Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.020
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 367-387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594929

RESUMO

Lysosomes are the degradative endpoints of material delivered by endocytosis and autophagy and are therefore particularly prone to damage. Membrane permeabilization or full rupture of lysosomal or late endosomal compartments is highly deleterious because it threatens cellular homeostasis and can elicit cell death and inflammatory signaling. Cells have developed a complex response to endo-lysosomal damage that largely consists of three branches. Initially, a number of repair pathways are activated to restore the integrity of the lysosomal membrane. If repair fails or if damage is too extensive, lysosomes are isolated and degraded by a form of selective autophagy termed lysophagy. Meanwhile, an mTORC1-governed signaling cascade drives biogenesis and regeneration of new lysosomal components to reestablish the full lysosomal capacity of the cell. This damage response is vital to counteract the effects of various conditions, including neurodegeneration and infection, and can constitute a critical vulnerability in cancer cells.


Assuntos
Autofagia , Endossomos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Lisossomos/metabolismo , Humanos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Endossomos/metabolismo , Endocitose , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética
2.
Cell ; 186(6): 1179-1194.e15, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931245

RESUMO

The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Humanos , Células-Tronco Neurais/metabolismo , Neurônios , Diferenciação Celular/fisiologia , Neuroglia/metabolismo , Encéfalo , Astrócitos
3.
Cell ; 186(24): 5411-5427.e23, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918396

RESUMO

Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.


Assuntos
Encéfalo , Proteoma , Sinapses , Animais , Camundongos , Encéfalo/metabolismo , Camundongos Transgênicos , Proteoma/metabolismo , Proteômica , Sinapses/metabolismo , Sinaptossomos/metabolismo
4.
Cell ; 186(20): 4310-4324.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703874

RESUMO

Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.


Assuntos
Condensados Biomoleculares , Caenorhabditis elegans , RNA Mensageiro , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Oogênese , Biossíntese de Proteínas , Transporte de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas/química , Proteínas/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo
5.
Cell ; 185(5): 777-793.e20, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35196500

RESUMO

In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.


Assuntos
Blastocisto , Embrião de Mamíferos , Endoderma , Animais , Blastocisto/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Membrana Celular/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Endoderma/metabolismo , Mamíferos , Camundongos , Transporte Proteico
6.
Cell ; 185(10): 1646-1660.e18, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447073

RESUMO

Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.


Assuntos
Marsupiais , Animais , Austrália , Evolução Molecular , Especiação Genética , Genoma , Marsupiais/genética , Fenótipo , Filogenia
7.
Annu Rev Cell Dev Biol ; 38: 349-374, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35562853

RESUMO

Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.


Assuntos
Citoesqueleto de Actina , Actomiosina , Adesão Celular
8.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32169217

RESUMO

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Assuntos
Arabidopsis/metabolismo , Transporte Proteico/fisiologia , Sistema de Translocação de Argininas Geminadas/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Biogênese de Organelas , Organelas/metabolismo , Transição de Fase , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Sistema de Translocação de Argininas Geminadas/fisiologia
9.
Cell ; 175(1): 266-276.e13, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30166209

RESUMO

A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , Humanos
10.
Annu Rev Cell Dev Biol ; 35: 131-168, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31399000

RESUMO

Protein coats are supramolecular complexes that assemble on the cytosolic face of membranes to promote cargo sorting and transport carrier formation in the endomembrane system of eukaryotic cells. Several types of protein coats have been described, including COPI, COPII, AP-1, AP-2, AP-3, AP-4, AP-5, and retromer, which operate at different stages of the endomembrane system. Defects in these coats impair specific transport pathways, compromising the function and viability of the cells. In humans, mutations in subunits of these coats cause various congenital diseases that are collectively referred to as coatopathies. In this article, we review the fundamental properties of protein coats and the diseases that result from mutation of their constituent subunits.


Assuntos
Endossomos/química , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Proteínas de Transporte Vesicular/genética , Animais , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/terapia , Humanos , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo
11.
Annu Rev Biochem ; 86: 685-714, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28301740

RESUMO

Mitochondria are essential organelles with numerous functions in cellular metabolism and homeostasis. Most of the >1,000 different mitochondrial proteins are synthesized as precursors in the cytosol and are imported into mitochondria by five transport pathways. The protein import machineries of the mitochondrial membranes and aqueous compartments reveal a remarkable variability of mechanisms for protein recognition, translocation, and sorting. The protein translocases do not operate as separate entities but are connected to each other and to machineries with functions in energetics, membrane organization, and quality control. Here, we discuss the versatility and dynamic organization of the mitochondrial protein import machineries. Elucidating the molecular mechanisms of mitochondrial protein translocation is crucial for understanding the integration of protein translocases into a large network that controls organelle biogenesis, function, and dynamics.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Biogênese de Organelas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Precursores de Proteínas/química , Precursores de Proteínas/genética , Transporte Proteico
12.
Annu Rev Genet ; 57: 223-244, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37562410

RESUMO

Assigning functions to genes and learning how to control their expression are part of the foundation of cell biology and therapeutic development. An efficient and unbiased method to accomplish this is genetic screening, which historically required laborious clone generation and phenotyping and is still limited by scale today. The rapid technological progress on modulating gene function with CRISPR-Cas and measuring it in individual cells has now relaxed the major experimental constraints and enabled pooled screening with complex readouts from single cells. Here, we review the principles and practical considerations for pooled single-cell CRISPR screening. We discuss perturbation strategies, experimental model systems, matching the perturbation to the individual cells, reading out cell phenotypes, and data analysis. Our focus is on single-cell RNA sequencing and cell sorting-based readouts, including image-enabled cell sorting. We expect this transformative approach to fuel biomedical research for the next several decades.


Assuntos
Sistemas CRISPR-Cas , Genoma , Sistemas CRISPR-Cas/genética , Genoma/genética , Testes Genéticos/métodos , Fenótipo
13.
Cell ; 167(6): 1623-1635.e14, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889239

RESUMO

Retromer is a multi-protein complex that recycles transmembrane cargo from endosomes to the trans-Golgi network and the plasma membrane. Defects in retromer impair various cellular processes and underlie some forms of Alzheimer's disease and Parkinson's disease. Although retromer was discovered over 15 years ago, the mechanisms for cargo recognition and recruitment to endosomes have remained elusive. Here, we present an X-ray crystallographic analysis of a four-component complex comprising the VPS26 and VPS35 subunits of retromer, the sorting nexin SNX3, and a recycling signal from the divalent cation transporter DMT1-II. This analysis identifies a binding site for canonical recycling signals at the interface between VPS26 and SNX3. In addition, the structure highlights a network of cooperative interactions among the VPS subunits, SNX3, and cargo that couple signal-recognition to membrane recruitment.


Assuntos
Proteínas de Transporte de Cátions/química , Complexos Multiproteicos/química , Nexinas de Classificação/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Espalhamento a Baixo Ângulo , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo
14.
Mol Cell ; 78(5): 941-950.e12, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32464092

RESUMO

mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same gene assemble into discrete homotypic clusters. We demonstrate that in vivo mRNA localization to granules and self-assembly within granules are governed by different mRNA features: localization is encoded by specific RNA regions, whereas self-assembly involves the entire mRNA, does not involve sequence-specific, ordered intermolecular RNA:RNA interactions, and is thus RNA sequence independent. We propose that the ability of mRNAs to self-sort into homotypic assemblies is an inherent property of an messenger ribonucleoprotein (mRNP) that is augmented under conditions that increase RNA concentration, such as upon enrichment in RNA-protein granules, a process that appears conserved in diverse cellular contexts and organisms.


Assuntos
Grânulos Citoplasmáticos/fisiologia , RNA Mensageiro/genética , Ribonucleoproteínas/metabolismo , Animais , Grânulos Citoplasmáticos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/metabolismo , Organelas/fisiologia , RNA/genética , Transporte de RNA/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/genética
15.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856078

RESUMO

Embryonic development is a complex and dynamic process that unfolds over time and involves the production and diversification of increasing numbers of cells. The impact of developmental time on the formation of the central nervous system is well documented, with evidence showing that time plays a crucial role in establishing the identity of neuronal subtypes. However, the study of how time translates into genetic instructions driving cell fate is limited by the scarcity of suitable experimental tools. We introduce BirthSeq, a new method for isolating and analyzing cells based on their birth date. This innovative technique allows for in vivo labeling of cells, isolation via fluorescence-activated cell sorting, and analysis using high-throughput techniques. We calibrated the BirthSeq method for developmental organs across three vertebrate species (mouse, chick and gecko), and utilized it for single-cell RNA sequencing and novel spatially resolved transcriptomic approaches in mouse and chick, respectively. Overall, BirthSeq provides a versatile tool for studying virtually any tissue in different vertebrate organisms, aiding developmental biology research by targeting cells and their temporal cues.


Assuntos
Análise de Célula Única , Animais , Camundongos , Análise de Célula Única/métodos , Embrião de Galinha , Lagartos/genética , Lagartos/embriologia , Desenvolvimento Embrionário/genética , Transcriptoma/genética , Citometria de Fluxo/métodos , Vertebrados/genética , Separação Celular/métodos , Galinhas , Análise de Sequência de RNA/métodos
16.
Plant Cell ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963880

RESUMO

Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the ER exit sites (ERESs) and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12 and Sec24, and participates in coat protein II (COPII) vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/ phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER, and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway.

17.
Immunity ; 49(2): 301-311.e5, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30076101

RESUMO

An important class of HIV-1 broadly neutralizing antibodies, termed the VRC01 class, targets the conserved CD4-binding site (CD4bs) of the envelope glycoprotein (Env). An engineered Env outer domain (OD) eOD-GT8 60-mer nanoparticle has been developed as a priming immunogen for eliciting VRC01-class precursors and is planned for clinical trials. However, a substantial portion of eOD-GT8-elicited antibodies target non-CD4bs epitopes, potentially limiting its efficacy. We introduced N-linked glycans into non-CD4bs surfaces of eOD-GT8 to mask irrelevant epitopes and evaluated these mutants in a mouse model that expressed diverse immunoglobulin heavy chains containing human IGHV1-2∗02, the germline VRC01 VH segment. Compared to the parental eOD-GT8, a mutant with five added glycans stimulated significantly higher proportions of CD4bs-specific serum responses and CD4bs-specific immunoglobulin G+ B cells including VRC01-class precursors. These results demonstrate that glycan masking can limit elicitation of off-target antibodies and focus immune responses to the CD4bs, a major target of HIV-1 vaccine design.


Assuntos
Anticorpos Neutralizantes/imunologia , Sítios de Ligação de Anticorpos/imunologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Amplamente Neutralizantes , Linhagem Celular , Feminino , Técnicas de Introdução de Genes , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polissacarídeos/química
18.
Mol Cell ; 73(5): 1056-1065.e7, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30738704

RESUMO

The mitochondrial inner membrane harbors a large number of metabolite carriers. The precursors of carrier proteins are synthesized in the cytosol and imported into mitochondria by the translocase of the outer membrane (TOM) and the carrier translocase of the inner membrane (TIM22). Molecular chaperones in the cytosol and intermembrane space bind to the hydrophobic precursors to prevent their aggregation. We report that the major metabolite channel of the outer membrane, termed porin or voltage-dependent anion channel (VDAC), promotes efficient import of carrier precursors. Porin interacts with carrier precursors arriving in the intermembrane space and recruits TIM22 complexes, thus ensuring an efficient transfer of the precursors to the inner membrane translocase. Porin channel mutants impaired in metabolite transport are not disturbed in carrier import into mitochondria. We conclude that porin serves distinct functions as outer membrane channel for metabolites and as coupling factor for protein translocation into the inner membrane.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antiporters/genética , Antiporters/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação , Porinas/genética , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Mol Cell ; 76(5): 767-783.e11, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31540874

RESUMO

Fibrillar centers (FCs) and dense fibrillar components (DFCs) are essential morphologically distinct sub-regions of mammalian cell nucleoli for rDNA transcription and pre-rRNA processing. Here, we report that a human nucleolus consists of several dozen FC/DFC units, each containing 2-3 transcriptionally active rDNAs at the FC/DFC border. Pre-rRNA processing factors, such as fibrillarin (FBL), form 18-24 clusters that further assemble into the DFC surrounding the FC. Mechanistically, the 5' end of nascent 47S pre-rRNA binds co-transcriptionally to the RNA-binding domain of FBL. FBL diffuses to the DFC, where local self-association via its glycine- and arginine-rich (GAR) domain forms phase-separated clusters to immobilize FBL-interacting pre-rRNA, thus promoting directional traffic of nascent pre-rRNA while facilitating pre-rRNA processing and DFC formation. These results unveil FC/DFC ultrastructures in nucleoli and suggest a conceptual framework for considering nascent RNA sorting using multivalent interactions of their binding proteins.


Assuntos
Nucléolo Celular/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Transporte Ativo do Núcleo Celular , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/genética , Precursores de RNA/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura
20.
Mol Cell ; 73(2): 325-338.e8, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30527664

RESUMO

The eukaryotic TORC1 kinase is a homeostatic controller of growth that integrates nutritional cues and mediates signals primarily from the surface of lysosomes or vacuoles. Amino acids activate TORC1 via the Rag GTPases that combine into structurally conserved multi-protein complexes such as the EGO complex (EGOC) in yeast. Here we show that Ego1, which mediates membrane-anchoring of EGOC via lipid modifications that it acquires while traveling through the trans-Golgi network, is separately sorted to vacuoles and perivacuolar endosomes. At both surfaces, it assembles EGOCs, which regulate spatially distinct pools of TORC1 that impinge on functionally divergent effectors: vacuolar TORC1 predominantly targets Sch9 to promote protein synthesis, whereas endosomal TORC1 phosphorylates Atg13 and Vps27 to inhibit macroautophagy and ESCRT-driven microautophagy, respectively. Thus, the coordination of three key regulatory nodes in protein synthesis and degradation critically relies on a division of labor between spatially sequestered populations of TORC1.


Assuntos
Proteostase , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/enzimologia , Endossomos/genética , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Vacúolos/enzimologia , Vacúolos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA