Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.337
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(6): 1508-1526.e16, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442711

RESUMO

Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.


Assuntos
Gânglios Espinais , Células Receptoras Sensoriais , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Gânglios Espinais/citologia , Células Receptoras Sensoriais/citologia , Pele/inervação
2.
Cell ; 183(3): 620-635.e22, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33035454

RESUMO

Hippocampal activity represents many behaviorally important variables, including context, an animal's location within a given environmental context, time, and reward. Using longitudinal calcium imaging in mice, multiple large virtual environments, and differing reward contingencies, we derived a unified probabilistic model of CA1 representations centered on a single feature-the field propensity. Each cell's propensity governs how many place fields it has per unit space, predicts its reward-related activity, and is preserved across distinct environments and over months. Propensity is broadly distributed-with many low, and some very high, propensity cells-and thus strongly shapes hippocampal representations. This results in a range of spatial codes, from sparse to dense. Propensity varied ∼10-fold between adjacent cells in salt-and-pepper fashion, indicating substantial functional differences within a presumed cell type. Intracellular recordings linked propensity to cell excitability. The stability of each cell's propensity across conditions suggests this fundamental property has anatomical, transcriptional, and/or developmental origins.


Assuntos
Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Animais , Comportamento Animal/fisiologia , Fenômenos Biofísicos , Cálcio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Células Piramidais/fisiologia , Recompensa , Análise e Desempenho de Tarefas , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 121(26): e2312335121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889151

RESUMO

Predicting the effects of one or more mutations to the in vivo or in vitro properties of a wild-type protein is a major computational challenge, due to the presence of epistasis, that is, of interactions between amino acids in the sequence. We introduce a computationally efficient procedure to build minimal epistatic models to predict mutational effects by combining evolutionary (homologous sequence) and few mutational-scan data. Mutagenesis measurements guide the selection of links in a sparse graphical model, while the parameters on the nodes and the edges are inferred from sequence data. We show, on 10 mutational scans, that our pipeline exhibits performances comparable to state-of-the-art deep networks trained on many more data, while requiring much less parameters and being hence more interpretable. In particular, the identified interactions adapt to the wild-type protein and to the fitness or biochemical property experimentally measured, mostly focus on key functional sites, and are not necessarily related to structural contacts. Therefore, our method is able to extract information relevant for one mutational experiment from homologous sequence data reflecting the multitude of structural and functional constraints acting on proteins throughout evolution.


Assuntos
Mutação , Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas/química , Epistasia Genética , Evolução Molecular , Biologia Computacional/métodos
4.
Am J Hum Genet ; 110(2): 314-325, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610401

RESUMO

Admixture estimation plays a crucial role in ancestry inference and genome-wide association studies (GWASs). Computer programs such as ADMIXTURE and STRUCTURE are commonly employed to estimate the admixture proportions of sample individuals. However, these programs can be overwhelmed by the computational burdens imposed by the 105 to 106 samples and millions of markers commonly found in modern biobanks. An attractive strategy is to run these programs on a set of ancestry-informative SNP markers (AIMs) that exhibit substantially different frequencies across populations. Unfortunately, existing methods for identifying AIMs require knowing ancestry labels for a subset of the sample. This supervised learning approach creates a chicken and the egg scenario. In this paper, we present an unsupervised, scalable framework that seamlessly carries out AIM selection and likelihood-based estimation of admixture proportions. Our simulated and real data examples show that this approach is scalable to modern biobank datasets. OpenADMIXTURE, our Julia implementation of the method, is open source and available for free.


Assuntos
Bancos de Espécimes Biológicos , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Funções Verossimilhança , Grupos Populacionais , Software , Genética Populacional
5.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38904542

RESUMO

The inherent heterogeneity of cancer contributes to highly variable responses to any anticancer treatments. This underscores the need to first identify precise biomarkers through complex multi-omics datasets that are now available. Although much research has focused on this aspect, identifying biomarkers associated with distinct drug responders still remains a major challenge. Here, we develop MOMLIN, a multi-modal and -omics machine learning integration framework, to enhance drug-response prediction. MOMLIN jointly utilizes sparse correlation algorithms and class-specific feature selection algorithms, which identifies multi-modal and -omics-associated interpretable components. MOMLIN was applied to 147 patients' breast cancer datasets (clinical, mutation, gene expression, tumor microenvironment cells and molecular pathways) to analyze drug-response class predictions for non-responders and variable responders. Notably, MOMLIN achieves an average AUC of 0.989, which is at least 10% greater when compared with current state-of-the-art (data integration analysis for biomarker discovery using latent components, multi-omics factor analysis, sparse canonical correlation analysis). Moreover, MOMLIN not only detects known individual biomarkers such as genes at mutation/expression level, most importantly, it correlates multi-modal and -omics network biomarkers for each response class. For example, an interaction between ER-negative-HMCN1-COL5A1 mutations-FBXO2-CSF3R expression-CD8 emerge as a multimodal biomarker for responders, potentially affecting antimicrobial peptides and FLT3 signaling pathways. In contrast, for resistance cases, a distinct combination of lymph node-TP53 mutation-PON3-ENSG00000261116 lncRNA expression-HLA-E-T-cell exclusions emerged as multimodal biomarkers, possibly impacting neurotransmitter release cycle pathway. MOMLIN, therefore, is expected advance precision medicine, such as to detect context-specific multi-omics network biomarkers and better predict drug-response classifications.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Algoritmos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Biologia Computacional/métodos , Genômica/métodos
6.
Proc Natl Acad Sci U S A ; 120(7): e2206994120, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36763535

RESUMO

Recent advances in high-resolution imaging techniques and particle-based simulation methods have enabled the precise microscopic characterization of collective dynamics in various biological and engineered active matter systems. In parallel, data-driven algorithms for learning interpretable continuum models have shown promising potential for the recovery of underlying partial differential equations (PDEs) from continuum simulation data. By contrast, learning macroscopic hydrodynamic equations for active matter directly from experiments or particle simulations remains a major challenge, especially when continuum models are not known a priori or analytic coarse graining fails, as often is the case for nondilute and heterogeneous systems. Here, we present a framework that leverages spectral basis representations and sparse regression algorithms to discover PDE models from microscopic simulation and experimental data, while incorporating the relevant physical symmetries. We illustrate the practical potential through a range of applications, from a chiral active particle model mimicking nonidentical swimming cells to recent microroller experiments and schooling fish. In all these cases, our scheme learns hydrodynamic equations that reproduce the self-organized collective dynamics observed in the simulations and experiments. This inference framework makes it possible to measure a large number of hydrodynamic parameters in parallel and directly from video data.

7.
Genet Epidemiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751238

RESUMO

Somatic changes like copy number aberrations (CNAs) and epigenetic alterations like methylation have pivotal effects on disease outcomes and prognosis in cancer, by regulating gene expressions, that drive critical biological processes. To identify potential biomarkers and molecular targets and understand how they impact disease outcomes, it is important to identify key groups of CNAs, the associated methylation, and the gene expressions they impact, through a joint integrative analysis. Here, we propose a novel analysis pipeline, the joint sparse canonical correlation analysis (jsCCA), an extension of sCCA, to effectively identify an ensemble of CNAs, methylation sites and gene (expression) components in the context of disease endpoints, especially tumor characteristics. Our approach detects potentially orthogonal gene components that are highly correlated with sets of methylation sites which in turn are correlated with sets of CNA sites. It then identifies the genes within these components that are associated with the outcome. Further, we aggregate the effect of each gene expression set on tumor stage by constructing "gene component scores" and test its interaction with traditional risk factors. Analyzing clinical and genomic data on 515 renal clear cell carcinoma (ccRCC) patients from the TCGA-KIRC, we found eight gene components to be associated with methylation sites, regulated by groups of proximally located CNA sites. Association analysis with tumor stage at diagnosis identified a novel association of expression of ASAH1 gene trans-regulated by methylation of several genes including SIX5 and by CNAs in the 10q25 region including TCF7L2. Further analysis to quantify the overall effect of gene sets on tumor stage, revealed that two of the eight gene components have significant interaction with smoking in relation to tumor stage. These gene components represent distinct biological functions including immune function, inflammatory responses, and hypoxia-regulated pathways. Our findings suggest that jsCCA analysis can identify interpretable and important genes, regulatory structures, and clinically consequential pathways. Such methods are warranted for comprehensive analysis of multimodal data especially in cancer genomics.

8.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916040

RESUMO

Phylogenomic analyses of long sequences, consisting of many genes and genomic segments, reconstruct organismal relationships with high statistical confidence. But, inferred relationships can be sensitive to excluding just a few sequences. Currently, there is no direct way to identify fragile relationships and the associated individual gene sequences in species. Here, we introduce novel metrics for gene-species sequence concordance and clade probability derived from evolutionary sparse learning models. We validated these metrics using fungi, plant, and animal phylogenomic datasets, highlighting the ability of the new metrics to pinpoint fragile clades and the sequences responsible. The new approach does not necessitate the investigation of alternative phylogenetic hypotheses, substitution models, or repeated data subset analyses. Our methodology offers a streamlined approach to evaluating major inferred clades and identifying sequences that may distort reconstructed phylogenies using large datasets.


Assuntos
Genômica , Filogenia , Animais , Genômica/métodos , Modelos Genéticos , Evolução Molecular , Plantas/genética , Fungos/genética
9.
Biostatistics ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916966

RESUMO

Bayesian graphical models are powerful tools to infer complex relationships in high dimension, yet are often fraught with computational and statistical challenges. If exploited in a principled way, the increasing information collected alongside the data of primary interest constitutes an opportunity to mitigate these difficulties by guiding the detection of dependence structures. For instance, gene network inference may be informed by the use of publicly available summary statistics on the regulation of genes by genetic variants. Here we present a novel Gaussian graphical modeling framework to identify and leverage information on the centrality of nodes in conditional independence graphs. Specifically, we consider a fully joint hierarchical model to simultaneously infer (i) sparse precision matrices and (ii) the relevance of node-level information for uncovering the sought-after network structure. We encode such information as candidate auxiliary variables using a spike-and-slab submodel on the propensity of nodes to be hubs, which allows hypothesis-free selection and interpretation of a sparse subset of relevant variables. As efficient exploration of large posterior spaces is needed for real-world applications, we develop a variational expectation conditional maximization algorithm that scales inference to hundreds of samples, nodes and auxiliary variables. We illustrate and exploit the advantages of our approach in simulations and in a gene network study which identifies hub genes involved in biological pathways relevant to immune-mediated diseases.

10.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406190

RESUMO

Studies have confirmed that the occurrence of many complex diseases in the human body is closely related to the microbial community, and microbes can affect tumorigenesis and metastasis by regulating the tumor microenvironment. However, there are still large gaps in the clinical observation of the microbiota in disease. Although biological experiments are accurate in identifying disease-associated microbes, they are also time-consuming and expensive. The computational models for effective identification of diseases related microbes can shorten this process, and reduce capital and time costs. Based on this, in the paper, a model named DSAE_RF is presented to predict latent microbe-disease associations by combining multi-source features and deep learning. DSAE_RF calculates four similarities between microbes and diseases, which are then used as feature vectors for the disease-microbe pairs. Later, reliable negative samples are screened by k-means clustering, and a deep sparse autoencoder neural network is further used to extract effective features of the disease-microbe pairs. In this foundation, a random forest classifier is presented to predict the associations between microbes and diseases. To assess the performance of the model in this paper, 10-fold cross-validation is implemented on the same dataset. As a result, the AUC and AUPR of the model are 0.9448 and 0.9431, respectively. Furthermore, we also conduct a variety of experiments, including comparison of negative sample selection methods, comparison with different models and classifiers, Kolmogorov-Smirnov test and t-test, ablation experiments, robustness analysis, and case studies on Covid-19 and colorectal cancer. The results fully demonstrate the reliability and availability of our model.


Assuntos
COVID-19 , Aprendizado Profundo , Microbiota , Humanos , Reprodutibilidade dos Testes , Algoritmos , Biologia Computacional/métodos
11.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36573486

RESUMO

Viral infection involves a large number of protein-protein interactions (PPIs) between the virus and the host, and the identification of these PPIs plays an important role in revealing viral infection and pathogenesis. Existing computational models focus on predicting whether human proteins and viral proteins interact, and rarely take into account the types of diseases associated with these interactions. Although there are computational models based on a matrix and tensor decomposition for predicting multi-type biological interaction relationships, these methods cannot effectively model high-order nonlinear relationships of biological entities and are not suitable for integrating multiple features. To this end, we propose a novel computational framework, LTDSSL, to determine human-virus PPIs under different disease types. LTDSSL utilizes logistic functions to model nonlinear associations, sets importance levels to emphasize the importance of observed interactions and utilizes sparse subspace learning of multiple features to improve model performance. Experimental results show that LTDSSL has better predictive performance for both new disease types and new triples than the state-of-the-art methods. In addition, the case study further demonstrates that LTDSSL can effectively predict human-viral PPIs under various disease types.


Assuntos
Mapeamento de Interação de Proteínas , Vírus , Humanos , Mapeamento de Interação de Proteínas/métodos , Proteínas Virais/metabolismo , Vírus/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(30): e2122788119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867822

RESUMO

Compositional analysis is based on the premise that a relatively small proportion of taxa are differentially abundant, while the ratios of the relative abundances of the remaining taxa remain unchanged. Most existing methods use log-transformed data, but log-transformation of data with pervasive zero counts is problematic, and these methods cannot always control the false discovery rate (FDR). Further, high-throughput microbiome data such as 16S amplicon or metagenomic sequencing are subject to experimental biases that are introduced in every step of the experimental workflow. McLaren et al. [eLife 8, e46923 (2019)] have recently proposed a model for how these biases affect relative abundance data. Motivated by this model, we show that the odds ratios in a logistic regression comparing counts in two taxa are invariant to experimental biases. With this motivation, we propose logistic compositional analysis (LOCOM), a robust logistic regression approach to compositional analysis, that does not require pseudocounts. Inference is based on permutation to account for overdispersion and small sample sizes. Traits can be either binary or continuous, and adjustment for confounders is supported. Our simulations indicate that LOCOM always preserved FDR and had much improved sensitivity over existing methods. In contrast, analysis of composition of microbiomes (ANCOM) and ANCOM with bias correction (ANCOM-BC)/ANOVA-Like Differential Expression tool (ALDEx2) had inflated FDR when the effect sizes were small and large, respectively. Only LOCOM was robust to experimental biases in every situation. The flexibility of our method for a variety of microbiome studies is illustrated by the analysis of data from two microbiome studies. Our R package LOCOM is publicly available.


Assuntos
Microbiota , Modelos Logísticos , Metagenômica/métodos , Microbiota/genética , Análise de Sequência
13.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35181603

RESUMO

High-frequency (HF) signals are ubiquitous in the industrial world and are of great use for monitoring of industrial assets. Most deep-learning tools are designed for inputs of fixed and/or very limited size and many successful applications of deep learning to the industrial context use as inputs extracted features, which are a manually and often arduously obtained compact representation of the original signal. In this paper, we propose a fully unsupervised deep-learning framework that is able to extract a meaningful and sparse representation of raw HF signals. We embed in our architecture important properties of the fast discrete wavelet transform (FDWT) such as 1) the cascade algorithm; 2) the conjugate quadrature filter property that links together the wavelet, the scaling, and transposed filter functions; and 3) the coefficient denoising. Using deep learning, we make this architecture fully learnable: Both the wavelet bases and the wavelet coefficient denoising become learnable. To achieve this objective, we propose an activation function that performs a learnable hard thresholding of the wavelet coefficients. With our framework, the denoising FDWT becomes a fully learnable unsupervised tool that does not require any type of pre- or postprocessing or any prior knowledge on wavelet transform. We demonstrate the benefits of embedding all these properties on three machine-learning tasks performed on open-source sound datasets. We perform an ablation study of the impact of each property on the performance of the architecture, achieve results well above baseline, and outperform other state-of-the-art methods.

14.
Proc Natl Acad Sci U S A ; 119(33): e2115335119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947616

RESUMO

We propose that coding and decoding in the brain are achieved through digital computation using three principles: relative ordinal coding of inputs, random connections between neurons, and belief voting. Due to randomization and despite the coarseness of the relative codes, we show that these principles are sufficient for coding and decoding sequences with error-free reconstruction. In particular, the number of neurons needed grows linearly with the size of the input repertoire growing exponentially. We illustrate our model by reconstructing sequences with repertoires on the order of a billion items. From this, we derive the Shannon equations for the capacity limit to learn and transfer information in the neural population, which is then generalized to any type of neural network. Following the maximum entropy principle of efficient coding, we show that random connections serve to decorrelate redundant information in incoming signals, creating more compact codes for neurons and therefore, conveying a larger amount of information. Henceforth, despite the unreliability of the relative codes, few neurons become necessary to discriminate the original signal without error. Finally, we discuss the significance of this digital computation model regarding neurobiological findings in the brain and more generally with artificial intelligence algorithms, with a view toward a neural information theory and the design of digital neural networks.


Assuntos
Inteligência Artificial , Encéfalo , Modelos Neurológicos , Algoritmos , Encéfalo/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia
15.
Nano Lett ; 24(21): 6255-6261, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743662

RESUMO

In this study, we clarify the liquid structure formed at the interface between LiCoO2 (LCO), the cathode material of Li-ion batteries, and propylene carbonate (PC), which is used as a solvent in the electrolyte, on a molecular scale. We apply sparse modeling-based modal analysis to force spectroscopy data measured by frequency modulation atomic force microscopy (FM-AFM) and show that each component in the FM-AFM force curve, such as oscillatory solvation force, background, and noise, can be automatically decomposed. Moreover, by combining detailed force curve analysis with solid/liquid interface simulations based on first-principles calculation, we have identified that there are distinct damped vibrational modes in the force curves at the LCO/PC interface with a period of about 0.57 nm and those with shorter periods, which likely correspond to the solvation forces associated with bulk-state PC molecules and those with PC molecules in "lying down" orientations.

16.
Nano Lett ; 24(7): 2149-2156, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329715

RESUMO

The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl3) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.

17.
J Neurosci ; 43(22): 4129-4143, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37185098

RESUMO

The mechanisms involved in transforming early visual signals to curvature representations in V4 are unknown. We propose a hierarchical model that reveals V1/V2 encodings that are essential components for this transformation to the reported curvature representations in V4. Then, by relaxing the often-imposed prior of a single Gaussian, V4 shape selectivity is learned in the last layer of the hierarchy from Macaque V4 responses. We found that V4 cells integrate multiple shape parts from the full spatial extent of their receptive fields with similar excitatory and inhibitory contributions. Our results uncover new details in existing data about shape selectivity in V4 neurons that with additional experiments can enhance our understanding of processing in this area. Accordingly, we propose designs for a stimulus set that allow removing shape parts without disturbing the curvature signal to isolate part contributions to V4 responses.SIGNIFICANCE STATEMENT Selectivity to convex and concave shape parts in V4 neurons has been repeatedly reported. Nonetheless, the mechanisms that yield such selectivities in the ventral stream remain unknown. We propose a hierarchical computational model that incorporates findings of the various visual areas involved in shape processing and suggest mechanisms that transform the shape signal from low-level features to convex/concave part representations. Learning shape selectivity from Macaque V4 responses in the final processing stage in our model, we found that V4 neurons integrate shape parts from the full spatial extent of their receptive field with both facilitatory and inhibitory contributions. These results reveal hidden information in existing V4 data that with additional experiments can enhance our understanding of processing in V4.


Assuntos
Percepção de Forma , Córtex Visual , Animais , Córtex Visual/fisiologia , Percepção de Forma/fisiologia , Macaca , Neurônios/fisiologia , Encéfalo , Vias Visuais/fisiologia , Estimulação Luminosa
18.
BMC Bioinformatics ; 25(1): 132, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539064

RESUMO

BACKGROUND: Classifying breast cancer subtypes is crucial for clinical diagnosis and treatment. However, the early symptoms of breast cancer may not be apparent. Rapid advances in high-throughput sequencing technology have led to generating large number of multi-omics biological data. Leveraging and integrating the available multi-omics data can effectively enhance the accuracy of identifying breast cancer subtypes. However, few efforts focus on identifying the associations of different omics data to predict the breast cancer subtypes. RESULTS: In this paper, we propose a differential sparse canonical correlation analysis network (DSCCN) for classifying the breast cancer subtypes. DSCCN performs differential analysis on multi-omics expression data to identify differentially expressed (DE) genes and adopts sparse canonical correlation analysis (SCCA) to mine highly correlated features between multi-omics DE-genes. Meanwhile, DSCCN uses multi-task deep learning neural network separately to train the correlated DE-genes to predict breast cancer subtypes, which spontaneously tackle the data heterogeneity problem in integrating multi-omics data. CONCLUSIONS: The experimental results show that by mining the associations among multi-omics data, DSCCN is more capable of accurately classifying breast cancer subtypes than the existing methods.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Multiômica , Análise de Correlação Canônica
19.
J Physiol ; 602(11): 2581-2600, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38149665

RESUMO

Living systems at any given moment enact a very constrained set of end-directed and contextually appropriate actions that are self-initiated from among innumerable possible alternatives. However, these constrained actions are not necessarily because the system has reduced its sensitivities to themselves and their surroundings. Quite the contrary, living systems are continually open to novel and unanticipated stimulations that require a physiology of coordination. To address these competing demands, this paper offers a novel heuristic model informed by neuroscience, systems theory, biology and sign study to explain how organisms situated in diverse, complex and ever-changing environments might draw upon the sparse order made available by 'relevant noise'. This emergent order facilitates coordination, habituation and, ultimately, understanding of the world and its relevant affordances. Inspired by the burgeoning field of coordination dynamics and physiologist Denis Noble's concept of 'biological relativity', this model proposes a view of coordination on the neuronal level that is neither sequential nor stochastic, but instead implements a causal logic of phasic alignment, such that an organism's learned and inherited sets of diverse biological affinities and sympathies can be resolved into a continuous and complex range of patterns that will implement the kind of novel orientations and radical generativity required of such organisms to adaptively explore their environments and to learn from their experiences.


Assuntos
Modelos Biológicos , Animais , Humanos
20.
Eur J Neurosci ; 59(6): 1311-1331, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056070

RESUMO

Dissecting the diversity of midbrain dopamine (DA) neurons by optotagging is a promising addition to better identify their functional properties and contribution to motivated behavior. Retrograde molecular targeting of DA neurons with specific axonal projection allows further refinement of this approach. Here, we focus on adult mouse DA neurons in the substantia nigra pars compacta (SNc) projecting to dorsal striatum (DS) by demonstrating the selectivity of a floxed AAV9-based retrograde channelrhodopsin-eYFP (ChR-eYFP) labeling approach in DAT-cre mice. Furthermore, we show the utility of a sparse labeling version for anatomical single-cell reconstruction and demonstrate that ChR-eYFR expressing DA neurons retain intrinsic functional properties indistinguishable from conventionally retrogradely red-beads-labeled neurons. We systematically explore the properties of optogenetically evoked action potentials (oAPs) and their interaction with intrinsic pacemaking in this defined subpopulation of DA neurons. We found that the shape of the oAP and its first derivative, as a proxy for extracellularly recorded APs, is highly distinct from spontaneous APs (sAPs) of the same neurons and systematically varies across the pacemaker duty cycle. The timing of the oAP also affects the backbone oscillator of the intrinsic pacemaker by introducing transient "compensatory pauses". Characterizing this systematic interplay between oAPs and sAPs in defined DA neurons will also facilitate a refinement of DA neuron optotagging in vivo.


Assuntos
Neurônios Dopaminérgicos , Optogenética , Camundongos , Animais , Neurônios Dopaminérgicos/fisiologia , Potenciais de Ação/fisiologia , Mesencéfalo , Parte Compacta da Substância Negra , Substância Negra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA