Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(4): 1773-1791, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409269

RESUMO

Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.


Assuntos
Cartilagem , Condrogênese , Animais , Camundongos , Proteína GLI1 em Dedos de Zinco/genética , Condrogênese/genética , Condrócitos , Osteogênese , Diferenciação Celular
2.
J Biol Chem ; 299(10): 105193, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633334

RESUMO

Despite significant progress in our understanding of the molecular mechanism of mesenchymal stem cell (MSC) differentiation, less is known about the factors maintaining the stemness and plasticity of MSCs. Here, we show that the NFIB-MLL1 complex plays key roles in osteogenic differentiation and stemness of C3H10T1/2 MSCs. We find that depletion of either NFIB or MLL1 results in a severely hampered osteogenic potential and failed activation of key osteogenic transcription factors, such as Dlx5, Runx2, and Osx, following osteogenic stimuli. In addition, the NFIB-MLL1 complex binds directly to the promoter of Dlx5, and exogenous expression of Myc-Dlx5, but not the activation of either the BMP- or the Wnt-signaling pathway, is sufficient to restore the osteogenic potential of cells depleted of NFIB or MLL1. Moreover, chromatin immunoprecipitation (ChIP) and ChIP-sequencing analysis showed that the NFIB-MLL1 complex mediates the deposition of trimethylated histone H3K4 at both Dlx5 and Cebpa, key regulator genes that function at the early stages of osteogenic and adipogenic differentiation, respectively, in uncommitted C3H10T1/2 MSCs. Surprisingly, the depletion of either NFIB or MLL1 leads to decreased trimethylated histone H3K4 and results in elevated trimethylated histone H3K9 at those developmental genes. Furthermore, gene expression profiling and ChIP-sequencing analysis revealed lineage-specific changes in chromatin landscape and gene expression in response to osteogenic stimuli. Taken together, these data provide evidence for the hitherto unknown role of the NFIB-MLL1 complex in the maintenance and lineage-specific differentiation of C3H10T1/2 MSCs and support the epigenetic regulatory mechanism underlying the stemness and plasticity of MSCs.

3.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34918053

RESUMO

Plant development depends on the activity of pluripotent stem cells in meristems, such as the shoot apical meristem and the flower meristem. In Arabidopsis thaliana, WUSCHEL (WUS) is essential for stem cell homeostasis in meristems and integument differentiation in ovule development. In rice (Oryza sativa), the WUS ortholog TILLERS ABSENT 1 (TAB1) promotes stem cell fate in axillary meristem development, but its function is unrelated to shoot apical meristem maintenance in vegetative development. In this study, we examined the role of TAB1 in flower development. The ovule, which originates directly from the flower meristem, failed to differentiate in tab1 mutants, suggesting that TAB1 is required for ovule formation. Expression of a stem cell marker was completely absent in the flower meristem at the ovule initiation stage, indicating that TAB1 is essential for stem cell maintenance in the 'final' flower meristem. The ovule defect in tab1 was partially rescued by floral organ number 2 mutation, which causes overproliferation of stem cells. Collectively, it is likely that TAB1 promotes ovule formation by maintaining stem cells at a later stage of flower development.


Assuntos
Diferenciação Celular/genética , Flores/genética , Oryza/genética , Proteínas de Plantas/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Mutação/genética , Oryza/crescimento & desenvolvimento , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Desenvolvimento Vegetal/genética , Células-Tronco/citologia
4.
Stem Cells ; 40(11): 1031-1042, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-35922037

RESUMO

Myogenic progenitors (MPs) generate myocytes that fuse to form myofibers during skeletal muscle development while maintaining the progenitor pool, which is crucial for generating sufficient muscle. Notch signaling has been known to reserve a population of embryonic MPs during primary myogenesis by promoting cell cycle exit and suppressing premature differentiation. However, the roles of individual Notch receptors (Notch1-4) during embryonic/fetal myogenesis are still elusive. In this study, we found that Notch1 and Notch2, which exhibit the highest structural similarity among Notch receptors, maintain the MP population by distinct mechanisms: Notch1 induces cell cycle exit and Notch2 suppresses premature differentiation. Moreover, genetic and cell culture studies showed that Notch1 and Notch2 signaling in MPs are distinctively activated by interacting with Notch ligand-expressing myofibers and MP-lineage cells, respectively. These results suggest that through different activation modes, Notch1 and Notch2 distinctively and cooperatively maintain MP population during fetal myogenesis for proper muscle development.


Assuntos
Desenvolvimento Muscular , Receptor Notch1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Desenvolvimento Muscular/genética , Transdução de Sinais/fisiologia , Diferenciação Celular/genética , Receptores Notch
5.
Stem Cells ; 39(1): 7-25, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017496

RESUMO

Unique to vertebrates, the neural crest (NC) is an embryonic stem cell population that contributes to a greatly expanding list of derivatives ranging from neurons and glia of the peripheral nervous system, facial cartilage and bone, pigment cells of the skin to secretory cells of the endocrine system. Here, we focus on what is specifically known about establishment and maintenance of NC stemness and ultimate fate commitment mechanisms, which could help explain its exceptionally high stem cell potential that exceeds the "rules set during gastrulation." In fact, recent discoveries have shed light on the existence of NC cells that coexpress commonly accepted pluripotency factors like Nanog, Oct4/PouV, and Klf4. The coexpression of pluripotency factors together with the exceptional array of diverse NC derivatives encouraged us to propose a new term "pleistopotent" (Greek for abundant, a substantial amount) to be used to reflect the uniqueness of the NC as compared to other post-gastrulation stem cell populations in the vertebrate body, and to differentiate them from multipotent lineage restricted stem cells. We also discuss studies related to the maintenance of NC stemness within the challenging context of being a transient and thus a constantly changing population of stem cells without a permanent niche. The discovery of the stem cell potential of Schwann cell precursors as well as multiple adult NC-derived stem cell reservoirs during the past decade has greatly increased our understanding of how NC cells contribute to tissues formed after its initial migration stage in young embryos.


Assuntos
Diferenciação Celular , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Crista Neural/embriologia , Animais
6.
Plant J ; 101(3): 716-730, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571287

RESUMO

Predicting gene regulatory networks (GRNs) from expression profiles is a common approach for identifying important biological regulators. Despite the increased use of inference methods, existing computational approaches often do not integrate RNA-sequencing data analysis, are not automated or are restricted to users with bioinformatics backgrounds. To address these limitations, we developed tuxnet, a user-friendly platform that can process raw RNA-sequencing data from any organism with an existing reference genome using a modified tuxedo pipeline (hisat 2 + cufflinks package) and infer GRNs from these processed data. tuxnet is implemented as a graphical user interface and can mine gene regulations, either by applying a dynamic Bayesian network (DBN) inference algorithm, genist, or a regression tree-based pipeline, rtp-star. We obtained time-course expression data of a PERIANTHIA (PAN) inducible line and inferred a GRN using genist to illustrate the use of tuxnet while gaining insight into the regulations downstream of the Arabidopsis root stem cell regulator PAN. Using rtp-star, we inferred the network of ATHB13, a downstream gene of PAN, for which we obtained wild-type and mutant expression profiles. Additionally, we generated two networks using temporal data from developmental leaf data and spatial data from root cell-type data to highlight the use of tuxnet to form new testable hypotheses from previously explored data. Our case studies feature the versatility of tuxnet when using different types of gene expression data to infer networks and its accessibility as a pipeline for non-bioinformaticians to analyze transcriptome data, predict causal regulations, assess network topology and identify key regulators.


Assuntos
Arabidopsis/genética , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Transcriptoma , Algoritmos , Teorema de Bayes , Análise de Sequência de RNA
7.
Mol Biol Rep ; 48(10): 6729-6738, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34436724

RESUMO

BACKGROUND: Basal stem/progenitor cells of airway epithelium from chronic obstructive pulmonary disease (COPD) patients have a decrease in differentiation and self-renewal potential. Our study aimed at identifying deregulations in the genetic program of these cells that could account for their exhaustion, focusing on genes downstream of the epithelial-mesenchymal transition-inducing transcription factor Slug/Snail2 and responding to transforming growth factor (TGF)-ß. TGF-ß is at higher levels in COPD patient lungs, plays a role in stem/progenitor cell fate and regulates the expression of Slug/Snail2 that is highly expressed in airway basal stem/progenitors. METHODS AND RESULTS: We reanalyzed a gene expression dataset that we generated from COPD and normal primary bronchial basal progenitor cells knocked down for Slug/Snail2 gene. Among the genes that we identified to be repressed downstream of Slug/Snail2 in COPD, we selected those responding to differentiation and TGF-ß. The large majority of these genes are upregulated with differentiation but repressed by TGF-ß. Pathway and ontology enrichment analysis revealed a set of genes coding for transcription factors involved in stem cell maintenance that are repressed downstream of Slug/Snail2 and by TGF-ß in COPD but not normal basal progenitor cells. We also reveal a link between Slug/Snail2 expression and the repressive effect of TGF-ß on these stem cell maintenance genes. CONCLUSION: Our work brings a new insight and molecular perspective to the exhaustion of basal stem/progenitor cells observed in the airway epithelium of COPD patients, revealing that stem cell maintenance genes are repressed in these cells, with TGF-ß and Slug/Snail2 being involved in this deregulation.


Assuntos
Brônquios/patologia , Epitélio/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Fatores de Transcrição da Família Snail/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
8.
Proteomics ; 20(13): e1900223, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31709756

RESUMO

Hematopoietic stem/progenitor cell (HSPC) mobilization from the bone marrow to the bloodstream is a required step for blood cell renewal, and HSPC motility is a clinically relevant standard for peripheral blood stem cell transplantation. Individual HSPCs exhibit considerable heterogeneity in motility behaviors, which are subject to complex intrinsic and extrinsic regulatory mechanisms. Motility-based cell sorting is then demanded to fulfill the study of such mechanism complexity. However, due to the HSPC heterogeneity and difficulty in monitoring cell motility, such a platform is still not available. With the recent development of microfluidics technology, motility-based monitoring, sorting, collecting, and analysis of HSPC behaviors are highly possible and achievable if fluid channels and structures are correctly engineered. Here, a new design of microfluidic arrays for single-cell trapping is presented, enabling high-throughput analysis of individual HSPC motility and behavior. Using these arrays, it is observed that HSPC motility is positively correlated with CD34 asymmetric inheritance and cell differentiation. Transcriptomic analysis of HSPCs sorted according to motility reveals changes in expression of genes associated with the regulation of stem-cell maintenance. Ultimately, this novel, physical cell-sorting system can facilitate the screening of HSPC mobilization compounds and the analysis of signals driving HSPC fate decisions.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Microfluídica , Medula Óssea , Diferenciação Celular , Células-Tronco Hematopoéticas
9.
Dev Biol ; 447(2): 137-146, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30664880

RESUMO

Neural crest cells have broad migratory and differentiative ability that differs according to their axial level of origin. However, their transient nature has limited understanding of their stem cell and self-renewal properties. While an in vitro culture method has made it possible to maintain cranial neural crest cells as self-renewing multipotent crestospheres (Kerosuo et al., 2015), these same conditions failed to preserve trunk neural crest in a stem-like state. Here we optimize culture conditions for maintenance of avian trunk crestospheres, comprised of both neural crest stem and progenitor cells. Our trunk-derived crestospheres are multipotent and display self-renewal capacity over several weeks. Trunk crestospheres display elevated expression of neural crest cell markers as compared to those characteristic of ventrolateral neural tube or mesodermal fates. Moreover, trunk crestospheres express increased levels of trunk neural crest-enriched markers as compared to cranial crestospheres. Finally, we use lentiviral transduction as a tool to manipulate gene expression in trunk crestospheres. Taken together, this method enables long-term in vitro maintenance and manipulation of multipotent trunk neural crest cells in a premigratory stem or early progenitor state. Trunk crestospheres are a valuable resource for probing mechanisms underlying neural crest stemness and lineage decisions as well as accompanying diseases.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Multipotentes/metabolismo , Crista Neural/embriologia , Células-Tronco Neurais/metabolismo , Animais , Embrião de Galinha , Galinhas , Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Células-Tronco Neurais/citologia
10.
Plant J ; 99(6): 1203-1219, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31111599

RESUMO

Root development and its response to environmental changes is crucial for whole plant adaptation. These responses include changes in transcript levels. Here, we show that the alternative polyadenylation (APA) of mRNA is important for root development and responses. Mutations in FIP1, a component of polyadenylation machinery, affects plant development, cell division and elongation, and response to different abiotic stresses. Salt treatment increases the amount of poly(A) site usage within the coding region and 5' untranslated regions (5'-UTRs), and the lack of FIP1 activity reduces the poly(A) site usage within these non-canonical sites. Gene ontology analyses of transcripts displaying APA in response to salt show an enrichment in ABA signaling, and in the response to stresses such as salt or cadmium (Cd), among others. Root growth assays show that fip1-2 is more tolerant to salt but is hypersensitive to ABA or Cd. Our data indicate that FIP1-mediated alternative polyadenylation is important for plant development and stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Poliadenilação/genética , Estresse Salino/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Regiões 5' não Traduzidas , Ácido Abscísico/metabolismo , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cádmio/toxicidade , Divisão Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Poliadenilação/efeitos dos fármacos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
11.
J Cell Physiol ; 235(2): 932-943, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31236965

RESUMO

Histone demethylase KDM7A regulates neuronal differentiation and development in mammals. In this study, we found that KDM7A was also required for breast cancer stem cells (BCSCs) maintenance. Silencing KDM7A significantly reduced the BCSCs population and mamosphere formation in vitro, and inhibited breast tumor growth in vivo. Restoring KDM7A expression rescued the defect in stem cell maintenance. Our mechanism analysis suggested that KDM7A upregulated the stemness-associated factors KLF4 and c-MYC for BCSCs maintenance. In addition, KDM7A knockdown promoted apoptosis through decreasing BCL2 expression and BAD phosphorylation in breast cancer (BrCa). Furthermore, restoring KDM7A and BCL2 expression rescued apoptosis inhibition in breast cancer, suggesting that KDM7A inhibited apoptosis by upregulating the BCL2 level in breast cancer. In conclusion, KDM7A promotes cancer stem cell maintenance and apoptosis inhibition in breast cancer.


Assuntos
Apoptose/genética , Neoplasias da Mama/patologia , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Neoplásicas/patologia , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/genética , Proliferação de Células/genética , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Esferoides Celulares , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína de Morte Celular Associada a bcl/metabolismo
12.
New Phytol ; 225(2): 974-984, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31486529

RESUMO

Shoot branches are formed from the axillary meristem and their formation is a key process in plant development. Although our understanding of the mechanisms underlying stem cell maintenance in the shoot apical meristem (SAM) is progressing, our knowledge of these mechanisms during the process of axillary meristem development is insufficient. To elucidate the genetic mechanisms underlying axillary meristem development in rice (Oryza sativa), we undertook a molecular genetic analysis focusing on TILLERS ABSENT1 (TAB1) and FLORAL ORGAN NUMBER2 (FON2), respective orthologs of the WUSCHEL and CLAVATA3 genes involved in SAM maintenance in Arabidopsis (Arabidopsis thaliana). We revealed that stem cells were established at an early stage of axillary meristem development in the wild-type, but were not maintained in tab1. By contrast, the stem cell region and TAB1 expression domain were expanded in fon2, and FON2 overexpression inhibited axillary meristem formation. These results indicate that TAB1 is required to maintain stem cells during axillary meristem development, whereas FON2 negatively regulates stem cell fate by restricting TAB1 expression. Thus, the genetic pathway regulating SAM maintenance in Arabidopsis seems to have been recruited to play a specific role within a narrow developmental window - namely, axillary meristem establishment - in rice.


Assuntos
Meristema/citologia , Meristema/crescimento & desenvolvimento , Oryza/citologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Células-Tronco/citologia , Mutação/genética , Oryza/anatomia & histologia , Fenótipo , Células-Tronco/metabolismo , Supressão Genética
13.
Plant J ; 95(1): 86-100, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29676825

RESUMO

Stem cells in both plant and animal kingdoms reside in a specialized cellular context called the stem cell niche (SCN). SCN integrity is crucial for organism development. Here we show that the H3/H4 histone chaperone CHROMATIN ASSEMBLY FACTOR-1 (CAF-1) and the H2A/H2B histone chaperone NAP1-RELATED PROTEIN1/2 (NRP1/2) play synergistic roles in Arabidopsis root SCN maintenance. Compared with either the m56-1 double mutant deprived of NRP1 and NRP2 or the fas2-4 mutant deprived of CAF-1, the combined m56-1fas2-4 triple mutant displayed a much more severe short-root phenotype. The m56-1fas2-4 mutant root lost the normal organizing center Quiescent Center (QC), and some initial stem cells differentiated precociously. Microarray analysis unraveled the deregulation of 2735 genes within the Arabidopsis genome (representing >8% of all genes) in the m56-1fas2-4 mutant roots. Expression of some SCN key regulatory genes (e.g. WOX5, PLT1, SHR) was not limiting, rather the plant hormone auxin gradient maximum at QC was impaired. The mutant roots showed programmed cell death and high levels of the DNA damage marked histone H2A.X phosphorylation (γ-H2A.X). Knockout of either ATAXIA-TELANGIECTASIA MUTATED (ATM) or ATR, encoding a DNA damage response kinase, rescued in part the cell death and the short-root phenotype of the m56-1fas2-4 mutant. Collectively, our study indicated that NRP1/2 and CAF-1 act cooperatively in regulating proper genome transcription, in sustaining chromatin replication and in maintaining genome integrity, which are crucial for proper SCN function during continuous post-embryonic root development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Chaperonas de Histonas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Nicho de Células-Tronco , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Chaperonas de Histonas/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Meristema/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Nicho de Células-Tronco/fisiologia
14.
Plant Biotechnol J ; 17(1): 206-219, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29851301

RESUMO

The Populus shoot undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. We adopted joint PacBio Iso-Seq and RNA-seq analysis to identify differentially expressed transcripts along a developmental gradient from the shoot apex to the fifth internode of Populus Nanlin895. We obtained 87 150 full-length transcripts, including 2081 new isoforms and 62 058 new alternatively spliced isoforms, most of which were produced by intron retention, that were used to update the Populus annotation. Among these novel isoforms, there are 1187 long non-coding RNAs and 356 fusion genes. Using this annotation, we found 15 838 differentially expressed transcripts along the shoot developmental gradient, of which 1216 were transcription factors (TFs). Only a few of these genes were reported previously. The differential expression of these TFs suggests that they may play important roles in primary and secondary growth. AP2, ARF, YABBY and GRF TFs are highly expressed in the apex, whereas NAC, bZIP, PLATZ and HSF TFs are likely to be important for secondary growth. Overall, our findings provide evidence that long-read sequencing can complement short-read sequencing for cataloguing and quantifying eukaryotic transcripts and increase our understanding of the vital and dynamic process of shoot development.


Assuntos
Caules de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Transcriptoma , Processamento Alternativo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Caules de Planta/anatomia & histologia , Caules de Planta/metabolismo , Populus/genética , Populus/metabolismo , RNA Longo não Codificante/genética , Transcriptoma/genética
15.
Adv Exp Med Biol ; 1143: 129-145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338818

RESUMO

The relationship of the homing of normal hematopoietic stem cells (HSC) in the bone marrow to specific environmental conditions, referred to as the stem cell niche (SCN), has been intensively studied over the last three decades. These conditions include the action of a number of molecular and cellular players, as well as critical levels of nutrients, oxygen and glucose in particular, involved in energy production. These factors are likely to act also in leukemias, due to the strict analogy between the hierarchical structure of normal hematopoietic cell populations and that of leukemia cell populations. This led to propose that leukemic growth is fostered by cells endowed with stem cell properties, the leukemia stem cells (LSC), a concept readily extended to comprise the cancer stem cells (CSC) of solid tumors. Two alternative routes have been proposed for CSC generation, that is, the oncogenic staminalization (acquisition of self-renewal) of a normal progenitor cell (the "CSC in normal progenitor cell" model) and the oncogenic transformation of a normal (self-renewing) stem cell (the "CSC in normal stem cell" model). The latter mechanism, in the hematological context, makes LSC derive from HSC, suggesting that LSC share SCN homing with HSC. This chapter is focused on the availability of oxygen and glucose in the regulation of LSC maintenance within the SCN. In this respect, the most critical aspect in view of the outcome of therapy is the long-term maintenance of the LSC subset capable to sustain minimal residual disease and the related risk of relapse of disease.


Assuntos
Hipóxia Celular , Leucemia Mieloide Aguda , Leucemia , Células-Tronco Neoplásicas , Glucose/metabolismo , Células-Tronco Hematopoéticas , Humanos , Oxigênio/metabolismo , Nicho de Células-Tronco
16.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901819

RESUMO

Boron (B) toxicity in Citrus is a common physiological disorder leading to reductions in both productivity and quality. Studies on how Citrus roots evade B toxicity may provide new insight into plant tolerance to B toxicity. Here, using Illumina sequencing, differentially expressed microRNAs (miRNAs) were identified in B toxicity-treated Citrus sinensis (tolerant) and C. grandis (intolerant) roots. The results showed that 37 miRNAs in C. grandis and 11 miRNAs in C. sinensis were differentially expressed when exposed to B toxicity. Among them, miR319, miR171, and miR396g-5p were confirmed via 5'-RACE and qRT-PCR to target a myeloblastosis (MYB) transcription factor gene, a SCARECROW-like protein gene, and a cation transporting ATPase gene, respectively. Maintenance of SCARECROW expression in B treated Citrus roots might fulfill stem cell maintenance, quiescent center, and endodermis specification, thus allowing regular root elongation under B-toxic stress. Down-regulation of MYB due to up-regulation of miR319 in B toxicity-treated C. grandis roots might decrease the number of root tips, thereby dramatically changing root system architecture. Our findings suggested that miR319 and miR171 play a pivotal role in Citrus adaptation to long-term B toxicity by targeting MYB and SCARECROW, respectively, both of which are responsible for root growth and development.


Assuntos
Adaptação Biológica , Boro/metabolismo , Citrus/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Desenvolvimento Vegetal/genética , Raízes de Plantas/fisiologia , Boro/toxicidade , Citrus/classificação , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Fenótipo , Filogenia , Interferência de RNA
17.
J Neurosci ; 37(49): 11867-11880, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29101245

RESUMO

In the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout the mammal's lifetime. The balance between quiescence and active cell division among NSCs is crucial in producing appropriate numbers of neurons while maintaining the stem cell pool for a long period. The Notch signaling pathway plays a central role in both maintaining quiescent NSCs (qNSCs) and promoting cell division of active NSCs (aNSCs), although no one knows how this pathway regulates these apparently opposite functions. Notch1 has been shown to promote proliferation of aNSCs without affecting qNSCs in the adult mouse subependymal zone (SEZ). In this study, we found that Notch3 is expressed to a higher extent in qNSCs than in aNSCs while Notch1 is preferentially expressed in aNSCs and transit-amplifying progenitors in the adult mouse SEZ. Furthermore, Notch3 is selectively expressed in the lateral and ventral walls of the SEZ. Knockdown of Notch3 in the lateral wall of the adult SEZ increased the division of NSCs. Moreover, deletion of the Notch3 gene resulted in significant reduction of qNSCs specifically in the lateral and ventral walls, compared with the medial and dorsal walls, of the lateral ventricles. Notch3 deletion also reduced the number of qNSCs activated after antimitotic cytosine ß-D-arabinofuranoside (Ara-C) treatment. Importantly, Notch3 deletion preferentially reduced specific subtypes of newborn neurons in the olfactory bulb derived from the lateral walls of the SEZ. These results indicate that Notch isoforms differentially control the quiescent and proliferative steps of adult SEZ NSCs in a domain-specific manner.SIGNIFICANCE STATEMENT In the adult mammalian brain, the subependymal zone (SEZ) of the lateral ventricles is the largest neurogenic niche, where neural stem cells (NSCs) generate neurons. In this study, we found that Notch3 plays an important role in the maintenance of quiescent NSCs (qNSCs), while Notch1 has been reported to act as a regulator of actively cycling NSCs. Furthermore, we found that Notch3 is specifically expressed in qNSCs located in the lateral and ventral walls of the lateral ventricles and regulates neuronal production of NSCs in a region-specific manner. Our results indicate that Notch3, by maintaining the quiescence of a subpopulation of NSCs, confers a region-specific heterogeneity among NSCs in the adult SEZ.


Assuntos
Células-Tronco Adultas/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Receptor Notch3/biossíntese , Fatores Etários , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Notch3/deficiência
18.
Development ; 141(22): 4311-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25371365

RESUMO

The class I KNOX transcription factors SHOOT MERISTEMLESS (STM) and KNAT1 are important regulators of meristem maintenance in shoot apices, with a dual role of promoting cell proliferation and inhibiting differentiation. We examined whether they control stem cell maintenance in the cambium of Arabidopsis hypocotyls, a wood-forming lateral meristem, in a similar fashion as in the shoot apical meristem. Weak loss-of-function alleles of KNAT1 and STM led to reduced formation of xylem fibers - highly differentiated cambial derivatives - whereas cell proliferation in the cambium was only mildly affected. In a knat1;stm double mutant, xylem fiber differentiation was completely abolished, but residual cambial activity was maintained. Expression of early and late markers of xylary cell differentiation was globally reduced in the knat1;stm double mutant. KNAT1 and STM were found to act through transcriptional repression of the meristem boundary genes BLADE-ON-PETIOLE 1 (BOP1) and BOP2 on xylem fiber differentiation. Together, these data indicate that, in the cambium, KNAT1 and STM, contrary to their function in the shoot apical meristem, promote cell differentiation through repression of BOP genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Homeodomínio/metabolismo , Hipocótilo/citologia , Meristema/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Câmbio/citologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Imuno-Histoquímica , Reação em Cadeia da Polimerase em Tempo Real
19.
RNA ; 21(11): 1885-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26323280

RESUMO

PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations.


Assuntos
Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis/genética , Inativação Gênica/fisiologia , Platelmintos/genética , Platelmintos/metabolismo , Células-Tronco/metabolismo , Animais , Regulação da Expressão Gênica/genética , Células Germinativas/metabolismo , RNA Interferente Pequeno/genética , Regeneração/genética
20.
New Phytol ; 213(1): 95-104, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523393

RESUMO

Homeodomain-leucine zipper proteins (HD-ZIPs) form a plant-specific family of transcription factors functioning as homo- or heterodimers. Certain members of all four classes of this family are involved in embryogenesis, the focus of this review. They support auxin biosynthesis, transport and response, which are in turn essential for the apical-basal patterning of the embryo, radicle formation and outgrowth of the cotyledons. They transcriptionally regulate meristem regulators to maintain the shoot apical meristem once it is initiated. Some members are specific to the protoderm, the outermost layer of the embryo, and play a role in shoot apical meristem function. Within classes, homeodomain-leucine zippers tend to act redundantly during embryo development, and there are many examples of regulation within and between classes of homeodomain-leucine zippers. This indicates a complex network of regulation that awaits future experiments to uncover.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Zíper de Leucina , Plantas/embriologia , Plantas/genética , Proteínas de Homeodomínio/química , Ácidos Indolacéticos/metabolismo , Meristema/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA