Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Annu Rev Microbiol ; 73: 293-312, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31180806

RESUMO

Cooperation has fascinated biologists since Darwin. How did cooperative behaviors evolve despite the fitness cost to the cooperator? Bacteria have cooperative behaviors that make excellent models to take on this age-old problem from both proximate (molecular) and ultimate (evolutionary) angles. We delve into Pseudomonas aeruginosa swarming, a phenomenon where billions of bacteria move cooperatively across distances of centimeters in a matter of a few hours. Experiments with swarming have unveiled a strategy called metabolic prudence that stabilizes cooperation, have showed the importance of spatial structure, and have revealed a regulatory network that integrates environmental stimuli and direct cooperative behavior, similar to a machine learning algorithm. The study of swarming elucidates more than proximate mechanisms: It exposes ultimate mechanisms valid to all scales, from cells in cancerous tumors to animals in large communities.


Assuntos
Locomoção , Interações Microbianas , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Modelos Teóricos
2.
Microbiology (Reading) ; 169(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204848

RESUMO

Quorum sensing (QS) is a widespread mechanism of environment sensing and behavioural coordination in bacteria. At its core, QS is based on the production, sensing and response to small signalling molecules. Previous work with Pseudomonas aeruginosa shows that QS can be used to achieve quantitative resolution and deliver a dosed response to the bacteria's density environment, implying a sophisticated mechanism of control. To shed light on how the mechanistic signal components contribute to graded responses to density, we assess the impact of genetic (AHL signal synthase deletion) and/or signal supplementation (exogenous AHL addition) perturbations on lasB reaction-norms to changes in density. Our approach condenses data from 2000 timeseries (over 74 000 individual observations) into a comprehensive view of QS-controlled gene expression across variation in genetic, environmental and signal determinants of lasB expression. We first confirm that deleting either (∆lasI, ∆rhlI) or both (∆lasIrhlI) AHL signal synthase gene attenuates QS response to density. In the ∆rhlI background we show persistent yet attenuated density-dependent lasB expression due to native 3-oxo-C12-HSL signalling. We then test if density-independent quantities of AHL signal (3-oxo-C12-HSL, C4-HSL) added to the WT either flatten or increase responsiveness to density and find that the WT response is robust to all tested concentrations of signal, alone or in combination. We then move to progressively supplementing the genetic knockouts and find that cognate signal supplementation of a single AHL signal (∆lasI +3-oxo-C12-HSL, ∆rhlI +C4HSL) is sufficient to restore the ability to respond in a density-dependent manner to increasing density. We also find that dual signal supplementation of the double AHL synthase knockout restores the ability to produce a graded response to increasing density, despite adding a density-independent amount of signal. Only the addition of high concentrations of both AHLs and PQS can force maximal lasB expression and ablate responsiveness to density. Our results show that density-dependent control of lasB expression is robust to multiple combinations of QS gene deletion and density-independent signal supplementation. Our work develops a modular approach to query the robustness and mechanistic bases of the central environmental sensing phenotype of quorum sensing.


Assuntos
Proteínas de Bactérias , Percepção de Quorum , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Homosserina/metabolismo , Pseudomonas aeruginosa/metabolismo , Suplementos Nutricionais
3.
Adv Exp Med Biol ; 1386: 95-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258070

RESUMO

Pseudomonas aeruginosa, like many bacteria, uses chemical signals to communicate between cells in a process called quorum sensing (QS). QS allows groups of bacteria to sense population density and, in response to changing cell densities, to coordinate behaviors. The P. aeruginosa QS system consists of two complete circuits that involve acyl-homoserine lactone signals and a third system that uses quinolone signals. Together, these three QS circuits regulate the expression of hundreds of genes, many of which code for virulence factors. P. aeruginosa has become a model for studying the molecular biology of QS and the ecology and evolution of group behaviors in bacteria. In this chapter, we recount the history of discovery of QS systems in P. aeruginosa, discuss how QS relates to virulence and the ecology of this bacterium, and explore strategies to inhibit QS. Finally, we discuss future directions for research in P. aeruginosa QS.


Assuntos
Quinolonas , Percepção de Quorum , Pseudomonas aeruginosa/genética , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transativadores/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Proc Natl Acad Sci U S A ; 116(14): 7027-7032, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30850547

RESUMO

The bacterial pathogen Pseudomonas aeruginosa activates expression of many virulence genes in a cell density-dependent manner by using an intricate quorum-sensing (QS) network. QS in P. aeruginosa involves two acyl-homoserine-lactone circuits, LasI-LasR and RhlI-RhlR. LasI-LasR is required to activate many genes including those coding for RhlI-RhlR. P. aeruginosa causes chronic infections in the lungs of people with cystic fibrosis (CF). In these infections, LasR mutants are common, but rhlR-rhlI expression has escaped LasR regulation in many CF isolates. To better understand the evolutionary trajectory of P. aeruginosa QS in chronic infections, we grew LasR mutants of the well-studied P. aeruginosa strain, PAO1, in conditions that recapitulate an environment where QS signal synthesis by other bacteria might still occur. When QS is required for growth, addition of the RhlI product butyryl-homoserine lactone (C4-HSL), or bacteria that produce C4-HSL, to LasR mutants results in the rapid emergence of a population with a LasR-independent RhlI-RhlR QS system. These evolved populations exhibit subsequent growth without added C4-HSL. The variants that emerge have mutations in mexT, which codes for a transcription factor that controls expression of multiple genes. LasR-MexT mutants have a competitive advantage over both the parent LasR mutant and a LasR-MexT-RhlR mutant. Our findings suggest a plausible evolutionary trajectory for QS in P. aeruginosa CF infections where LasR mutants arise during infection, but because these mutants are surrounded by C4-HSL-producing P. aeruginosa, variants rewired to have a LasR-independent RhlIR system quickly emerge.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Percepção de Quorum/genética , Transdução de Sinais/genética , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(29): 7587-7592, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967162

RESUMO

Many species of Proteobacteria produce acyl-homoserine lactone (AHL) compounds as quorum-sensing (QS) signals for cell density-dependent gene regulation. Most known AHL synthases, LuxI-type enzymes, produce fatty AHLs, and the fatty acid moiety is derived from an acyl-acyl carrier protein (ACP) intermediate in fatty acid biosynthesis. Recently, a class of LuxI homologs has been shown to use CoA-linked aromatic or amino acid substrates for AHL synthesis. By using an informatics approach, we found the CoA class of LuxI homologs exists primarily in α-Proteobacteria. The genome of Prosthecomicrobium hirschii, a dimorphic prosthecate bacterium, possesses a luxI-like AHL synthase gene that we predicted to encode a CoA-utilizing enzyme. We show the P. hirschii LuxI homolog catalyzes synthesis of phenylacetyl-homoserine lactone (PA-HSL). Our experiments show P. hirschii obtains phenylacetate from its environment and uses a CoA ligase to produce the phenylacetyl-CoA substrate for the LuxI homolog. By using an AHL degrading enzyme, we showed that PA-HSL controls aggregation, biofilm formation, and pigment production in P. hirschii These findings advance a limited understanding of the CoA-dependent AHL synthases. We describe how to identify putative members of the class, we describe a signal synthesized by using an environmental aromatic acid, and we identify phenotypes controlled by the aryl-HSL.


Assuntos
4-Butirolactona/análogos & derivados , Alphaproteobacteria/fisiologia , Proteínas de Bactérias , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte , Percepção de Quorum/fisiologia , Transdução de Sinais/fisiologia , 4-Butirolactona/biossíntese , 4-Butirolactona/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
6.
Microbiology (Reading) ; 166(8): 777-784, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511085

RESUMO

In the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing (QS) is a social trait that is exploitable by non-cooperating cheats. Previously it has been shown that by linking QS to the production of both public and private goods, cheats can be prevented from invading populations of cooperators and this was described by Dandekar et al. (Science 2012;338:264-266) as 'a metabolic incentive to cooperate'. We hypothesized that P. aeruginosa could evolve novel cheating strategies to circumvent private goods metabolism by rewiring its combinatorial response to two QS signals (3O-C12-HSL and C4-HSL). We performed a selection experiment that cycled P. aeruginosa between public and private goods growth media and evolved an isolate that rewired its control of cooperative protease expression from a synergistic (AND-gate) response to dual-signal input to a 3O-C12-HSL-only response. We show that this isolate circumvents metabolic incentives to cooperate and acts as a combinatorial signalling cheat, with higher fitness in competition with its ancestor. Our results show three important principles: first, combinatorial QS allows for diverse social strategies to emerge; second, restrictions levied by private goods are not sufficient to explain the maintenance of cooperation in natural populations; and third, modifying combinatorial QS responses could result in important physiological outcomes in bacterial populations.


Assuntos
Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Meios de Cultura/metabolismo , Aptidão Genética , Interações Microbianas , Mutação , Percepção de Quorum/genética , Transdução de Sinais/genética
7.
J Bacteriol ; 201(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782628

RESUMO

Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of a battery of secreted products. At least some of these products are shared among the population and serve as public goods. When P. aeruginosa is grown on casein as the sole carbon and energy source, the QS-induced extracellular protease elastase is required for growth. We isolated a P. aeruginosa variant, which showed increased production of QS-induced factors after repeated transfers in casein broth. This variant, P. aeruginosa QS*, had a mutation in the glutathione synthesis gene gshA We describe several experiments that show a gshA coding variant and glutathione affect the QS response. The P. aeruginosa QS transcription factor LasR has a redox-sensitive cysteine (C79). We report that GshA variant cells with a LasR C79S substitution show a similar QS response to that of wild-type P. aeruginosa Surprisingly, it is not LasR but the QS transcription factor RhlR that is more active in bacteria containing the variant gshA Our results demonstrate that QS integrates information about cell density and the cellular redox state via glutathione levels.IMPORTANCEPseudomonas aeruginosa and other bacteria coordinate group behaviors using a chemical communication system called quorum sensing (QS). The QS system of P. aeruginosa is complex, with several regulators and signals. We show that decreased levels of glutathione lead to increased gene activation in P. aeruginosa, which did not occur in a strain carrying the redox-insensitive variant of a transcription factor. The ability of P. aeruginosa QS transcription factors to integrate information about cell density and cellular redox state shows these transcription factors can fine-tune levels of the gene products they control in response to at least two types of signals or cues.


Assuntos
Glutationa/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Análise Mutacional de DNA , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Mutação , Oxirredução , Pseudomonas aeruginosa/metabolismo , Inoculações Seriadas , Transativadores/metabolismo
8.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709826

RESUMO

Multiple species of bacteria oxidize methane in the environment after it is produced by anaerobic ecosystems. These organisms provide reduced carbon substrates for species that cannot oxidize methane themselves, thereby serving a key role in these niches while also sequestering this potent greenhouse gas before it enters the atmosphere. Deciphering the molecular details of how methane-oxidizing bacteria interact in the environment enables us to understand an important aspect that shapes the structures and functions of these communities. Here we show that many members of the Methylomonas genus possess a LuxR-type acyl-homoserine lactone (acyl-HSL) receptor/transcription factor that is highly homologous to MbaR from the quorum-sensing (QS) system of Methylobacter tundripaludum, another methane oxidizer that has been isolated from the same environment. We reconstitute this detection system in Escherichia coli and use mutant and transcriptomic analysis to show that the receptor/transcription factor from Methylomonas sp. strain LW13 is active and alters LW13 gene expression in response to the acyl-HSL produced by M. tundripaludum These findings provide a molecular mechanism for how two species of bacteria that may compete for resources in the environment can interact in a specific manner through a chemical signal.IMPORTANCE Methanotrophs are bacteria that sequester methane, a significant greenhouse gas, and thereby perform an important ecosystem function. Understanding the mechanisms by which these organisms interact in the environment may ultimately allow us to manipulate and to optimize this activity. Here we show that members of a genus of methane-oxidizing bacteria can be influenced by a chemical signal produced by a possibly competing species. This provides insight into how gene expression can be controlled in these bacterial communities via an exogenous chemical signal.


Assuntos
Metano/metabolismo , Methylococcaceae/metabolismo , Microbiota/fisiologia , Transdução de Sinais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Ecossistema , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Methylococcaceae/genética , Methylomonas/genética , Methylomonas/metabolismo , Microbiota/genética , Oxirredução , Percepção de Quorum/fisiologia , Proteínas Repressoras , Transdução de Sinais/genética , Transativadores , Fatores de Transcrição/genética , Transcriptoma
9.
J Evol Biol ; 32(5): 412-424, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30724418

RESUMO

Policing occurs in insect, animal and human societies, where it evolved as a mechanism maintaining cooperation. Recently, it has been suggested that policing might even be relevant in enforcing cooperation in much simpler organisms such as bacteria. Here, we used individual-based modelling to develop an evolutionary concept for policing in bacteria and identify the conditions under which it can be adaptive. We modelled interactions between cooperators, producing a beneficial public good, cheaters, exploiting the public good without contributing to it, and public good-producing policers that secrete a toxin to selectively target cheaters. We found that toxin-mediated policing is favoured when (a) toxins are potent and durable, (b) toxins are cheap to produce, (c) cell and public good diffusion is intermediate, and (d) toxins diffuse farther than the public good. Although our simulations identify the parameter space where toxin-mediated policing can evolve, we further found that policing decays when the genetic linkage between public good and toxin production breaks. This is because policing is itself a public good, offering protection to toxin-resistant mutants that still produce public goods, yet no longer invest in toxins. Our work thus highlights that not only specific environmental conditions are required for toxin-mediated policing to evolve, but also strong genetic linkage between the expression of public goods, toxins and toxin resistance is essential for this mechanism to remain evolutionarily stable in the long run.


Assuntos
Bactérias/genética , Evolução Biológica , Interações Microbianas/genética , Modelos Biológicos
10.
Proc Natl Acad Sci U S A ; 113(29): 8296-301, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27335458

RESUMO

In prokaryotes and eukaryotes, cell-cell communication and recognition of self are critical to coordinate multicellular functions. Although kin and kind discrimination are increasingly appreciated to shape naturally occurring microbe populations, the underlying mechanisms that govern these interbacterial interactions are insufficiently understood. Here, we identify a mechanism of interbacterial signal transduction that is mediated by contact-dependent growth inhibition (CDI) system proteins. CDI systems have been characterized by their ability to deliver a polymorphic protein toxin into the cytoplasm of a neighboring bacterium, resulting in growth inhibition or death unless the recipient bacterium produces a corresponding immunity protein. Using the model organism Burkholderia thailandensis, we show that delivery of a catalytically active CDI system toxin to immune (self) bacteria results in gene expression and phenotypic changes within the recipient cells. Termed contact-dependent signaling (CDS), this response promotes biofilm formation and other community-associated behaviors. Engineered strains that are isogenic with B. thailandensis, except the DNA region encoding the toxin and immunity proteins, did not display CDS, whereas a strain of Burkholderia dolosa producing a nearly identical toxin-immunity pair induced signaling in B. thailandensis Our data indicate that bcpAIOB loci confer dual benefits; they direct antagonism toward non-self bacteria and promote cooperation between self bacteria, with self being defined by the bcpAIOB allele and not by genealogic relatedness.


Assuntos
Burkholderia/fisiologia , Proteínas de Membrana/fisiologia , Fenômenos Fisiológicos Bacterianos , Toxinas Bacterianas , Biofilmes , Burkholderia/crescimento & desenvolvimento , Interações Microbianas/fisiologia , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 113(8): 2152-7, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26787913

RESUMO

Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating--a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Modelos Biológicos , Percepção de Quorum/genética , Alelos , Evolução Biológica , Genes Bacterianos , Variação Genética , Modelos Genéticos , Mutação , Percepção de Quorum/fisiologia
12.
Proc Biol Sci ; 285(1881)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29925622

RESUMO

Evolution of cooperation has been one of the most important problems in sociobiology, and many researchers have revealed mechanisms that can facilitate the evolution of cooperation. However, most studies deal only with one cooperative behaviour, even though some organisms perform two or more cooperative behaviours. The social amoeba Dictyostelium discoideum performs two cooperative behaviours in starvation: fruiting body formation and macrocyst formation. Here, we constructed a model that couples these two behaviours, and we found that the two behaviours are maintained because of the emergence of cyclic dominance, although cooperation cannot evolve if only either of the two behaviours is performed. The common chemoattractant cyclic adenosine 3',5'-monophosphate (cAMP) is used in both fruiting body formation and macrocyst formation, providing a biological context for this coupling. Cyclic dominance emerges regardless of the existence of mating types or spatial structure in the model. In addition, cooperation can re-emerge in the population even after it goes extinct. These results indicate that the two cooperative behaviours of the social amoeba are maintained because of the common chemical signal that underlies both fruiting body formation and macrocyst formation. We demonstrate the importance of coupling multiple games when the underlying behaviours are associated with one another.


Assuntos
Dictyostelium/fisiologia , Interações Microbianas , Modelos Biológicos , Reprodução
13.
Int J Med Microbiol ; 308(3): 413-423, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29555180

RESUMO

Lung disease in cystic fibrosis (CF) is characterized by the progressive colonization of the respiratory tract by different bacteria, which develop polymicrobial biofilms. In the past decades, there has been an increase in the number of CF patients infected with Non-Tuberculous Mycobacteria (NTM). Although Mycobacterium abscessus is the main NTM isolated globally, little is known about M. abscessus multispecies biofilm formation. In the present study we developed an in vitro model to study the phenotypic characteristics of biofilms formed by M. abscessus and Pseudomonas aeruginosa, a major pathogen in CF. For that purpose, dual species biofilms were grown on polycarbonate membranes with a fixed concentration of P. aeruginosa and different inoculums of M. abscessus. The biofilms were sampled at 24, 48, and 72 h and bacteria were quantified in specific media. The results revealed that the increasing initial concentration of M. abscessus in dual species biofilms had an effect on its population only at 24 and 48 h, whereas P. aeruginosa was not affected by the different concentrations used of M. abscessus. Time elapsed increased biofilm formation of both species, specially between 24 and 48 h. According to the results, the conditions to produce a mature dual species biofilm in which the relative species distribution remained stable were 72 h growth of the mixed microbial culture at a 1:1 ratio. A significant decrease in mycobacterial population in dual compared to single species biofilms was found, suggesting that P. aeruginosa has a negative influence on M. abscessus. Finally, in a proof of concept experiment, young and mature dual species biofilms were exposed to clarithromycin.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Mycobacterium abscessus/fisiologia , Micobactérias não Tuberculosas/fisiologia , Pseudomonas aeruginosa/fisiologia , Antibacterianos , Biofilmes/efeitos dos fármacos , Claritromicina/farmacologia , Humanos , Técnicas In Vitro , Modelos Biológicos , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium abscessus/ultraestrutura , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/ultraestrutura
14.
Proc Natl Acad Sci U S A ; 112(7): 2187-91, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646454

RESUMO

The bacterium Pseudomonas aeruginosa is an opportunistic human pathogen that uses a quorum sensing signal cascade to activate expression of dozens of genes when sufficient population densities have been reached. Quorum sensing controls production of several key virulence factors, including secreted proteases such as elastase. Cooperating groups of bacteria growing on protein are susceptible to social cheating by quorum-sensing defective mutants. A possible way to restrict cheater emergence is by policing where cooperators produce costly goods to sanction or punish cheats. The P. aeruginosa LasR-LasI quorum sensing system controls genes including those encoding proteases and also those encoding a second quorum-sensing system, the RhlR-RhlI system, which controls numerous genes including those for cyanide production. By using RhlR quorum sensing mutants and cyanide synthesis mutants, we show that cyanide production is costly and cyanide-producing cooperators use cyanide to punish LasR-null social cheaters. Cooperators are less susceptible to cyanide than are LasR mutants. These experiments demonstrate policing in P. aeruginosa, provide a mechanistic understanding of policing, and show policing involves the cascade organization of the two quorum sensing systems in this bacterium.


Assuntos
Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Cianetos/metabolismo , Mutação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Virulência
15.
Proc Natl Acad Sci U S A ; 112(35): 11054-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26216986

RESUMO

Despite their importance for humans, there is little consensus on the function of antibiotics in nature for the bacteria that produce them. Classical explanations suggest that bacteria use antibiotics as weapons to kill or inhibit competitors, whereas a recent alternative hypothesis states that antibiotics are signals that coordinate cooperative social interactions between coexisting bacteria. Here we distinguish these hypotheses in the prolific antibiotic-producing genus Streptomyces and provide strong evidence that antibiotics are weapons whose expression is significantly influenced by social and competitive interactions between competing strains. We show that cells induce facultative responses to cues produced by competitors by (i) increasing their own antibiotic production, thereby decreasing costs associated with constitutive synthesis of these expensive products, and (ii) by suppressing antibiotic production in competitors, thereby reducing direct threats to themselves. These results thus show that although antibiotic production is profoundly social, it is emphatically not cooperative. Using computer simulations, we next show that these facultative strategies can facilitate the maintenance of biodiversity in a community context by converting lethal interactions between neighboring colonies to neutral interactions where neither strain excludes the other. Thus, just as bacteriocins can lead to increased diversity via rock-paper-scissors dynamics, so too can antibiotics via elicitation and suppression. Our results reveal that social interactions are crucial for understanding antibiosis and bacterial community dynamics, and highlight the potential of interbacterial interactions for novel drug discovery by eliciting pathways that mediate interference competition.


Assuntos
Antibacterianos/biossíntese , Streptomyces/fisiologia , Streptomyces/metabolismo
16.
J Bacteriol ; 199(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808129

RESUMO

The laboratory strain of Pseudomonas aeruginosa, PAO1, activates genes for catabolism of adenosine using quorum sensing (QS). However, this strain is not well-adapted for growth on adenosine, with doubling times greater than 40 h. We previously showed that when PAO1 is grown on adenosine and casein, variants emerge that grow rapidly on adenosine. To understand the mechanism by which this adaptation occurs, we performed whole-genome sequencing of five isolates evolved for rapid growth on adenosine. All five genomes had a gene duplication-amplification (GDA) event covering several genes, including the quorum-regulated nucleoside hydrolase gene, nuh, and PA0148, encoding an adenine deaminase. In addition, two of the growth variants also exhibited a nuh promoter mutation. We recapitulated the rapid growth phenotype with a plasmid containing six genes common to all the GDA events. We also showed that nuh and PA0148, the two genes at either end of the common GDA, were sufficient to confer rapid growth on adenosine. Additionally, we demonstrated that the variant nuh promoter increased basal expression of nuh but maintained its QS regulation. Therefore, GDA in P. aeruginosa confers the ability to grow efficiently on adenosine while maintaining QS regulation of nucleoside catabolism.IMPORTANCEPseudomonas aeruginosa thrives in many habitats and is an opportunistic pathogen of humans. In these diverse environments, P. aeruginosa must adapt to use myriad potential carbon sources. P. aeruginosa PAO1 cannot grow efficiently on nucleosides, including adenosine; however, it can acquire this ability through genetic adaptation. We show that the mechanism of adaptation is by amplification of a specific region of the genome and that the amplification preserves the regulation of the adenosine catabolic pathway by quorum sensing. These results demonstrate an underexplored mechanism of adaptation by P. aeruginosa, with implications for phenotypes such as development of antibiotic resistance.


Assuntos
Adenosina/metabolismo , Aminoidrolases/genética , Duplicação Gênica , N-Glicosil Hidrolases/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Adaptação Biológica , Aminoidrolases/metabolismo , Meios de Cultura/química , Análise Mutacional de DNA , Genoma Bacteriano , N-Glicosil Hidrolases/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA
17.
J Bacteriol ; 199(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27994019

RESUMO

Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of Methylobacter tundripaludum, a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that M. tundripaludum produces primarily N-3-hydroxydecanoyl-l-homoserine lactone (3-OH-C10-HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by M. tundripaludum in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium.IMPORTANCE Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph Methylobacter tundripaludum and use both chemical and genetic methods to characterize this system at the molecular level.


Assuntos
Metano/metabolismo , Methylococcaceae/fisiologia , Percepção de Quorum/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Cinética , Oxirredução , Transdução de Sinais
18.
Yeast ; 34(10): 399-406, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28681487

RESUMO

Division of labour between different specialized cell types is a central part of how we describe complexity in multicellular organisms. However, it is increasingly being recognized that division of labour also plays an important role in the lives of predominantly unicellular organisms. Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Saccharomyces cerevisiae/fisiologia , Adaptação Fisiológica , Apoptose , Biofilmes/crescimento & desenvolvimento , Evolução Biológica , Fenótipo , Fase de Repouso do Ciclo Celular , Saccharomyces cerevisiae/genética
19.
Ecol Lett ; 19(1): 81-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26612461

RESUMO

The importance of 'eco-evolutionary feedbacks' in natural systems is currently unclear. Here, we advance a general hypothesis for a particular class of eco-evolutionary feedbacks with potentially large, long-lasting impacts in complex ecosystems. These eco-evolutionary feedbacks involve traits that mediate important interactions with abiotic and biotic features of the environment and a self-driven reversal of selection as the ecological impact of the trait varies between private (small scale) and public (large scale). Toxic algal blooms may involve such eco-evolutionary feedbacks due to the emergence of public goods. We review evidence that toxin production by microalgae may yield 'privatised' benefits for individual cells or colonies under pre- and early-bloom conditions; however, the large-scale, ecosystem-level effects of toxicity associated with bloom states yield benefits that are necessarily 'public'. Theory predicts that the replacement of private with public goods may reverse selection for toxicity in the absence of higher level selection. Indeed, blooms often harbor significant genetic and functional diversity: bloom populations may undergo genetic differentiation over a scale of days, and even genetically similar lineages may vary widely in toxic potential. Intriguingly, these observations find parallels in terrestrial communities, suggesting that toxic blooms may serve as useful models for eco-evolutionary dynamics in nature. Eco-evolutionary feedbacks involving the emergence of a public good may shed new light on the potential for interactions between ecology and evolution to influence the structure and function of entire ecosystems.


Assuntos
Evolução Biológica , Eutrofização , Microalgas/fisiologia , Retroalimentação , Modelos Biológicos
20.
Microbiol Spectr ; 12(5): e0417923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511955

RESUMO

A common feature of N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems is that the AHL signal is autoinducing. Once induced, a cell will further amplify the signal via a positive feedback loop. Pseudomonas fuscovaginae UPB0736 has two fully functional AHL QS systems, called PfsI/R and PfvI/R, which are inactive in a standard laboratory setting. In this work, we induce the QS systems with exogenous AHL signals and characterize the AHL signal amplification effect and QS activation dynamics at community and single-cell level. While the cognate signal is in both cases significantly further amplified to physiologically relevant levels, we observe only a limited response in terms of AHL synthase gene promoter activity. Additionally, the PfsI/R QS system exhibits a unique dramatic phenotypic heterogeneity, where only up to 5% of all cells amplify the signal further and are, thus, considered to be QS active. IMPORTANCE: Bacteria use N-acyl-l-homoserine lactone (AHL) quorum-sensing (QS) systems for population-wide phenotypic coordination. The QS configuration in Pseudomonas fuscovaginae is dramatically different from other model examples of AHL QS signaling and, thus, represents an important exception to the norm, which usually states that QS triggers population-wide phenotypic transitions in relation to cell density. We argue that the differences in QS dynamics of P. fuscovaginae highlight its different evolutionary purpose, which is ultimately dictated by the selective pressures of its natural habitat. We hope that this example will further expand our understanding of the complex and yet unknown QS-enabled sociomicrobiology. Furthermore, we argue that exemptions to the QS norm will be found in other plant-pathogenic bacterial strains that grow in similar environments and that molecularly similar QS systems do not necessarily share a similar evolutionary purpose; therefore, generalizations about bacterial cell-to-cell signaling systems function should be avoided.


Assuntos
Acil-Butirolactonas , Ligases , Pseudomonas , Percepção de Quorum , Pseudomonas/genética , Pseudomonas/fisiologia , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA