Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398649

RESUMO

A new ionic liquid modified polymer gel containing methylimidazolium groups (poly(MIA)) is proposed as a sorbent for the separation and enrichment of trace inorganic and organic arsenic species in surface waters. The poly(MIA) was synthesized by chemical modification of polymeric precursor using post-polymerization modification of poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate). The composition, structure, morphology, and surface properties of the prepared particles were characterized using elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption-desorption measurements. Optimization experiments showed that at pH 8, monomethylarsonic acid (MMAs), dimethylarsinic acid (DMAs), and As(V) were completely retained on the poly(MIA), while the sorption of As(III) was insignificant. The desorption experiments revealed that due to the weaker binding of organic arsenic species, selective elution with 1 mol/L acetic acid for MMAs + DMAs, followed by elution with 2 mol/L hydrochloric acid for As(V), ensured their quantitative separation. The adsorption kinetic and mechanism were defined. The analytical procedure for As(III), As(V), MMAs, and DMAs determination in surface waters was developed and validated through the analysis of certified reference material.

2.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893529

RESUMO

Evaporative water concentration takes place in arid or semi-arid environments when stationary water bodies, such as lakes or ponds, prevalently lose water by evaporation, which prevails over outflow or seepage into aquifers. Absence or near-absence of precipitation and elevated temperatures are important prerequisites for the process, which has the potential to deeply affect the photochemical attenuation of pollutants, including contaminants of emerging concern (CECs). Here we show that water evaporation would enhance the phototransformation of many CECs, especially those undergoing degradation mainly through direct photolysis and triplet-sensitized reactions. In contrast, processes induced by hydroxyl and carbonate radicals would be inhibited. Our model results suggest that the photochemical impact of water evaporation might increase in the future in several regions of the world, with no continent likely being unaffected, due to the effects of local precipitation decrease combined with an increase in temperature that facilitates evaporation.

3.
Environ Monit Assess ; 196(5): 456, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630192

RESUMO

The increasing pressure on freshwater systems due to intensive anthropogenic use is a big challenge in central-northern Namibia and its catchment areas, the Kunene and the Kavango Rivers, and the Cuvelai-Etosha Basin, that provide water for more than 1 million people. So far, there is no comprehensive knowledge about the ecological status and only few knowledge about the water quality. Therefore, it is crucial to learn about the state of the ecosystem and the ecological effects of pollutants to ensure the safe use of these resources. The surface waters of the three systems were sampled, and three bioassays were applied on three trophic levels: algae, daphnia, and zebrafish embryos. Additionally, in vitro assays were performed to analyze mutagenicity (Ames fluctuation), dioxin-like potential (micro-EROD), and estrogenicity (YES) by mechanism-specific effects. The results show that acute toxicity to fish embryos and daphnia has mainly been detected at all sites in the three catchment areas. The systems differ significantly from each other, with the sites in the Iishana system showing the highest acute toxicity. At the cellular level, only weak effects were identified, although these were stronger in the Iishana system than in the two perennial systems. Algae growth was not inhibited, and no cytotoxic effects could be detected in any of the samples. Mutagenic effects and an estrogenic potential were detected at three sites in the Iishana system. These findings are critical in water resource management as the effects can adversely impact the health of aquatic ecosystems and the organisms within them.


Assuntos
Ecossistema , Peixe-Zebra , Humanos , Animais , Namíbia , Monitoramento Ambiental , Bioensaio , Daphnia , Estrona , Mutagênicos
4.
J Environ Sci (China) ; 146: 103-117, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969439

RESUMO

The reliable application of field deployable fluorescent dissolved organic matter (fDOM) probes is hindered by several influencing factors which need to be compensated. This manuscript describes the corrections of temperature, pH, turbidity and inner filter effect on fluorescence signal of a commercial fDOM probe (fDOMs). For this, Australian waters with wide ranging qualities were selected, e.g. dissolved organic carbon (DOC) ranging from ∼1 to ∼30 mg/L, specific UV absorbance at 254 nm from ∼1 to ∼6 L/m/mg and turbidity from ∼1 to ∼ 350 FNU. Laboratory-based model calibration experiments (MCEs) were performed. A model template was developed and used for the development of the correction models. For each factor, data generated through MCEs were used to determine model coefficient (α) values by fitting the generated model to the experimental data. Four discrete factor models were generated by determination of a factor-specific α value. The α values derived for each water of the MCEs subset were consistent for each factor model. This indicated generic nature of the four α values across wide-ranging water qualities. High correlation between fDOMs and DOC were achieved after applying the four-factor compensation models to new data (r, 0.96, p < 0.05). Also, average biases (and %) between DOC predicted through fDOMs and actual DOC were decreased by applying the four-factor compensation model (from 3.54 (60.9%) to 1.28 (16.7%) mg/L DOC). These correction models were incorporated into a Microsoft EXCEL-based software termed EXOf-Correct for ready-to-use applications.


Assuntos
Monitoramento Ambiental , Água Doce , Monitoramento Ambiental/métodos , Fluorescência , Modelos Químicos , Corantes Fluorescentes/química , Modelos Teóricos , Poluentes Químicos da Água/análise
5.
J Environ Sci (China) ; 146: 251-263, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969453

RESUMO

The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern. As emerging contaminants (ECs) in surface waters, pharmaceutical and personal care products (PPCPs), and endocrine-disrupting compounds (EDCs) have attracted considerable attention due to their wide occurrence and potential threat to human health. Therefore, a comprehensive understanding of the occurrence and risks of ECs in Chinese surface waters is urgently required. This study summarizes and assesses the environmental occurrence concentrations and ecological risks of 42 pharmaceuticals, 15 personal care products (PCPs), and 20 EDCs frequently detected in Chinese surface waters. The ECs were primarily detected in China's densely populated and highly industrialized regions. Most detected PPCPs and EDCs had concentrations between ng/L to µg/L, whereas norfloxacin, caffeine, and erythromycin had relatively high contamination levels, even exceeding 2000 ng/L. Risk evaluation based on the risk quotient method revealed that 34 PPCPs and EDCs in Chinese surface waters did not pose a significant risk, whereas 4-nonylphenol, 4-tert-octylphenol, 17α-ethinyl estradiol, 17ß-estradiol, and triclocarban did. This review provides a comprehensive summary of the occurrence and associated hazards of typical PPCPs and EDCs in Chinese surface waters over the past decade, and will aid in the regulation and control of these ECs in Chinese surface waters.


Assuntos
Cosméticos , Disruptores Endócrinos , Monitoramento Ambiental , Poluentes Químicos da Água , China , Cosméticos/análise , Disruptores Endócrinos/análise , Preparações Farmacêuticas/análise , Medição de Risco , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 57(48): 19395-19406, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050814

RESUMO

Excessive nitrate in surface waters deteriorates the water quality and threatens human health. Human activities have caused increased nitrate concentrations in global surface waters over the past 50 years. An assessment of the long-term trajectory of surface-water nitrate exposure to world populations and the associated potential health risks is imperative but lacking. Here, we used global spatially explicit data on surface-water nitrate concentrations and population density, in combination with thresholds for health risks from epidemiological studies, to quantify the long-term changes in surface-water nitrate exposure to world populations at multiple spatial scales. During 1970-2010, global populations potentially affected by acute health risks associated with surface-water nitrate exposure increased from 6 to 60 million persons per year, while populations at potential chronic health risks increased from 169 to 1361 million persons per year. Potential acute risks have increasingly affected Asian countries. Populations potentially affected by chronic risks shifted from dominance by high-income countries (in Europe and North America) to middle-income countries (in Asia and Africa). To mitigate adverse health effects associated with surface-water nitrate exposure, anthropogenic nitrogen inputs to natural environments should be drastically reduced. International and national standards of maximum nitrate contamination may need to be lowered.


Assuntos
Nitratos , Poluentes Químicos da Água , Humanos , Compostos Orgânicos , Qualidade da Água , Ásia , Meio Ambiente , Poluentes Químicos da Água/análise
7.
Environ Res ; 216(Pt 2): 114381, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243051

RESUMO

Multi-species submerged plants grow with succession patterns in the same habit and play an important role in the aquatic ecosystems. The decomposition of submerged plants in aquatic environments was a disturbance that affected the water quality and microbial community structures. However, the responses of the microbial community function in surface water to the disturbance remain poorly understood. In this study, the effects of submerged macrophyte Potamogeton crispus L decomposition on the water quality and microbial carbon metabolism functions (MCMF) in the overlying water were investigated in the presence/absence of Vallisneria natans. The result showed that the decomposition rapidly released a large amount of organic matter and nutrients into the overlying water. The presence of Vallisneria natans promoted the removal of dissolved organic carbon and fluorescent component C3, resulting in lower values of the percentage content of C3 (C3%). Under various decomposition processes, the MCMF changed over time and significantly negatively correlated with C3%. The functional diversity of MCMF significantly correlated with the fluorescence organic matters, such as the richness and Simpson index correlated with the amount of C1, C1+C2+C3, and C3%. But UV-visible absorption indexes and nutrients in the overlying water had no relationship with the MCMF, except for the total nitrogen correlated with the richness. These results suggested that under various decomposition conditions, the fluorescent dissolved organic matter could be used as an indicator for quick prediction of MCMF in surface water.


Assuntos
Hydrocharitaceae , Potamogetonaceae , Potamogetonaceae/metabolismo , Matéria Orgânica Dissolvida , Ecossistema , Carbono/metabolismo , Hydrocharitaceae/metabolismo , Plantas
8.
Environ Res ; 223: 115488, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36781012

RESUMO

Land use change alters the hydrochemical features, nutrient outputs, and community structure of aquatic photosynthetic organisms in watersheds and has an important impact on C, N, and P biogeochemical processes. In shallow water environments, sediments are the most important burial sites for C, N, and P; however, the factors underlying the control of their deposition by land use changes remain unclear. In this study, the relationship among hydrochemical features, aquatic photosynthetic organism community structure, and C, N, and P deposition in surface waters associated with different land uses was studied at the Shawan Karst Water-Carbon Cycle Test Site, Puding, SW China, by combining field monitoring and laboratory experiments performed over a complete hydrological year from September 2018 to August 2019. The results indicate that (1) OC and TN deposition showed small differences among ponds associated with five land uses, while TP was significantly higher in ponds associated with shrubland and grassland than in ponds of cultivated land, bare soil, and bare rock. (2) Cultivated land increased OC and TN deposition by increasing N and P output and planktonic algae biomass in surface waters, while grassland and shrubland ponds mainly by increasing DIC output and macrophyte biomass. (3) Compared with cultivated land, grassland and shrubland significantly enhanced TP deposition by promoting the deposition of calcium-bound P and biogenic P from macrophytes and their epiphytic algae in surface waters. In conclusion, the shift of cultivated land and bare soil to grassland and shrubland may be conducive to the formation of benign aquatic ecosystems and stabilization of C, N, and P sinks in karst shallow surface waters.


Assuntos
Ecossistema , Nitrogênio , Nitrogênio/análise , Solo/química , Carbono/análise , Água/química , China
9.
Environ Monit Assess ; 195(5): 535, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010696

RESUMO

This work was conducted at the Pardo River hydrographic basin, which is a federal watershed belonging to the Paranapanema River hydrographic basin (PRHB) in Brazil (São Paulo State and Paraná State). The aim was to realize an integrated hydrochemical and radiometric (U-isotopes and 210Po) approach, highlighting the water/soil-rock and surface water/groundwater interactions, with implications to the weathering processes occurring there. The study area has been often considered one of the best preserved/unpolluted river in São Paulo State, contributing to the water supply of several cities distributed along its banks. However, the results reported here suggest possible lead diffuse pollution caused by the use of phosphate fertilizers in agricultural activities taking place in the basin. The analyzed groundwaters and surface waters tend to be neutral to slightly alkaline (pH of 6.8-7.7), possessing low mineral concentration (total dissolved solids up to 500 mg/L). SiO2 is the major dissolved constituent in the waters, while bicarbonate is the dominant anion, and calcium is the preponderant cation. The effects of the weathering of silicates to control the dissolution of constituents in the liquid phase have been identified from some diagrams often utilized in hydrogeochemical studies. Chemical weathering rates have been estimated from hydrochemical data associated to analytical results of the natural uranium isotopes 238U and 234U concerning to samples of rainwater and Pardo River waters. The fluxes in this watershed are permitted to obtain the following rates: 11.43 t/km2 year (sodium), 2.76 t/km2 year (calcium), 3.17 t/km2 year (magnesium), 0.77 t/km2 year (iron), and 8.64 t/km2 year (uranium). This new dataset constitutes valuable information for people engaged on the management of the Pardo River watershed, as well as to researchers interested on comparative studies considering the available data from other basins worldwide.


Assuntos
Água Subterrânea , Urânio , Poluentes Químicos da Água , Humanos , Rios , Brasil , Cálcio , Urânio/análise , Dióxido de Silício , Monitoramento Ambiental , Água
10.
Environ Monit Assess ; 195(5): 547, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032385

RESUMO

Data from monitoring programs with high spatial resolution but low temporal resolution are often overlooked when assessing temporal trends, as the data structure does not permit the use of established trend analysis methods. However, the data include uniquely detailed information about geographically differentiated temporal trends driven by large-scale influences, such as climate or airborne deposition. In this study, we used geographically weighted regression models, extended with a temporal component, to evaluate linear and nonlinear trends in environmental monitoring data. To improve the results, we tested approaches for station-wise pre-processing of data and for validation of the resulting models. To illustrate the method, we used data on changes in total organic carbon (TOC) obtained in a monitoring program of around 4800 Swedish lakes observed once every 6 years between 2008 and 2021. On applying the methods developed here, we identified nonlinear changes in TOC from consistent negative trends over most of Sweden around 2010 to positive trends during later years in parts of the country.


Assuntos
Monitoramento Ambiental , Regressão Espacial , Monitoramento Ambiental/métodos , Suécia , Clima , Lagos
11.
Environ Res ; 207: 112638, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990611

RESUMO

The circulation of SARS-CoV-2 in the environment has been confirmed numerous times, whilst research on the bioaccumulation in bivalve molluscan shellfish (BMS) has been rather scarce. The present study aimed to fulfil the knowledge gap on SARS-CoV-2 circulation in wastewaters and surface waters in this region and to extend the current knowledge on potential presence of SARS-CoV-2 contamination in BMS. The study included 13 archive wastewater and surface water samples from the start of epidemic and 17 influents and effluents from nine wastewater treatment plants (WWTP) of different capacity and treatment stage, sampled during the second epidemic wave. From that period are the most of 77 collected BMS samples, represented by mussels, oysters and warty venus clams harvested along the Dalmatian coast. All samples were processed according to EN ISO 15216-1 2017 using Mengovirus as a whole process control. SARS-CoV-2 detection was performed by real-time and conventional RT-PCR assays targeting E, N and nsp14 protein genes complemented with nsp14 partial sequencing. Rotavirus A (RVA) real-time RT-PCR assay was implemented as an additional evaluation criterion of virus concentration techniques. The results revealed the circulation of SARS-CoV-2 in nine influents and two secondary treatment effluents from eight WWTPs, while all samples from the start of epidemic (wastewaters, surface waters) were negative which was influenced by sampling strategy. All tertiary effluents and BMS were SARS-CoV-2 negative. The results of RVA amplification were beneficial in evaluating virus concentration techniques and provided insights into RVA dynamics within the environment and community. In conclusion, the results of the present study confirm SARS-CoV-2 circulation in Croatian wastewaters during the second epidemic wave while extending the knowledge on wastewater treatment potential in SARS-CoV-2 removal. Our findings represent a significant contribution to the current state of knowledge that considers BMS of a very low food safety risk regarding SARS-CoV-2.


Assuntos
Bivalves , COVID-19 , Animais , Humanos , SARS-CoV-2 , Frutos do Mar , Águas Residuárias
12.
Ecotoxicol Environ Saf ; 237: 113562, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487175

RESUMO

In this study we have established a monitoring scheme to determine the presence and distribution of widely used pharmaceuticals, pesticides, organophosphate esters (OPEs) and perfluoroalkyl substances (PFAS) in water bodies from Important Bird and Biodiversity Areas (IBAs) from Spain. The monitoring scheme included the georeferenced sampling of rocky mountain, Atlantic forest, riparian forest, Mediterranean forest, agricultural, inland aquatic and coastal aquatic IBAs, with the aim to evaluate the impact of widely used chemicals in those aquatic resources. Water samples were extracted using a generic solid-phase extraction protocol and analyzed by 3 analytical methods based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Quality parameters such as compound recovery, intra and inter-day variation, linearity and limits of detection were calculated in order to validate the methods. In addition, the ionization conditions and the optimization of the most appropriate transitions permitted unequivocal identification. Once the sampling and analytical procedure was set-up, 59 target compounds were monitored in 63 samples. Pharmaceutical, followed by pesticides, OPEs and PFAS were widespread along all IBAs studied at concentrations from 0.5 to 41083 ng/L. Overall, this study highlights the need to monitor the presence of contaminants in areas of high ecological interest to contribute to pollution control and mitigation towards protection of biodiversity.


Assuntos
Fluorocarbonos , Praguicidas , Poluentes Químicos da Água , Poluentes da Água , Animais , Biodiversidade , Aves , Cromatografia Líquida/métodos , Fluorocarbonos/análise , Organofosfatos , Praguicidas/análise , Extração em Fase Sólida , Espectrometria de Massas em Tandem/métodos , Água , Poluentes da Água/análise , Poluentes Químicos da Água/análise
13.
Environ Sci Technol ; 55(14): 9836-9844, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34181400

RESUMO

Nanoparticle (NP) emissions to the environment are increasing as a result of anthropogenic activities, prompting concerns for ecosystems and human health. In order to evaluate the risk of NPs, it is necessary to know their concentrations in various environmental compartments on regional and global scales; however, these data have remained largely elusive due to the analytical difficulties of measuring NPs in complex natural matrices. Here, we measure NP concentrations and sizes for Ti-, Ce-, and Ag-containing NPs in numerous global surface waters and precipitation samples, and we provide insights into their compositions and origins (natural or anthropogenic). The results link NP occurrences and distributions to particle type, origin, and sampling location. Based on measurements from 46 sites across 13 countries, total Ti- and Ce-NP concentrations (regardless of origin) were often found to be within 104 to 107 NP mL-1, whereas Ag NPs exhibited sporadic occurrences with low concentrations generally up to 105 NP mL-1. This generally corresponded to mass concentrations of <1 ng L-1 for Ag-NPs, <100 ng L-1 for Ce-NPs, and <10 µg L-1 for Ti-NPs, given that measured sizes were often below 15 nm for Ce- and Ag-NPs and above 30 nm for Ti-NPs. In view of current toxicological data, the observed NP levels do not yet appear to exceed toxicity thresholds for the environment or human health; however, NPs of likely anthropogenic origins appear to be already substantial in certain areas, such as urban centers. This work lays the foundation for broader experimental NP surveys, which will be critical for reliable NP risk assessments and the regulation of nano-enabled products.


Assuntos
Nanopartículas Metálicas , Prata , Ecossistema , Humanos , Titânio
14.
Anal Bioanal Chem ; 413(1): 103-115, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33164152

RESUMO

In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples from river Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 µg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14-0.81% of TF (determined using CIC) and EOF 0.04-0.28% of TF (determined using HR-CS-GFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. Graphical abstract.

15.
Biochem J ; 477(17): 3271-3286, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32794579

RESUMO

Antifreeze proteins (AFPs) are characterized by their ability to adsorb to the surface of ice crystals and prevent any further crystal growth. AFPs have independently evolved for this purpose in a variety of organisms that encounter the threat of freezing, including many species of polar fish, insects, plants and microorganisms. Despite their diverse origins and structures, it has been suggested that all AFPs can organize ice-like water patterns on one side of the protein (the ice-binding site) that helps bind the AFP to ice. Here, to test this hypothesis, we have solved the crystal structure at 2.05 Šresolution of an AFP from the longhorn beetle, Rhagium mordax with five molecules in the unit cell. This AFP is hyperactive, and its crystal structure resembles that of the R. inquisitor ortholog in having a ß-solenoid fold with a wide, flat ice-binding surface formed by four parallel rows of mainly Thr residues. The key difference between these structures is that the R. inquisitor AFP crystallized with its ice-binding site (IBS) making protein-protein contacts that limited the surface water patterns. Whereas the R. mordax AFP crystallized with the IBSs exposed to solvent enabling two layers of unrestricted ordered surface waters to be seen. These crystal waters make close matches to ice lattice waters on the basal and primary prism planes.


Assuntos
Proteínas Anticongelantes/química , Besouros/química , Gelo , Proteínas de Insetos/química , Animais , Cristalografia por Raios X
16.
J Environ Manage ; 298: 113538, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403917

RESUMO

Neonicotinoids pesticides were introduced to the market in the 1990s to control various pests. Its accumulation in the environment supposes a severe problem that can affect human health. This study investigates the electrochemical degradation of four common neonicotinoid pesticides; thiamethoxam (TMX), imidacloprid (ICP), acetamiprid (ACP) and thiacloprid (TCP), in different natural surface waters by a boron-doped diamond anode (BDD). The most influencing variable was the current density (j), and to a lesser extent, the supporting electrolyte concentration (Ce). In optimal conditions (j = 34.14 mA cm-2 and Ce = 10.00 mM, using Na2SO4 as electrolyte) pesticide removals for TMX, ICP, ACP and TCP were 97.2, 96.9, 87.8 and 98.2 %, respectively. The obtained results with different support electrolytes (Na2SO4, NaCl, NaNO3 and HK2PO4) suggest that sulphate electrolyte was the optimum for TMX, ICP and ACP. However, for TCP, a total removal was achieved in less than 10 min using NaCl. It was also verified that the initial pH of the solution did not significantly influence the process in the range 3-9. All these results were rationalized in this paper. Finally, to evaluate the matrix influence, some experiments were carried out in different natural surface water matrices (river, reservoir and two different WWTP effluents). The factors influencing the process were the conductivity of the solution and the organic matter content. It was noticeable that the specific energy consumption (SEC) reduced by approximately 15 % for river water and WWTP effluent. High mineralization rates were obtained for all water matrices, with TOC removals ranging between 60 and 80 %.


Assuntos
Praguicidas , Poluentes Químicos da Água , Boro , Diamante , Eletrodos , Humanos , Neonicotinoides , Oxirredução , Sulfatos , Poluentes Químicos da Água/análise
17.
Bull Environ Contam Toxicol ; 107(4): 671-676, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34036436

RESUMO

The aim of this study was to investigate the occurrence, abundance and distribution of microplastics (MPs) in the southwest coast of the Caspian Sea in four seasons. Three stations were chosen and their surface waters were sampled between April 2019 and February 2020. The average number of MPs was 1.37 ± 0.47 items/m3 and the predominant frequency in different seasons were as follows: summer > autumn > spring > winter. MPs were dominated by fiber in shape. Black and blue were the most common colors respectively. The size was in the range of 0.3-5 mm with a mean of 1.44 ± 1.08 mm. Due to Fourier-transform infrared spectroscopy equipped with attenuated total reflection (ATR-FTIR), four different polymers were identified dominating by polypropylene. The low MP concentrations detected in the present study can be related to lower sewage inlet and more MPs sedimentation in the investigated stations.


Assuntos
Microplásticos , Poluentes Químicos da Água , Mar Cáspio , Monitoramento Ambiental , Sedimentos Geológicos , Irã (Geográfico) , Plásticos , Estações do Ano , Poluentes Químicos da Água/análise
18.
Rev Environ Contam Toxicol ; 250: 1-43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025906

RESUMO

Plastics and microplastics are nowadays ubiquitously found in the environment. This has raised concerns on possible adverse effects for human health and the environment. To date, extensive information exists on their occurrence in the marine environment. However, information on their different sources and their transport within and across different freshwater and terrestrial ecosystems is still limited. Therefore, we assessed the current knowledge regarding the industrial sources of plastics and microplastics, their environmental pathways and load rates and their occurrence and fate in different environmental compartments, thereby highlighting important data gaps which are needed to better describe their global environmental cycle and exposure. This study shows that the quantitative assessment of the contribution of the different major sources of plastics, microplastics and nanoplastics to aquatic and terrestrial ecosystems is challenged by some data limitations. While the presence of microplastics in wastewater and freshwater is relatively well studied, data on sediments and especially soil ecosystems are too limited. Moreover, the overall occurrence of large-sized plastics, the patterns of microplastic and nanoplastic formation from them, the presence and deposition of plastic particles from the atmosphere and the fluxes of all kinds of plastics from soils towards aquatic environments (e.g. by surface water runoff, soil infiltration) are still poorly understood. Finally, this study discusses several research areas that need urgent development in order to better understand the potential ecological risks of plastic pollution and provides some recommendations to better manage and control plastic and microplastic inputs into the environment.


Assuntos
Água Doce , Microplásticos , Plásticos/toxicidade , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Can J Microbiol ; 66(11): 623-630, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32692953

RESUMO

We investigated the specificity and sensitivity of two horse-associated markers, HoF597 and Horse mtCytb, and 12 mitochondrial and bacterial markers of six animal species (human, cow, pig, bird, dog, chicken) in the faecal samples of 50 individual horses. Both horse markers were detected in 48 (96%) faecal samples. Cross-reactivity with dog (BacCan545) and pig (P23-2) occurred in 88% and 72% of horse faecal samples, respectively. Several other bacterial and mitochondrial markers of non-target hosts were also detected; however, their specificities were >80%. Analyses of samples from surface waters (n = 11) on or adjacent to properties from which horse faecal samples had been collected showed only the presence of HoF597 but not horse mitochondrial marker. Our data suggest that while bacterial and (or) mitochondrial markers of other animal species may be present in horse faeces, dog and pig markers may predominantly be present in horse faecal samples, which points to their nonspecificity as markers for microbial source tracking. Although HoF597 and Horse mtCytb are highly sensitive and specific for the detection of horse faecal pollution, because of their low numbers, mitochondrial (mtDNA) markers may not be robust for screening surface waters.


Assuntos
Monitoramento Ambiental/métodos , Fezes/microbiologia , Cavalos/microbiologia , Poluição da Água/análise , Animais , Genes Bacterianos , Marcadores Genéticos , Especificidade de Hospedeiro , Microbiologia da Água
20.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604975

RESUMO

Exposure assessment is a key component in the risk assessment of engineered nanomaterials (ENMs). While direct and quantitative measurements of ENMs in complex environmental matrices remain challenging, environmental fate models (EFMs) can be used alternatively for estimating ENMs' distributions in the environment. This review describes and assesses the development and capability of EFMs, focusing on surface waters. Our review finds that current engineered nanomaterial (ENM) exposure models can be largely classified into three types: material flow analysis models (MFAMs), multimedia compartmental models (MCMs), and spatial river/watershed models (SRWMs). MFAMs, which is already used to derive predicted environmental concentrations (PECs), can be used to estimate the releases of ENMs as inputs to EFMs. Both MCMs and SRWMs belong to EFMs. MCMs are spatially and/or temporally averaged models, which describe ENM fate processes as intermedia transfer of well-mixed environmental compartments. SRWMs are spatiotemporally resolved models, which consider the variability in watershed and/or stream hydrology, morphology, and sediment transport of river networks. As the foundation of EFMs, we also review the existing and emerging ENM fate processes and their inclusion in recent EFMs. We find that while ENM fate processes, such as heteroaggregation and dissolution, are commonly included in current EFMs, few models consider photoreaction and sulfidation, evaluation of the relative importance of fate processes, and the fate of weathered/transformed ENMs. We conclude the review by identifying the opportunities and challenges in using EFMs for ENMs.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Modelos Teóricos , Nanoestruturas/química , Poluentes Químicos da Água/química , Poluentes Ambientais/metabolismo , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA