RESUMO
Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r(2)) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.
RESUMO
Soil sensors and plant wearables play a critical role in smart and precision agriculture via monitoring real-time physical and chemical signals in the soil, such as temperature, moisture, pH, and pollutants and providing key information to optimize crop growth circumstances, fight against biotic and abiotic stresses, and enhance crop yields. Herein, the recent advances of the important soil sensors in agricultural applications, including temperature sensors, moisture sensors, organic matter compounds sensors, pH sensors, insect/pest sensors, and soil pollutant sensors are reviewed. Major sensing technologies, designs, performance, and pros and cons of each sensor category are highlighted. Emerging technologies such as plant wearables and wireless sensor networks are also discussed in terms of their applications in precision agriculture. The research directions and challenges of soil sensors and intelligent agriculture are finally presented.