected and powered by the electric mains, requiring the service interruption and qualified personnel for their installation. Wireless technologies and energy harvesting techniques have been proved as alternatives for communications and power supply, respectively. In this work, we analyse the energy consumption of the most used IoT wireless technologies nowadays: Sigfox, LoRaWAN, NB-IoT, Wi-Fi, BLE. Smart meters' energy consumption accounts for metering, standby and communication processes. Experimental measurements show that communication consumption may vary upon the specific characteristics of each wireless communication technology-payload, connection establishment, transmission time. Results show that the selection of a specific technology will depend on the application requirements (message payload, metering period) and location constraints (communication range, infrastructure availability). Besides, we compare the performance of the most suitable energy harvesting (EH) techniques for smart meters: photovoltaic (PV), radiofrequency (RF) and magnetic induction (MIEH). Thus, EH technique selection will depend on the availability of each source at the smart meter's location. The most appropriate combination of IoT wireless technology and EH technique must be selected accordingly to the very use case requirements and constraints.

19.
Sensors (Basel) ; 21(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946443

RESUMO

Global warming is a leading world issue driving the common social objective of reducing carbon emissions. People have witnessed the melting of ice and abrupt changes in climate. Reducing electricity usage is one possible method of slowing these changes. In recent decades, there have been massive worldwide rollouts of smart meters that automatically capture the total electricity usage of houses and buildings. Electricity load disaggregation (ELD) helps to break down total electricity usage into that of individual appliances. Studies have implemented ELD models based on various artificial intelligence techniques using a single ELD dataset. In this paper, a powerline noise transformation approach based on optimized complete ensemble empirical model decomposition and wavelet packet transform (OCEEMD-WPT) is proposed to merge the ELD datasets. The practical implications are that the method increases the size of training datasets and provides mutual benefits when utilizing datasets collected from other sources (especially from different countries). To reveal the effectiveness of the proposed method, it was compared with CEEMD-WPT (fixed controlled coefficients), standalone CEEMD, standalone WPT, and other existing works. The results show that the proposed approach improves the signal-to-noise ratio (SNR) significantly.

20.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884039

RESUMO

Numerous approaches exist for disaggregating power consumption data, referred to as non-intrusive load monitoring (NILM). Whereas NILM is primarily used for energy monitoring, we intend to disaggregate a household's power consumption to detect human activity in the residence. Therefore, this paper presents a novel approach for NILM, which uses pattern recognition on the raw power waveform of the smart meter measurements to recognize individual household appliance actions. The presented NILM approach is capable of (near) real-time appliance action detection in a streaming setting, using edge computing. It is unique in our approach that we quantify the disaggregating uncertainty using continuous pattern correlation instead of binary device activity states. Further, we outline using the disaggregated appliance activity data for human activity recognition (HAR). To evaluate our approach, we use a dataset collected from actual households. We show that the developed NILM approach works, and the disaggregation quality depends on the pattern selection and the appliance type. In summary, we demonstrate that it is possible to detect human activity within the residence using a motif-detection-based NILM approach applied to smart meter measurements.


Assuntos
Atividades Humanas , Reconhecimento Psicológico , Humanos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA