Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.649
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 87: 533-553, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925257

RESUMO

The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like ß-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.


Assuntos
Nanoestruturas/química , Peptídeos/química , Proteínas Amiloidogênicas/química , Animais , Biotecnologia , Humanos , Modelos Moleculares , Nanotecnologia/métodos , Oligopeptídeos/química , Ácidos Nucleicos Peptídicos/química , Engenharia de Proteínas
2.
Proc Natl Acad Sci U S A ; 120(9): e2209924120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802431

RESUMO

Simultaneous poisoning by carbon monoxide (CO) and hydrogen cyanide is the major cause of mortality in fire gas accidents. Here, we report on the invention of an injectable antidote against CO and cyanide (CN-) mixed poisoning. The solution contains four compounds: iron(III)porphyrin (FeIIITPPS, F), two methyl-ß-cyclodextrin (CD) dimers linked by pyridine (Py3CD, P) and imidazole (Im3CD, I), and a reducing agent (Na2S2O4, S). When these compounds are dissolved in saline, the solution contains two synthetic heme models including a complex of F with P (hemoCD-P) and another one of F with I (hemoCD-I), both in their iron(II) state. hemoCD-P is stable in its iron(II) state and captures CO more strongly than native hemoproteins, while hemoCD-I is readily autoxidized to its iron(III) state to scavenge CN- once injected into blood circulation. The mixed solution (hemoCD-Twins) exhibited remarkable protective effects against acute CO and CN- mixed poisoning in mice (~85% survival vs. 0% controls). In a model using rats, exposure to CO and CN- resulted in a significant decrease in heart rate and blood pressure, which were restored by hemoCD-Twins in association with decreased CO and CN- levels in blood. Pharmacokinetic data revealed a fast urinary excretion of hemoCD-Twins with an elimination half-life of 47 min. Finally, to simulate a fire accident and translate our findings to a real-life scenario, we confirmed that combustion gas from acrylic cloth caused severe toxicity to mice and that injection of hemoCD-Twins significantly improved the survival rate, leading to a rapid recovery from the physical incapacitation.


Assuntos
Monóxido de Carbono , Porfirinas , Ratos , Camundongos , Animais , Antídotos/farmacologia , Oxigênio , Compostos Férricos , Cianetos/toxicidade , Ferro , Compostos Ferrosos
3.
Proc Natl Acad Sci U S A ; 119(29): e2205320119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858342

RESUMO

Polymers possessing helical conformation in the solid state are in high demand. We report a helical peptide-polymer via the topochemical ene-azide cycloaddition (TEAC) polymerization. The molecules of the designed Gly-Phe-based dipeptide, decorated with ene and azide, assemble in its crystals as ß-sheets and as supramolecular helices in two mutually perpendicular directions. While the NH…O H-bonding facilitates ß-sheet-like stacking along one direction, weak CH…N H-bonding between the azide-nitrogen and vinylic-hydrogen of molecules belonging to the adjacent stacks arranges them in a head-to-tail manner as supramolecular helices. In the crystal lattice, the azide and alkene of adjacent molecules in the supramolecular helix are suitably preorganized for their TEAC reaction. The dipeptide underwent regio- and stereospecific polymerization upon mild heating in a single-crystal-to-single-crystal fashion, yielding a triazoline-linked helical covalent polymer that could be characterized by single-crystal X-ray diffraction studies. Upon heating, the triazoline-linked polymer undergoes denitrogenation to aziridine-linked polymer, as evidenced by differential scanning calorimetry, thermogravimetric analysis, and solid-state NMR analyses.

4.
Small ; 20(2): e2303444, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705132

RESUMO

In this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase. To stabilize the colloidal suprastructure, on-chip gelation is introduced by adding natural polyphenol tannic acid (TA) in the water phase. TA forms interparticle linking between the poly(N-vinylcaprolactam) (PVCL) microgels by supramolecular interactions. The combination of supramolecular interlinking with the variation of the microgel concentration in microfluidic droplets enables on-chip fabrication of defined colloidal suprastructures with morphologies ranging from colloidosomes to colloidal supraballs. The obtained supracolloidal structures exhibit a pH-responsive behavior with a disintegration at alkaline conditions within a scale of seconds. The destabilization process results from the deprotonation of phenolic groups and destruction of hydrogen bonds with PVCL chains at higher pH.

5.
Small ; 20(9): e2307585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849034

RESUMO

The combination of multiple orthogonal interactions enables hierarchical complexity in self-assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host-guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010 m-1 , directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower-affinity ß-cyclodextrin-adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high-affinity CB[7]-adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high-affinity CB[7]-guest recognition as an orthogonal axis to drive self-assembly in DNA nanotechnology.


Assuntos
Adamantano , Nanofibras , Nanoestruturas , Nanotecnologia , DNA
6.
Chembiochem ; 25(5): e202300832, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220779

RESUMO

Amylose, the linear polymer of α-1,4-linked glucopyranose units, is known to crystallize as a parallel double helix, but evidence of this duplex forming in solution has remained elusive for decades. We show how the dimerization of short amylose chains can be detected in solution using NMR spectroscopy when the glucans are labeled at the reducing-end with an aromatic moiety that overcomes chemical shift degeneracy leading to distinct signals for the single-stranded and duplex amylose. A set of α-1,4 glucans with varying lengths of 6, 12, 18, and 22 glucose units and a 4-aminobenzamide label were synthesized, enabling the first systematic thermodynamic study of the association of amylose in solution. The dimerization is enthalpically driven, entropically unfavorable and beyond a minimum length of 12, each additional pair of glucose residues stabilizes the duplex by 0.85 kJ mol-1 . This fundamental knowledge provides a basis for a quantitative understanding of starch structure, gelation and enzymatic digestion, and lays the foundations for the strategic use of α-1,4-glucans in the development of self-assembled materials.


Assuntos
Amilose , Amido , Dimerização , Glucanos , Glucose
7.
Chemistry ; 30(35): e202401284, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642344

RESUMO

Bis-porphyrin cages have long been exploited to bind fullerenes selectively for various applications. The major consideration for an effective binding here had been the cavity size. Herein, we structurally demonstrate that a bis-Ni-porphyrin cavitand having even a smaller cavity can host a larger fullerene by a breathing and ruffling mechanism. It has also been shown that both the electronic and steric influence at the meso- positions of the porphyrin in fact dictate the binding character. The smaller cavity of 2NiD exhibits preferential binding for C70 over C60; however, surprisingly, the larger cavities in 2HD and 2NiTD display stronger affinities for C60 over the larger fullerene. We show here that the structural elasticity infused both by the metalloporphyrins and the connecting bridges play a major role in directing the binding. These conclusions have adequately been supported by structural and spectroscopic investigations. Additionally, the suitability of one of the conjugates for photoinduced charge-separation has been investigated using ultrafast transient absorption measurements. 2NiD⊃C60 has a charge separation timescale of ~0.8 ps, while charge recombination occurs at a longer timescale of ~920 ps.

8.
Chemistry ; 30(12): e202303569, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38066712

RESUMO

We report a fluorescent supramolecular polymer networks (SPNs) system based on crown ether-cation recognition. The polymer side chains bear ammonium cations, which can be recognized by host molecules with a B15C5 unit and a quinoline group at each end. The quinoline group makes the host molecule exhibit blue fluorescence. After the formation of SPNs, the recognition of the crown ether-cation transforms the blue fluorescence into yellow fluorescence. The accompanying fluorescence color change during the formation of SPNs makes it with potential applications in the fields of display, printing, information storage, and bioimaging.

9.
Chemistry ; 30(2): e202303013, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37907394

RESUMO

Affinities of six anions (mesylate, acetate, trifluoroacetate, p-toluenecarboxylate, p-toluenesulfonate, and perfluorooctanoate) for three related Pt2+ -linked porphyrin nanocages were measured to probe the influence of different noncovalent recognition motifs (e. g., hydrogen bonding, electrostatics, π bonding) on anion binding. Two new hosts of M6 L3 12+ (1b) and M4 L2 8+ (2) composition (M=(en)Pt2+ , L=(3-py)4 porphyrin) were prepared in a one-pot synthesis and allowed comparison of hosts that differ in structure while maintaining similar N-H hydrogen-bond donor ability. Comparisons of isostructural hosts that differ in hydrogen-bonding ability were made between 1b and a related M6 L3 12+ nanoprism (1a, M=(tmeda)Pt2+ ) that lacks N-H groups. Considerable variation in association constants (K1 =1.6×103  M-1 to 1.3×108  M-1 ) and binding mode (exo vs. endo) were found for different host-guest combinations. Strongest binding was seen between p-toluenecarboxylate and 1b, but surprisingly, association of this guest with 1a was only slightly weaker despite the absence of NH⋅⋅⋅O interactions. The high affinity between p-toluenecarboxylate and 1a could be turned off by protonation, and this behavior was used to toggle between the binding of this guest and the environmental pollutant perfluorooctanoate, which otherwise has a lower affinity for the host.

10.
Chemistry ; 30(3): e202302538, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793025

RESUMO

Studies of the supramolecular chemistry of iso-tellurazole N-oxides have been confined to non-polar media until now. To overcome that limitation, an iso-tellurazole N-oxide was derivatized with a primary alcohol group; the compound is soluble in polar solvents and stable in acidic to neutral aqueous media. Nickel (II) and iron (II) form macrocyclic complexes with six molecules of that iso-tellurazole N-oxide in a hitherto not-observed macrocyclic arrangement defined by CTe⋅⋅⋅O chalcogen bonds and κ6 -O bound to the metal ion. This behaviour is in sharp contrast with the κn -Te (n=1,2,4) complexes formed by soft metal ions.

11.
Chemistry ; 30(12): e202303984, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127103

RESUMO

In recent decades, many efforts have been devoted to studying reactions catalyzed in nanoconfined spaces. The most impressive aspect of catalysis in nanoconfined spaces is that the reactivity of the molecules can be smartly driven to disobey classical behavior. A green and efficient three-component aza-Darzens (TCAD) reaction using a catalytic amount of γ-cyclodextrins (CDs) in water has been developed to synthesize N-phenylaziridines. CDs effectively performed this reaction in an environmentally friendly setting, achieving good yields. The same reaction was then performed using polymeric γ-CD such as a γ-cyclodextrin polymer crosslinked (GCDPC) with epichlorohydrin, a sponge-like macroporous γ-cyclodextrin-based cryogel (GCDC), and a γ-cyclodextrin-based hydrogel (GCDH). The homogeneous and heterogeneous catalyst recovery was then studied, and it was proved to be easily recycled several times without relevant activity loss. Water, as a unique and eco-friendly reaction medium, has been utilized for the first time, to the best of our knowledge, in this reaction. The inclusion of the reagents in CDs has been studied and rationalized by NMR spectroscopy experiments and molecular modeling calculations. The credit of the presented protocol includes good yields and catalyst reusability and precludes the use of organic solvents.

12.
Chemistry ; 30(11): e202304244, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38240735

RESUMO

Confined spaces inside molecular hosts can function as reaction vessels. However, this concept significantly limits the scope of reactants. When the exterior of molecular hosts is used instead, we can ease the restriction because reactants are not necessary to be trapped inside molecular hosts, although studies along this line have not been reported. As a proof-of-concept of enantioselective reactions at the exterior of chiral molecular hosts, we utilized host-guest complexes of enantiomerically enriched Cu-coordinated capsules and guests possessing a catalytic center to realize the kinetic resolution of secondary alcohols. Under suitable reaction conditions, a selectivity factor of 2.6 was realized, demonstrating that the reactions occur at the exterior of the capsules. A series of experiments indicated that the substituents on the 2,2'-bipyridyl arms and the alkyl chains on the lower rim contributed to the enantioselectivity of the reactions.

13.
Chemistry ; 30(25): e202400392, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391395

RESUMO

Supramolecular electronics exploits the distinctive features stemming from noncovalent interactions, guiding the self-assembly of molecules to craft materials endowed with customized electronic functionalities. Hydrogen-bonded materials, characterized by their capacity to establish dynamic and stable networks, introduce an extra dimension to the development of supramolecular electronic systems. This study presents a comparative analysis of two remarkably small semiconductors utilizing diketopyrrolopyrrole functionalized with urea units as hydrogen-bonding motifs, strategically positioned at opposing ends of the conjugated core. We show how the subtle distinction in functionalization not only influences morphology and self-assembly dynamics via hydrogen-bonding and π-π stacking formation, but also holds significant consequences for ultimate charge transport properties. Our observations into the interplay of noncovalent interactions provide valuable insights and strategic pathways for the design of novel materials with enhanced electronic characteristics.

14.
Chemistry ; 30(27): e202400501, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38433109

RESUMO

The ability of an octanuclear cubic coordination cage to catalyse a nucleophilic aromatic substitution reaction on a cavity-bound guest was studied with 2,4-dinitrofluorobenzene (DNFB) as the guest/substrate. It was found that DNFB undergoes a catalysed reaction with hydroxide ions within the cavity of the cubic cage (in aqueous buffer solution, pH 8.6). The rate enhancement of kcat/kuncat was determined to be 22, with cavity binding of the guest being required for catalysis to occur. The product, 2,4-dinitrophenolate (DNP), remained bound within the cavity due to electrostatic stabilisation and exerts two apparently contradictory effects: it initially auto-catalyses the reaction when present at low concentrations, but at higher concentrations inhibits catalysis when a pair of DNP guests block the cavity. When encapsulated, the UV/Vis absorption spectrum of DNP is red-shifted when compared to the spectrum of free DNP in aqueous solution. Further investigations using other aromatic guests determined that a similar red-shift on cavity binding also occurred for 4-nitrophenolate (4NP) at pH 8.6. The red-shift was used to determine the stoichiometry of guest binding of DNP and 4NP within the cage cavity, which was confirmed by structural analysis with X-ray crystallography; and was also used to perform catalytic kinetic studies in the solution-state.

15.
Chemistry ; 30(37): e202400623, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38656599

RESUMO

The emergent properties resulting from selective supramolecular interactions are of significant importance for materials and chemical systems. For the directed use of such properties, a fundamental understanding of the interaction mechanism and the resulting mode of function is necessary for a tailored design. The self-induced diastereomeric anisochronism effect (SIDA), which occurs in the intermolecular interaction of chiral molecules, generates unique properties such as chiral self-recognition and nonlinear effects. Here we show that anisidine amino acid diamides lead to extraordinary signal splitting in NMR spectra through supramolecular interaction and homochiral self-recognition. By systematic experiments we have investigated the underlying SIDA effect, explored its limits and finally successfully utilized it in the determination of enantiomeric ratios by NMR spectroscopy of chiral 'SIDA-inactive' compounds such as thalidomide.

16.
Chemistry ; : e202401542, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958349

RESUMO

Taspase 1 is a unique protease not only pivotal for embryonic development but also implicated in leukemias and solid tumors. As such, this enzyme is a promising while still challenging therapeutic target, and with its protein structure featuring a flexible loop preceding the active site a versatile model system for drug development. Supramolecular ligands provide a promising complementary approach to traditional small-molecule inhibitors. Recently, the multivalent arrangement of molecular tweezers allowed the successful targeting of Taspase 1's surface loop. With this study we now want to take the next logic step und utilize functional linker systems that not only allow the implementation of novel properties but also engage in protein surface binding. Consequently, we chose two different linker types differing from the original divalent assembly: a backbone with aggregation-induced emission (AIE) properties to enable monitoring of binding and a calix[4]arene scaffold initially pre-positioning the supramolecular binding units. With a series of four AIE-equipped ligands with stepwise increased valency we demonstrated that the functionalized AIE linkers approach ligand binding affinities in the nanomolar range and allow efficient proteolytic inhibition of Taspase 1. Moreover, implementation of the calix[4]arene backbone further enhanced the ligands' inhibitory potential, pointing to a specific linker contribution.

17.
Chemistry ; : e202400797, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38751354

RESUMO

Tunable photoluminescence (PL) is one of the hot topics in current materials science, and research performed on the molecular phases is at the forefront of this field. We present the new (Et4N)2[PtII(bph)(CN)2]⋅rez3⋅1/3H2O (Pt2rez3) (bph=biphenyl-2,2'-diyl; rez3=3,3",5,5"-tetrahydroxy-1,1':4',1"-terphenyl, phenylene-1,4-diresorcinol coformer, a linear quaternary hydrogen bond donor) co-crystal salt based on the recently appointed promising [PtII(bph)(CN)2]2- luminophore. Within the extended hydrogen-bonded subnetwork [PtII(bph)(CN)2]2- complexes and rez3 coformer molecules form two types of contacts: the rez3O-H⋅⋅⋅Ncomplex ones in the equatorial plane of the complex and non-typical rez3O-H⋅⋅⋅Pt ones along its axial direction. The combined structural, PL, and DFT approach identified the rez3O-H⋅⋅⋅Pt synthons to be crucial in promoting the noticeable uniform redshift of bph ligand centered (LC) emission compared to the LC emission of the (Et4N)2[PtII(bph)(CN)2]⋅H2O (Pt2) precursor, owing to the direct interference of the phenol group with the PtII-bph orbital system via altering the CT processes within. The high-resolution emission spectra for Pt2 and Pt2rez3 were successfully reproduced at 77 K by using the Franck-Cordon expressions. The possibility to tune PL properties along the plausible continuum of rez3O-H⋅⋅⋅Pt synthons is indicated, considering various scenarios of molecular occupation of the space above and below the complex plane.

18.
Chemistry ; 30(21): e202400079, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38284133

RESUMO

Emissive ionic supramolecular frameworks are designed by associating tetraphenylethylene-based tetra-cationic units and di-anionic molybdenum or tetra-anionic rhenium octahedral clusters. Obtained structures were characterized by single-crystal X-ray diffraction. The emission properties of the hybrids were investigated as dry powders or in various solvents by one photon and two photon absorption leading to a O2 concentration dependent luminescence color for the Mo based hybrid.

19.
Chemistry ; 30(22): e202400100, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38385852

RESUMO

In this manuscript we evaluate the X-ray structure of five new pertechnetate derivatives of general formula [M(H2O)4(TcO4)2], M=Mg, Co, Ni, Cu, Zn (compounds 1-5) and one perrhenate compound Zn(H2O)4(ReO4)2 (6). In these complexes the metal center exhibits an octahedral coordination with the pertechnetate units as axial ligands. All compounds exhibit the formation of directional Tc⋅⋅⋅O Matere bonds (MaBs) that propagate the [M(H2O)4(TcO4)2], into 1D supramolecular polymers in the solid state. Such 1D polymers are linked, generating 2D layers, by combining additional MaBs and hydrogen bonds (HBs). Such concurrent motifs have been analyzed theoretically, suggesting the noncovalent σ-hole nature of the MaBs. The interaction energies range from weak (~ -2 kcal/mol) for the MaBs to strong (~ -30 kcal/mol) for the MaB+HB assemblies, where HB dominates. In case of M=Zn, the corresponding perrhenate Zn(H2O)4(ReO4)2 complex, has been also synthesized for comparison purposes, resulting in the formation of an isostructural X-ray structure, corroborating the structure-directing role of Matere bonds.

20.
Chemistry ; 30(13): e202303911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224206

RESUMO

Methylation of amines inside an introverted resorcinarene-based deep methyl ester cavitand is investigated by means of molecular dynamics simulations and quantum chemical calculations. Experimentally, the cavitand has been shown to bind a number of amines and accelerate the methylation reaction by more than four orders of magnitude for some of them. Eight different amines are considered in the present study, and the geometries and energies of their binding to the cavitand are first characterized and analyzed. Next, the methyl transfer reactions are investigated and the calculated barriers are found to be in generally good agreement with experimental results. In particular, the experimentally-observed rate acceleration in the cavitand as compared to the solution reaction is well reproduced by the calculations. The origins of this rate acceleration are analyzed by computational modifications made to the structure of the cavitand, and the role of the solvent is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA