Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35438149

RESUMO

Therapeutic peptides act on the skeletal system, digestive system and blood system, have antibacterial properties and help relieve inflammation. In order to reduce the resource consumption of wet experiments for the identification of therapeutic peptides, many computational-based methods have been developed to solve the identification of therapeutic peptides. Due to the insufficiency of traditional machine learning methods in dealing with feature noise. We propose a novel therapeutic peptide identification method called Structured Sparse Regularized Takagi-Sugeno-Kang Fuzzy System on Within-Class Scatter (SSR-TSK-FS-WCS). Our method achieves good performance on multiple therapeutic peptides and UCI datasets.


Assuntos
Algoritmos , Lógica Fuzzy , Aprendizado de Máquina , Peptídeos/uso terapêutico
2.
Stat Med ; 43(17): 3164-3183, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807296

RESUMO

Cox models with time-dependent coefficients and covariates are widely used in survival analysis. In high-dimensional settings, sparse regularization techniques are employed for variable selection, but existing methods for time-dependent Cox models lack flexibility in enforcing specific sparsity patterns (ie, covariate structures). We propose a flexible framework for variable selection in time-dependent Cox models, accommodating complex selection rules. Our method can adapt to arbitrary grouping structures, including interaction selection, temporal, spatial, tree, and directed acyclic graph structures. It achieves accurate estimation with low false alarm rates. We develop the sox package, implementing a network flow algorithm for efficiently solving models with complex covariate structures. sox offers a user-friendly interface for specifying grouping structures and delivers fast computation. Through examples, including a case study on identifying predictors of time to all-cause death in atrial fibrillation patients, we demonstrate the practical application of our method with specific selection rules.


Assuntos
Algoritmos , Modelos de Riscos Proporcionais , Humanos , Análise de Sobrevida , Fibrilação Atrial , Fatores de Tempo , Simulação por Computador
3.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37837142

RESUMO

Near-field acoustic holography (NAH) based on compressing sensing (CS) theory enables accurate reconstruction of sound fields using a limited number of sampling points. However, the successful implementation of this technique depends on two crucial factors: (1) the appropriate selection or construction of the spatial basis and (2) an effective sparse regularization process. To enhance reconstruction performance for elongated sound sources, this paper proposes a novel sound field reconstruction method that combines prolate spheroidal wave functions (PSWFs) with the orthogonal matching pursuit (OMP) algorithm. In this method, PSWFs serve as a sparse spatial basis for representing the radiated sound field. The sparse coefficients are determined by the OMP algorithm in a linear subspace composed of basic functions that best match the residual error. The OMP algorithm effectively identifies significant components before potentially selecting incorrect ones by setting an appropriate stopping rule. Numerical simulations are conducted using a line-array source model. The results show that the proposed method can accurately reconstruct the sound pressures of the elongated source model using a relatively small number of samplings. In addition, the proposed method exhibits robustness across a wide frequency range, diverse array configurations and various sampling numbers. The experimental results further validate the feasibility and reliability of the proposed method.

4.
Sensors (Basel) ; 23(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616748

RESUMO

How to accurately identify unknown time-varying external force from measured structural responses is an important engineering problem, which is critical for assessing the safety condition of the structure. In the context of a few available accelerometers, this paper proposes a novel time-varying external force identification method using group sparse regularization based on the prior knowledge in the redundant dictionary. Firstly, the relationship between time-varying external force and acceleration responses is established, and a redundant dictionary is designed to create a sparse expression of external force. Then, the relevance of atoms in the redundant dictionary is revealed, and this prior knowledge is used to determine the group structures of atoms. As a result, a force identification governing equation is formulated, and the group sparse regularization is reasonably introduced to ensure the accuracy of the identified results. The contribution of this paper is that the group structures of atoms are reasonably determined based on prior knowledge, and the complexity in the process for identifying external force from measured acceleration responses is reduced. Finally, the effectiveness of the proposed method is demonstrated by numerical simulations and an experimental structure. The illustrated results show that, compared with the force identification method based on the standard l1-norm regularization, the proposed method can further improve the identified accuracy of unknown external force and greatly enhance the computational efficiency for the force identification problem.


Assuntos
Algoritmos
5.
Entropy (Basel) ; 24(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36141144

RESUMO

This paper addresses the problem of robust angle of arrival (AOA) target localization in the presence of uniformly distributed noise which is modeled as the mixture of Laplacian distribution and uniform distribution. Motivated by the distribution of noise, we develop a localization model by using the ℓp-norm with 0≤p<2 as the measurement error and the ℓ1-norm as the regularization term. Then, an estimator for introducing the proximal operator into the framework of the alternating direction method of multipliers (POADMM) is derived to solve the convex optimization problem when 1≤p<2. However, when 0≤p<1, the corresponding optimization problem is nonconvex and nonsmoothed. To derive a convergent method for this nonconvex and nonsmooth target localization problem, we propose a smoothed POADMM estimator (SPOADMM) by introducing the smoothing strategy into the optimization model. Eventually, the proposed algorithms are compared with some state-of-the-art robust algorithms via numerical simulations, and their effectiveness in uniformly distributed noise is discussed from the perspective of root-mean-squared error (RMSE). The experimental results verify that the proposed method has more robustness against outliers and is less sensitive to the selected parameters, especially the variance of the measurement noise.

6.
Entropy (Basel) ; 24(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35455129

RESUMO

Vehicles carrying hazardous material (hazmat) are severe threats to the safety of highway transportation, and a model that can automatically recognize hazmat markers installed or attached on vehicles is essential for intelligent management systems. However, there is still no public dataset for benchmarking the task of hazmat marker detection. To this end, this paper releases a large-scale vehicle hazmat marker dataset named VisInt-VHM, which includes 10,000 images with a total of 20,023 hazmat markers captured under different environmental conditions from a real-world highway. Meanwhile, we provide an compact hazmat marker detection network named HMD-Net, which utilizes a revised lightweight backbone and is further compressed by channel pruning. As a consequence, the trained-model can be efficiently deployed on a resource-restricted edge device. Experimental results demonstrate that compared with some established methods such as YOLOv3, YOLOv4, their lightweight versions and popular lightweight models, HMD-Net can achieve a better trade-off between the detection accuracy and the inference speed.

7.
BMC Bioinformatics ; 21(1): 121, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32293252

RESUMO

BACKGROUND: Feature selection in class-imbalance learning has gained increasing attention in recent years due to the massive growth of high-dimensional class-imbalanced data across many scientific fields. In addition to reducing model complexity and discovering key biomarkers, feature selection is also an effective method of combating overlapping which may arise in such data and become a crucial aspect for determining classification performance. However, ordinary feature selection techniques for classification can not be simply used for addressing class-imbalanced data without any adjustment. Thus, more efficient feature selection technique must be developed for complicated class-imbalanced data, especially in the context of high-dimensionality. RESULTS: We proposed an algorithm called sssHD to achieve stable sparse feature selection applied it to complicated class-imbalanced data. sssHD is based on the Hellinger distance (HD) coupled with sparse regularization techniques. We stated that Hellinger distance is not only class-insensitive but also translation-invariant. Simulation result indicates that HD-based selection algorithm is effective in recognizing key features and control false discoveries for class-imbalance learning. Five gene expression datasets are also employed to test the performance of the sssHD algorithm, and a comparison with several existing selection procedures is performed. The result shows that sssHD is highly competitive in terms of five assessment metrics. In addition, sssHD presents limited differences between performing and not performing re-balance preprocessing. CONCLUSIONS: sssHD is a practical feature selection method for high-dimensional class-imbalanced data, which is simple and can be an alternative for performing feature selection in class-imbalanced data. sssHD can be easily extended by connecting it with different re-balance preprocessing, different sparse regularization structures as well as different classifiers. As such, the algorithm is extremely general and has a wide range of applicability.


Assuntos
Algoritmos , Pesquisa Biomédica/métodos , Biologia Computacional/métodos , Análise de Dados
8.
Sensors (Basel) ; 20(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947847

RESUMO

In the field of sound source identification, robust and accurate identification of the targeted source could be a challenging task. Most of the existing methods select the regularization parameters whose value could directly affect the accuracy of sound source identification during the solving processing. In this paper, we introduced the ratio model ℓ1/ℓ2 norm to identify the sound source(s) in the engineering field. Using the alternating direction method of multipliers solver, the proposed approach could avoid the selection of the regularization parameter and localize sound source(s) with robustness at low and medium frequencies. Compared with other three methods employing classical penalty functions, including the Tikhonov regularization method, the iterative zoom-out-thresholding algorithm and the fast iterative shrinkage-thresholding algorithm, the Monte Carlo Analysis shows that the proposed approach with ℓ1/ℓ2 model leads to stable sound pressure reconstruction results at low and medium frequencies. The proposed method demonstrates beneficial distance-adaptability and signal-to-noise ratio (SNR)-adaptability for sound source identification inverse problems.

9.
Sensors (Basel) ; 20(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321785

RESUMO

This paper proposes a novel structural damage quantification approach using a sparse regularization based electromechanical impedance (EMI) technique. Minor structural damage in plate structures by using the measurement of only a single surface bonded lead zirconate titanate piezoelectric (PZT) transducer was quantified. To overcome the limitations of using model-based EMI based methods in damage detection of complex or relatively large-scale structures, a three-dimensional finite element model for simulating the PZT-structure interaction is developed and calibrated with experimental results. Based on the sensitivities of the resonance frequency shifts of the impedance responses with respect to the physical parameters of plate structures, sparse regularization was applied to conduct the undetermined inverse identification of structural damage. The difference between the measured and analytically obtained impedance responses was calculated and used for identification. In this study, only a limited number of the resonance frequency shifts were obtained from the selected frequency range for damage identification of plate structures with numerous elements. The results demonstrate a better performance than those from the conventional Tikhonov regularization based methods in conducting inverse identification for damage quantification. Experimental studies on an aluminum plate were conducted to investigate the effectiveness and accuracy of the proposed approach. To test the robustness of the proposed approach, the identification results of a plate structure under varying temperature conditions are also presented.

10.
BMC Bioinformatics ; 20(1): 219, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039742

RESUMO

BACKGROUND: Data from genome-wide association studies (GWASs) have been used to estimate the heritability of human complex traits in recent years. Existing methods are based on the linear mixed model, with the assumption that the genetic effects are random variables, which is opposite to the fixed effect assumption embedded in the framework of quantitative genetics theory. Moreover, heritability estimators provided by existing methods may have large standard errors, which calls for the development of reliable and accurate methods to estimate heritability. RESULTS: In this paper, we first investigate the influences of the fixed and random effect assumption on heritability estimation, and prove that these two assumptions are equivalent under mild conditions in the theoretical aspect. Second, we propose a two-stage strategy by first performing sparse regularization via cross-validated elastic net, and then applying variance estimation methods to construct reliable heritability estimations. Results on both simulated data and real data show that our strategy achieves a considerable reduction in the standard error while reserving the accuracy. CONCLUSIONS: The proposed strategy allows for a reliable and accurate heritability estimation using GWAS data. It shows the promising future that reliable estimations can still be obtained with even a relatively restricted sample size, and should be especially useful for large-scale heritability analyses in the genomics era.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Modelos Genéticos , Humanos
11.
J Environ Manage ; 246: 299-313, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31181479

RESUMO

Air pollution is very harmful to the industrial production and public health. Therefore, it is necessary to predict the air pollution and release air quality levels to provide guidance for public production and life. In most previous studies, pollutant data were directly used for predictions, which are rarely based on the structural characteristics of the data itself. Therefore, a novel combined forecasting structure based on the L1 norm was designed, aiming at pollution contaminant monitoring and analysis. It comprises analysis, forecast, and evaluation. Firstly, the original data are decomposed into several components. Subsequently, each component is expanded into a matrix time series by phase space reconstruction. The forecast module is then used to carry out the weighted combination of the prediction results of the three models based on the L1 norm to determine the final prediction result and the process parameters are optimized using the multi-tracker optimization algorithm. Moreover, comprehensive fuzzy evaluation was applied to qualitatively analyze the air quality. The daily pollution sources in three cities in China are taken as examples to verify the effectiveness and efficiency of the established combined forecasting structure. The results show that the architecture has a great application potential in the field of air quality prediction.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , China , Cidades , Monitoramento Ambiental , Previsões
12.
Sensors (Basel) ; 17(6)2017 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28604583

RESUMO

This paper presents a sparse superresolution approach for high cross-range resolution imaging of forward-looking scanning radar based on the Bayesian criterion. First, a novel forward-looking signal model is established as the product of the measurement matrix and the cross-range target distribution, which is more accurate than the conventional convolution model. Then, based on the Bayesian criterion, the widely-used sparse regularization is considered as the penalty term to recover the target distribution. The derivation of the cost function is described, and finally, an iterative expression for minimizing this function is presented. Alternatively, this paper discusses how to estimate the single parameter of Gaussian noise. With the advantage of a more accurate model, the proposed sparse Bayesian approach enjoys a lower model error. Meanwhile, when compared with the conventional superresolution methods, the proposed approach shows high cross-range resolution and small location error. The superresolution results for the simulated point target, scene data, and real measured data are presented to demonstrate the superior performance of the proposed approach.

13.
Sci Rep ; 14(1): 19989, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198566

RESUMO

Seismic prospecting has been widely used in the exploration and development of underground geological resources, such as mineral products (e.x., coal, uranium deposit), oil and gas, groundwater, and so forth. Seismic impedance is a physical characteristic parameter of underground formation, which can be used in lithologic classification, rock characterization, stratigraphic correlation, and further mineral reservoir prediction, reserve estimation, and so forth. To estimate impedance from seismic data, one must perform reflectivity series inversion first. Under a simple exponential integration transformation, the reflectivity series can give the final estimated impedance. Sparse-spike seismic inversion is the most common method to obtain reflectivity series with high resolution. It adopts a sparse regularization to impose sparsity on reflectivity series. From sparse reflectivity series, the final estimated impedance has blocky features to make formation interfaces and geological edges precise, which is very important to accurately delineate the distribution range of mineral resources. The development of sparse-spike seismic inversion is still facing major challenges of fast optimization algorithms in real-life application, especially for massive seismic data in 3D case. Semismooth Newton algorithm (SNA), which is a second order mehtod and has super-linear, even quadratic convergence rate, is used to solve sparse-spike seismic inversion. The proposed algorithm has been compared with common used algorithms through a synthetic seismic trace and a 3D real seismic data volume. The results show that the proposed algorithm has faster convergence rate and fewer computation time. It provides a new effective algorithm to solve sparse-spike seismic inversion.

14.
Heliyon ; 9(8): e19252, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37664716

RESUMO

Accurate engine gas path component fault diagnosis methods are key to ensuring the reliability and safety of engine operations. At present, the effectiveness of the data-driven gas path component fault diagnosis methods has been widely verified in engineering applications. The deep stack neural network (DSN), as a common deep learning neural network, has been gaining more attention in gas path fault diagnosis studies. However, various gas path component faults with strong coupling effects could occur simultaneously, resulting the DSN method less effective for engine gas path fault diagnosis. In order to improve the prediction performance of the DSN handling multiple gas path component fault diagnosis, a sparse regularization and representation method was proposed. The sparse regularization term is used to expand the traditional deep stacking neural network in the sparse representation, and the predicted output tag is close to the target output tag through this term. The diagnosis performance of six different neural network methods were compared by various engine gas path component fault diagnosis types. The results show that the proposed sparse regularization method significantly improves the prediction performance of the DSN, with an accuracy rate 99.9% under various gas path component fault conditions, which is higher than other methods. The proposed engine gas path component fault diagnosis method can handle multiple coupling gas path faults, and help engine operators to develop maintenance plans for the purpose of engine health management.

15.
Comput Biol Med ; 155: 106664, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36803794

RESUMO

Deep belief networks have been widely used in medical image analysis. However, the high-dimensional but small-sample-size characteristic of medical image data makes the model prone to dimensional disaster and overfitting. Meanwhile, the traditional DBN is driven by performance and ignores the explainability which is important for medical image analysis. In this paper, a sparse non-convex based explainable deep belief network is proposed by combining DBN with non-convex sparsity learning. For sparsity, the non-convex regularization and Kullback-Leibler divergence penalty are embedded into DBN to obtain the sparse connection and sparse response representation of the network. It effectively reduces the complexity of the model and improves the generalization ability of the model. Considering explainability, the crucial features for decision-making are selected through the feature back-selection based on the row norm of each layer's weight after network training. We apply the model to schizophrenia data and demonstrate it achieves the best performance among several typical feature selection models. It reveals 28 functional connections highly correlated with schizophrenia, which provides an effective foundation for the treatment and prevention of schizophrenia and methodological assurance for similar brain disorders.


Assuntos
Encefalopatias , Esquizofrenia , Humanos , Algoritmos , Aprendizagem , Encéfalo
16.
Comput Biol Med ; 158: 106752, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003069

RESUMO

Alzheimer's disease (AD) is currently one of the mainstream senile diseases in the world. It is a key problem predicting the early stage of AD. Low accuracy recognition of AD and high redundancy brain lesions are the main obstacles. Traditionally, Group Lasso method can achieve good sparseness. But, redundancy inside group is ignored. This paper proposes an improved smooth classification framework which combines the weighted smooth GL1/2 (wSGL1/2) as feature selection method and a calibrated support vector machine (cSVM) as the classifier. wSGL1/2 can make intra-group and inner-group features sparse, in which the group weights can further improve the efficiency of the model. cSVM can enhance the speed and stability of model by adding calibrated hinge function. Before feature selecting, an anatomical boundary-based clustering, called as ac-SLIC-AAL, is designed to make adjacent similar voxels into one group for accommodating the overall differences of all data. The cSVM model is fast convergence speed, high accuracy and good interpretability on AD classification, AD early diagnosis and MCI transition prediction. In experiments, all steps are tested respectively, including classifiers' comparison, feature selection verification, generalization verification and comparing with state-of-the-art methods. The results are supportive and satisfactory. The superior of the proposed model are verified globally. At the same time, the algorithm can point out the important brain areas in the MRI, which has important reference value for the doctor's predictive work. The source code and data is available at http://github.com/Hu-s-h/c-SVMForMRI.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Máquina de Vetores de Suporte , Interpretação de Imagem Assistida por Computador/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico
17.
Biomed Phys Eng Express ; 8(6)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35868221

RESUMO

This paper presents a method to solve a linear regression problem subject to grouplassoand ridge penalisation when the model has a Kronecker structure. This model was developed to solve the inverse problem of electrocardiography using sparse signal representation over a redundant dictionary or frame. The optimisation algorithm was performed using the block coordinate descent and proximal gradient descent methods. The explicit computation of the underlying Kronecker structure in the regression was avoided, reducing space and temporal complexity. We developed an algorithm that supports the use of arbitrary dictionaries to obtain solutions and allows a flexible group distribution.


Assuntos
Algoritmos , Eletrocardiografia , Diagnóstico por Imagem , Modelos Lineares
18.
J Biophotonics ; 15(5): e202100338, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995013

RESUMO

Here we demonstrate it is instructive to quantify cell Raman spectroscopy by sparse regularization. To be able to extract the specific spectral differences in a heterogeneous cell system with great spectroscopic similarities derived from many common biomolecular components, the maximum information entropy probability was proposed and exemplified by identifying normal lymphocytes from leukemia cells. The essential spectroscopic features were observed to locate at three Raman peaks whose spectral signatures were commensurate. The applicability of the extracted features was acknowledged by that the predicted identification accuracy of up to 93% was still achieved when only two peaks were loaded into decision tree model, which may provide the possibility of a clinically rapid hematological malignancy detection.


Assuntos
Linfócitos , Análise Espectral Raman , Análise Espectral Raman/métodos
19.
Artigo em Inglês | MEDLINE | ID: mdl-34179220

RESUMO

The use of deep neural networks (DNNs) has dramatically elevated the performance of speech enhancement over the last decade. However, to achieve strong enhancement performance typically requires a large DNN, which is both memory and computation consuming, making it difficult to deploy such speech enhancement systems on devices with limited hardware resources or in applications with strict latency requirements. In this study, we propose two compression pipelines to reduce the model size for DNN-based speech enhancement, which incorporates three different techniques: sparse regularization, iterative pruning and clustering-based quantization. We systematically investigate these techniques and evaluate the proposed compression pipelines. Experimental results demonstrate that our approach reduces the sizes of four different models by large margins without significantly sacrificing their enhancement performance. In addition, we find that the proposed approach performs well on speaker separation, which further demonstrates the effectiveness of the approach for compressing speech separation models.

20.
Med Image Anal ; 70: 102018, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711740

RESUMO

Image reconstruction from radio-frequency (RF) data is crucial for ultrafast plane wave ultrasound (PWUS) imaging. Compared with the traditional delay-and-sum (DAS) method based on relatively imprecise assumptions, sparse regularization (SR) method directly solves the inverse problem of image reconstruction and has presented significant improvement in the image quality when the frame rate remains high. However, the computational complexity of SR is too high for practical implementation, which is inherently associated with its iterative process. In this work, a deep neural network (DNN), which is trained with an incorporated loss function including sparse regularization terms, is proposed to reconstruct PWUS images from RF data with significantly reduced computational time. It is remarkable that, a self-supervised learning scheme, in which the RF data are utilized as both the inputs and the labels during the training process, is employed to overcome the lack of the "ideal" ultrasound images as the labels for DNN. In addition, it has been also verified that the trained network can be used on the RF data obtained with steered plane waves (PWs), and thus the image quality can be further improved with coherent compounding. Using simulation data, the proposed method has significantly shorter reconstruction time (∼10 ms) than the conventional SR method (∼1-5 mins), with comparable spatial resolution and 1.5-dB higher contrast-to-noise ratio (CNR). Besides, the proposed method with single PW can achieve higher CNR than DAS with 75 PWs in reconstruction of in-vivo images of human carotid arteries.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA