Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695158

RESUMO

Gymnema sylvestre (GS) is a traditional medicinal plant known for its hypoglycemic and hypolipidemic effects. Gurmarin (hereafter Gur-1) is the only known active peptide in GS. Gur-1 has a suppressive sweet taste effect in rodents but no or only a very weak effect in humans. Here, 8 gurmarin-like peptides (Gur-2 to Gur-9) and their isoforms are reported in the GS transcriptome. The molecular mechanism of sweet taste suppression by Gur-1 is still largely unknown. Therefore, the complete architecture of human and mouse sweet taste receptors T1R2/T1R3 and their interaction with Gur-1 to Gur-9 were predicted by AlphaFold-Multimer (AF-M) and validated. Only Gur-1 and Gur-2 interact with the T1R2/T1R3 receptor. Indeed, Gur-1 and Gur-2 bind to the region of the cysteine-rich domain (CRD) and the transmembrane domain (TMD) of the mouse T1R2 subunit. In contrast, only Gur-2 binds to the TMD of the human T1R2 subunit. This result suggests that Gur-2 may have a suppressive sweet taste effect in humans. Furthermore, AF-M predicted that Gα-gustducin, a protein involved in sweet taste transduction, interacts with the intracellular domain of the T1R2 subunit. These results highlight an unexpected diversity of gurmarin-like peptides in GS and provide the complete predicted architecture of the human and mouse sweet taste receptor with the putative binding sites of Gur-1, Gur-2, and Gα-gustducin. In addition, gurmarin-like peptides may serve as promising drug scaffolds for the development of antidiabetic molecules.


Assuntos
Gymnema sylvestre , Receptores Acoplados a Proteínas G , Humanos , Gymnema sylvestre/metabolismo , Gymnema sylvestre/química , Animais , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Paladar/fisiologia , Ligação Proteica , Sequência de Aminoácidos , Células HEK293
2.
Inflamm Res ; 73(7): 1185-1201, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748233

RESUMO

OBJECTIVE: Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS: 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, Sprague‒Dawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1ß and IL-6 were evaluated using ELISAs and RT‒qPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS: At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1ß and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS: Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.


Assuntos
Diabetes Mellitus Experimental , Exenatida , Proteína Adaptadora de Sinalização NOD1 , Infecções por Pseudomonas , Pseudomonas aeruginosa , Ratos Sprague-Dawley , Animais , Exenatida/farmacologia , Exenatida/uso terapêutico , Humanos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Masculino , Infecções por Pseudomonas/tratamento farmacológico , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Citocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , NF-kappa B/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Linhagem Celular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ratos , Lipopolissacarídeos , Peptídeos/farmacologia , Peptídeos/uso terapêutico
3.
Acta Pharmacol Sin ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702501

RESUMO

Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer's disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.

4.
Appetite ; 194: 107169, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113982

RESUMO

Public health initiatives are currently aiming to lower free sugar intakes for health benefits, but attitudes towards sugars, their alternatives such as low/no-calorie sweeteners (LNCS), and towards sweet-tasting foods may be hampering efforts. This work investigated associations between attitudes towards and the reported intakes of sugars, LNCS and sweet-tasting foods, and identified latent attitude profiles in subpopulations of adults in the United Kingdom. A total of 581 adults completed a questionnaire assessing their usual intake of sugars, LNCS and sweet-tasting foods, attitudes towards these foods and various demographic characteristics. Six principal components explained 39.1% of the variance in the attitude responses, named: 'Personal Impact', 'Personal Management', 'Apathy', 'Negativity', 'Perceived Understanding' and 'Perceived Nonautonomy'. Personal Impact was negatively associated with reported consumption of sugar-food and sweet-tasting food groups more frequently (smallest ß = -0.24, p < .01). Personal Management was positively associated with reporting adding sugar and consuming sugar-food and sweet-tasting food groups more frequently (smallest ß = 0.14, p < .01). Three latent classes of participants with distinct patterns of attitudes were identified, labelled: 'Feeling Ill-equipped' (n = 52), 'Actively Engaged' (n = 162) or 'Unopinionated' (n = 367). Individuals who were classed as Actively Engaged reported adding LNCS more frequently than those classed as Feeling Ill-equipped (t(212) = -2.14, p<.01), who reported consuming sweet-tasting food groups more frequently than those classed as Unopinionated (t(417) = 2.65, p < .01). These findings suggest the need for personalised approaches within public health initiatives, to reduce free sugar intakes.


Assuntos
Açúcares , Edulcorantes , Adulto , Humanos , Ingestão de Energia , Paladar , Reino Unido
5.
Subst Use Misuse ; 59(4): 608-615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38149796

RESUMO

Background: Recent research has shown obesity to be associated with e-cigarette use and appeal, but models have yet to examine how weight status may be related to e-cigarette dependence among e-cigarette users. Objectives: To increase our understanding of pathways from body mass index (BMI) to e-cigarette dependence, the present cross-sectional observational study investigated a model in which BMI, sweet taste responsiveness, and the interaction of BMI and sweet taste responsiveness are associated with e-cigarette dependence indirectly via seven conceptually-distinct motives for e-cigarette use. Data from several e-cigarette clinical laboratory research studies were pooled and analyzed; only current e-cigarette users were included in the analyses (N=330). Structural equation modeling was used to analyze the hypothesized model. Results: BMI was positively associated with lower social/environmental goad motives and higher weight control motives, and BMI x sweet taste interaction terms found that sweet taste responsiveness strengthened the association of BMI and weight control motives. BMI was not directly or indirectly associated with e-cigarette dependence nor was there a bivariate association between BMI and e-cigarette dependence. Sweet taste responsiveness was positively associated with greater affiliative attachment motives, cognitive enhancement motives, cue exposure-associative process motives, weight control motives, and affect enhancement motives. Sweet taste responsiveness was bivariately associated with e-cigarette dependence and mediation paths show indirect relations to e-cigarette dependence via three of the seven motives. Conclusions: The findings suggest that sweet taste responsiveness, opposed to BMI, is associated with a wider range of e-cigarette use motives and indirectly relates to e-cigarette dependence via several e-cigarette use motives.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Humanos , Índice de Massa Corporal , Paladar , Estudos Transversais
6.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000505

RESUMO

The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cß2 (PLCß2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.


Assuntos
Receptores Acoplados a Proteínas G , Humanos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Paladar/fisiologia , Papilas Gustativas/metabolismo , Boca/metabolismo , Trato Gastrointestinal/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/metabolismo , Glucose/metabolismo , Pâncreas/metabolismo , Encéfalo/metabolismo
7.
Prep Biochem Biotechnol ; : 1-8, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578840

RESUMO

The human palate can discern multiple tastes; however, it predominantly perceives five fundamental flavors: sweetness, saltiness, sourness, bitterness, and umami. Sweetness is primarily mediated through the sweet taste receptor, a membrane-bound heterodimeric structure comprising T1R2-T1R3. However, unraveling the structural and mechanistic intricacies of the sweet taste receptor has proven challenging. This study aimed to address this knowledge gap by expressing an extracellular N-terminal domain encompassing the cysteine-rich domain of human hT1R3 (hT1R3-TMD) in Escherichia coli. The expressed protein was obtained as inclusion bodies, purified by metal affinity chromatography, and refolded using the dilution-refolding method. Through rigorous analysis, we confirmed the successful refolding of hT1R3-TMD and elucidated its structural characteristics using circular dichroism spectroscopy. Notably, the refolded protein was found to exist as either a monomer or a dimer, depending on its concentration. A tryptophan fluorescence quenching assay revealed that the dissociation constants for sucrose, sucralose, and brazzein were >9500 µM, 2380 µM and 14.3 µM, respectively. Our findings highlight the utility of this E. coli expression system for producing functional hT1R3-TMD for investigations and demonstrate the efficacy of the tryptophan fluorescence quenching assay in revealing complex interactions between sweet taste receptors and various sweeteners.

8.
Vopr Pitan ; 93(1): 61-71, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38555610

RESUMO

The excessive consumption of sugar-containing foods contributes to the development of a number of diseases, including obesity, diabetes mellitus, etc. As a substitute for sugar, people with diabetes mellitus and obesity most often use sweeteners. Sweet proteins, in particular brazzein, are an alternative to synthetic sweeteners that have natural origin, are broken down in the intestines along with food proteins, and do not affect blood sugar and insulin levels. The purpose of the review was to analyze the available data on the sweet protein brazzein, its physical and chemical properties, existing biotechnological methods of production, and prospects for application in the food industry in order to further develop an optimized heterologous expression system. Material and methods. Google Scholar, Scopus, Web of Science, PubMed, RSCI and eLibrary.ru databases were used for collecting and analyzing literature. Search depth - 30 years. Results. Numerous studies of the physical and chemical properties of brazzein have demonstrated its high potential for use in the food industry. In particular, a short amino acid sequence, thermal stability, the ability to maintain its structure and sweet properties in a wide pH range, hypoallergenicity, lack of genotoxicity, and an extremely high level of sweetness compared to sucrose allow us to conclude that its use is promising. Mutant variants of brazzein have been generated, the sweetest of which (with three amino acid substitutions H31R/E36D/E41A) exceeds sucrose sweetness by 22 500 times. To date, various systems for the expression of recombinant brazzein have already been developed, in which bacteria (Escherichia coli, Lactococcus lactis, Bacillus licheniformis), yeast (Komagataella phaffii, Kluyveromyces lactis, Saccharomyces cerevisiae), plants (Zea mays, Oryza sativa, Lactuca sativa, Nicotiana tabacum, Daucus carota) and animals (Mus musculus) have been used. Conclusion. Due to its high sweetness, organoleptic properties and long history of human consumption, brazzein can be considered as a promising natural sweetener. Despite the short peptide sequence, the production of the recombinant protein faced a number of problems, including low protein yield (for example, it could only be detected in mouse milk by Western blot hybridization) and loss of sweetness. Thus, further optimization of the process is necessary for widespread brazzein use in the food industry, which includes the selection of an adequate producer and the use of extracellular expression systems to reduce the final cost of the product.


Assuntos
Diabetes Mellitus , Edulcorantes , Humanos , Animais , Camundongos , Proteínas de Plantas/genética , Proteínas de Plantas/química , Sacarose , Obesidade/genética , Saccharomyces cerevisiae , Paladar
9.
J Neurosci ; 42(18): 3856-3867, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361706

RESUMO

Sleep is a universally conserved physiological state which contributes toward basic organismal functions, including cognitive operations such as learning and memory. Intriguingly, organisms can sometimes form memory even without sleep, such that Drosophila display sleep-dependent and sleep-independent memory in an olfactory appetitive training paradigm. Sleep-dependent memory can be elicited by the perception of sweet taste, and we now show that a mixed-sex population of flies maintained on sorbitol, a tasteless but nutritive substance, do not require sleep for memory consolidation. Consistent with this, silencing sugar-sensing gustatory receptor neurons in fed flies triggers a switch to sleep-independent memory consolidation, whereas activating sugar-sensing gustatory receptor neurons results in the formation of sleep-dependent memory in starved flies. Sleep-dependent and sleep-independent memory relies on distinct subsets of reward signaling protocerebral anterior medial dopaminergic neurons (PAM DANs) such that PAM-ß'2mp DANs mediate memory in fed flies whereas PAM-α1 DANs are required in starved flies. Correspondingly, we observed a feeding-dependent calcium increase in PAM-ß'2mp DANs, but not in PAM-α1 DANs. Following training, the presence of sweet sugars recruits PAM-ß'2mp DANs, whereas tasteless medium increases calcium in PAM-α1 DANs. Together, this work identifies mechanistic underpinnings of sleep-dependent memory consolidation, in particular demonstrating a role for the processing of sweet taste reward signals.SIGNIFICANCE STATEMENT Sleep is essential for encoding and consolidating memories, but animals must often suppress sleep for survival. Consequently, Drosophila have evolved sleep-independent consolidation that allows retention of essential information without sleep. In the presence of food, sleep is required for memory, but mechanisms that transmit signals from food cues to regulate the need for sleep in memory are largely unknown. We found that sweet-sensing neurons drive the recruitment of specific reward signaling dopaminergic neurons to establish sleep-dependent memory. Conversely, in the absence of a sweet stimulus, different neurons are activated within the same dopaminergic cluster for sleep-independent memory consolidation. Therefore, the processing of sleep-dependent memory relies on the presence of sweet sugars that signal through reward circuitry.


Assuntos
Drosophila melanogaster , Paladar , Animais , Cálcio , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Sono , Açúcares , Paladar/fisiologia
10.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201555

RESUMO

High concentrations of dietary salt are harmful to health. Like most animals, Drosophila melanogaster are attracted to foods that have low concentrations of salt, but show strong taste avoidance of high salt foods. Salt in known on multiple classes of taste neurons, activating Gr64f sweet-sensing neurons that drive food acceptance and 2 others (Gr66a bitter and Ppk23 high salt) that drive food rejection. Here we find that NaCl elicits a bimodal dose-dependent response in Gr64f taste neurons, which show high activity with low salt and depressed activity with high salt. High salt also inhibits the sugar response of Gr64f neurons, and this action is independent of the neuron's taste response to salt. Consistent with the electrophysiological analysis, feeding suppression in the presence of salt correlates with inhibition of Gr64f neuron activity, and remains if high salt taste neurons are genetically silenced. Other salts such as Na2SO4, KCl, MgSO4, CaCl2, and FeCl3 act on sugar response and feeding behavior in the same way. A comparison of the effects of various salts suggests that inhibition is dictated by the cationic moiety rather than the anionic component of the salt. Notably, high salt-dependent inhibition is not observed in Gr66a neurons-response to a canonical bitter tastant, denatonium, is not altered by high salt. Overall, this study characterizes a mechanism in appetitive Gr64f neurons that can deter ingestion of potentially harmful salts.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster , Cloreto de Sódio na Dieta/farmacologia , Sais/farmacologia , Paladar/fisiologia , Comportamento Alimentar , Açúcares/farmacologia , Cloreto de Sódio/farmacologia , Proteínas de Drosophila/genética
11.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539767

RESUMO

The sweet taste receptor (STR) is a G protein-coupled receptor (GPCR) responsible for mediating cellular responses to sweet stimuli. Early evidence suggests that elements of the STR signaling system are present beyond the tongue in metabolically active tissues, where it may act as an extraoral glucose sensor. This study aimed to delineate expression of the STR in extraoral tissues using publicly available RNA-sequencing repositories. Gene expression data was mined for all genes implicated in the structure and function of the STR, and control genes including highly expressed metabolic genes in relevant tissues, other GPCRs and effector G proteins with physiological roles in metabolism, and other GPCRs with expression exclusively outside the metabolic tissues. Since the physiological role of the STR in extraoral tissues is likely related to glucose sensing, expression was then examined in diseases related to glucose-sensing impairment such as type 2 diabetes. An aggregate co-expression network was then generated to precisely determine co-expression patterns among the STR genes in these tissues. We found that STR gene expression was negligible in human pancreatic and adipose tissues, and low in intestinal tissue. Genes encoding the STR did not show significant co-expression or connectivity with other functional genes in these tissues. In addition, STR expression was higher in mouse pancreatic and adipose tissues, and equivalent to human in intestinal tissue. Our results suggest that STR expression in mice is not representative of expression in humans, and the receptor is unlikely to be a promising extraoral target in human cardiometabolic disease.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Papilas Gustativas , Camundongos , Humanos , Animais , Paladar/fisiologia , Diabetes Mellitus Tipo 2/genética , Papilas Gustativas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Doenças Cardiovasculares/metabolismo
12.
Crit Rev Food Sci Nutr ; 63(16): 2613-2625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34904473

RESUMO

Diet therapy for diabetes involves controlling carbohydrate intake in order to manage blood glucose concentrations. Simple carbohydrates, like sucrose, quickly and potently raise blood glucose when ingested, and are typically perceived as sweet. Sweetness is innately pleasurable and contributes to the positive hedonic evaluation of foods and beverages. There is some evidence to suggest that individuals with diabetes mellitus may be less able to detect sweetness, which could result in increased intake and, thus, more difficulty managing blood glucose. A systematic review that included PubMed, PsycInfo, and Embase databases was conducted. Inclusion criteria included observational studies that investigated the sweet taste function of adults with and without diabetes mellitus (Prospero CRD42021225058). The quality of the final included studies was assessed using the Academy of Nutrition and Dietetics' Evidence Analysis Library Quality Criteria Checklist: Primary Research tool. Eighteen studies that compared sweet taste thresholds, intensity ratings, or hedonic responses in adults both with and without diabetes were included. Differences in sweet taste thresholds, both detection and recognition, indicated that individuals with diabetes were less sensitive than healthy controls. The same findings were observed for intensity ratings. Only two studies examined hedonic responses; results were inconclusive.


Assuntos
Diabetes Mellitus , Paladar , Adulto , Humanos , Paladar/fisiologia , Glicemia , Preferências Alimentares , Percepção Gustatória/fisiologia , Sacarose
13.
Eur J Nutr ; 62(8): 3149-3159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37537344

RESUMO

OBJECTIVES: Overconsumption of non-nutritive sweeteners is associated with obesity, whereas the underlying mechanisms remain controversial. This study aimed to investigate the effects of long-term consumption of nutritive or non-nutritive sweeteners with or without high fat diet on sweet taste receptor expression in nutrient-sensing tissues and energy regulation dependent on sweet-sensing. METHODS: 50 Male Sprague-Dawley rats (140-160 g) were assigned to 10 groups (n = 5/group). All received fructose at 2.5% or 10%, sucralose at 0.01% or 0.015% or water with a normal chow diet or high fat diet for 12 weeks. Food and drink intake were monitored daily. Oral glucose tolerance test and intraperitoneal glucose tolerance test were performed at week 10 and 11 respectively. Serum was obtained for measurement of biochemical parameters. Tongue, duodenum, jejunum, ileum, colon and hypothalamus were rapidly removed to assess gene expression. RESULTS: Long-term consumption of sweeteners impaired glucose tolerance, increased calorie intake and body weight. A significant upregulation of sweet taste receptor expression was observed in all the four intestinal segments in groups fed 0.01% sucralose or 0.015% sucralose, most strikingly in the ileum, accompanied by elevated serum glucagon-like peptide-1 levels and up-regulated expression of sodium-dependent glucose cotransporter 1 and glucose transporter 2. A significant down-regulation in the tongue and hypothalamus was observed in groups fed 10% fructose or 0.015% sucralose, with alterations in hypothalamic appetite signals. The presence of high fat diet differentially modulates sweet taste perception in nutrient-sensing tissues. CONCLUSIONS: Long-term consumption of whether nutritive sweeteners or non-nutritive sweeteners combined with high fat diet contribute to dysregulation of sweet taste receptor expression in oral, intestinal and central nervous tissues.


Assuntos
Adoçantes não Calóricos , Ratos , Animais , Masculino , Adoçantes não Calóricos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Adoçantes Calóricos , Paladar , Ratos Sprague-Dawley , Frutose/efeitos adversos
14.
Biosci Biotechnol Biochem ; 87(12): 1470-1477, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37715303

RESUMO

Neohesperidin dihydrochalcone (NHDC) is a sweetener, which interacts with the transmembrane domain (TMD) of the T1R3 subunit of the human sweet taste receptor. Although NHDC and a sweet taste inhibitor lactisole share similar structural motifs, they have opposite effects on the receptor. This study involved the creation of an NHDC-docked model of T1R3 TMD through mutational analyses followed by in silico simulations. When certain NHDC derivatives were docked to the model, His7345.44 was demonstrated to play a crucial role in activating T1R3 TMD. The NHDC-docked model was then compared with a lactisole-docked inactive form, several residues were characterized as important for the recognition of NHDC; however, most of them were distinct from those of lactisole. Residues such as His6413.33 and Gln7947.38 were found to be oriented differently. This study provides useful information that will facilitate the design of sweeteners and inhibitors that interact with T1R3 TMD.


Assuntos
Chalconas , Receptores Acoplados a Proteínas G , Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Hesperidina/análogos & derivados , Chalconas/química , Simulação de Acoplamento Molecular , Humanos , Edulcorantes/química , Estrutura Molecular
15.
BMC Public Health ; 23(1): 77, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627602

RESUMO

BACKGROUND: Several health organizations recommend lowering the consumption of sweet-tasting foods. The rationale behind this recommendation is that a lower exposure to sweet foods may reduce preferences for sweet tasting foods, thus lowering sugar and energy intake, and in turn aiding in obesity prevention. However, empirical data supporting this narrative are lacking. In fact, relatively little is known about the contribution of long-term sweet taste exposure on one's sweetness preferences. METHODS: The primary objective of this randomized controlled trial is to assess the effect of low, regular and high dietary sweetness exposure on preference for sweet foods and beverages, and to compare these effects between intervention groups. One hundred and eighty adults aged 18-65 years with a BMI of 18.5-30.0 kg/m2 will be recruited and randomly allocated to either: low dietary sweetness exposure (LSE) (10-15% daily energy from sweet tasting foods), regular dietary sweetness exposure (RSE) (25-30% daily energy from sweet tasting foods), or high dietary sweetness exposure (HSE) (40-45% daily energy from sweet tasting foods), for 6 months, followed by a 4-month follow up. Intervention foods are provided ad libitum, covering approximately 50% of the daily number of food items, to include sugar-sweetened, low-calorie-sweetener-sweetened and non-sweet foods. The primary outcome measure is the difference in change in sweetness preference from baseline to 6 months between intervention groups. Secondary outcomes include: change in sweet taste preferences at different time-points; taste intensity perception; behavioral outcomes: food choice and intake, sweet-liker type, food cravings, dietary taste preferences and dietary taste patterns; anthropometric outcomes: body composition, waist-hip circumference, body weight; and biochemical outcomes: glucose variability and biomarkers related to CVD and diabetes. DISCUSSION: This study will generate important data on the effect of dietary sweetness exposure on sweetness preferences in terms of effect size and change, duration of change and its impact on food intake, body weight status and associated health outcomes. TRIAL REGISTRATION: The study protocol has been registered on ClinicalTrials.gov (ID no. NCT04497974, Registered 4 August 2020, https://clinicaltrials.gov/ct2/show/NCT04497974 ) and approved by Wageningen's Medical Ethical Committee (ABR no. NL72134).


Assuntos
Dieta , Paladar , Humanos , Adulto , Preferências Alimentares , Edulcorantes , Peso Corporal , Glucose , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Appetite ; 188: 106630, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302413

RESUMO

Distracted eating can cause overconsumption. Whereas previous work has shown that cognitive load suppresses perceived taste intensity and increases subsequent consumption, the mechanism behind distraction-induced overconsumption remains unclear. To elucidate this, we performed two event-related fMRI experiments that examined how cognitive load affects neural responses and perceived intensity and preferred intensity, respectively, to solutions varying in sweetness. In Experiment 1 (N = 24), participants tasted weak sweet and strong sweet glucose solutions and rated their intensity while we concurrently varied cognitive load using a digit-span task. In Experiment 2 (N = 22), participants tasted five different glucose concentrations under varying cognitive load and then indicated whether they wanted to keep, decrease or increase its sweetness. Participants in Experiment 1 rated strong sweet solutions as less sweet under high compared to low cognitive load, which was accompanied by attenuated activation the right middle insula and bilateral DLPFC. Psychophysiological interaction analyses showed that cognitive load moreover altered connectivity between the middle insula and nucleus accumbens and DLPFC and middle insula while tasting strong sweet solutions. In Experiment 2, cognitive load did not affect participants' preferred sweetness intensity. fMRI results revealed that cognitive load attenuated DLPFC activation for the strongest sweet solutions in the study. In conclusion, our behavioral and neuroimaging results suggest that cognitive load dampens the sensory processing of strong sweet solutions in particular, which may indicate higher competition for attentional resources for strong sweet than weak sweet solutions under high cognitive load. Implications for future research are discussed.


Assuntos
Percepção Gustatória , Paladar , Humanos , Paladar/fisiologia , Percepção Gustatória/fisiologia , Núcleo Accumbens , Cognição , Glucose/farmacologia
17.
Appetite ; 191: 107070, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788735

RESUMO

Oral stimulation with foods or food components elicits cephalic phase insulin release (CPIR), which limits postprandial hyperglycemia. Despite its physiological importance, the specific gustatory mechanisms that elicit CPIR have not been clearly defined. While most studies point to glucose and glucose-containing saccharides (e.g., sucrose, maltodextrins) as being the most consistent elicitors, it is not apparent whether this is due to the detection of glucose per se, or to the perceived taste cues associated with these stimuli (e.g., sweetness, starchiness). This study investigated potential sensory mechanisms involved with eliciting CPIR in humans, focusing on the role of oral glucose detection and associated taste. Four stimulus conditions possessing different carbohydrate and taste profiles were designed: 1) glucose alone; 2) glucose mixed with lactisole, a sweet taste inhibitor; 3) maltodextrin, which is digested to starchy- and sweet-tasting products during oral processing; and 4) maltodextrin mixed with lactisole and acarbose, an oral digestion inhibitor. Healthy adults (N = 22) attended four sessions where blood samples were drawn before and after oral stimulation with one of the target stimuli. Plasma c-peptide, insulin, and glucose concentrations were then analyzed. Whereas glucose alone elicited CPIR (one-sample t-test, p < 0.05), it did not stimulate the response in the presence of lactisole. Likewise, maltodextrin alone stimulated CPIR (p < 0.05), but maltodextrin with lactisole and acarbose did not. Together, these findings indicate that glucose is an effective CPIR stimulus, but that an associated taste sensation also serves as an important cue for triggering this response in humans.

18.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445766

RESUMO

A commercial strain of Hafnia alvei (H. alvei) 4597 bacteria was shown to reduce food intake and promote weight loss, effects possibly induced by the bacterial protein ClpB, an antigen-mimetic of the anorexigenic α-melanocyte-stimulating hormone. A decrease in the basal plasma glucose levels was also observed in overweight fasted humans and mice receiving H. alvei. However, it is not known whether H. alvei influences sweet taste preference and whether its protein extract or ClpB are sufficient to increase glucose tolerance; these are the objectives tested in the present study. C57BL/6J male mice were kept under standard diet and were gavaged daily for 17 days with a suspension of H. alvei (4.5 × 107 CFU/animal) or with H. alvei total protein extract (5 µg/animal) or saline as a control. Sweet taste preference was analyzed via a brief-access licking test with sucrose solution. Glucose tolerance tests (GTT) were performed after the intraperitoneal (IP) or intragastric (IG) glucose administration at the 9th and 15th days of gavage, respectively. The expression of regulatory peptides' mRNA levels was assayed in the hypothalamus. In another experiment performed in non-treated C57BL/6J male mice, effects of acute IP administration of recombinant ClpB protein on glucose tolerance were studied by both IP- and IG-GTT. Mice treated with the H. alvei protein extract showed an improved glucose tolerance in IP-GTT but not in IG-GTT. Both groups treated with H. alvei bacteria or protein extract showed a reduction of pancreatic tissue weight but without significant changes to basal plasma insulin. No significant effects of H. alvei bacteria or its total protein extract administration were observed on the sweet taste preference, insulin tolerance and expression of regulatory peptides' mRNA in the hypothalamus. Acute administration of ClpB in non-treated mice increased glucose tolerance during the IP-GTT but not the IG-GTT, and reduced basal plasma glucose levels. We conclude that both the H. alvei protein extract introduced orally and the ClpB protein administered via IP improve glucose tolerance probably by acting at the glucose postabsorptive level. Moreover, H. alvei probiotic does not seem to influence the sweet taste preference. These results justify future testing of both the H. alvei protein extract and ClpB protein in animal models of diabetes.


Assuntos
Hafnia alvei , Insulinas , Humanos , Camundongos , Masculino , Animais , Hafnia alvei/metabolismo , Glicemia/metabolismo , Proteínas de Bactérias/metabolismo , Camundongos Endogâmicos C57BL , Glucose/metabolismo , Insulinas/metabolismo
19.
Biochem Biophys Res Commun ; 592: 119-124, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35051687

RESUMO

Several natural substances including protein produce sweet taste. Brazzein, derived from the plant Pentadipladra brazzeana, is one of the sweet proteins that bind to the taste receptor with stronger sweetness than sugar. Mutations of this protein affect its flavour, yielding higher sweetness in D29K and lower sweetness in R43A. To elucidate its sweet mechanism in the taste receptor, we determined the structures of two variants, D29K and R43A, to a resolution of 1.5 Å and 1.3 Å, respectively. Structures of the brazzein exhibit two α-helix and three ß-sheets connected by four disulfide bonds with a significantly altered electrostatic distribution on the surface. Using the high-resolution structure data and models of the taste receptors T1R2 and T1R3 in the AlphaFold Protein Structure Database, we performed a docking calculation on the receptors and report that brazzein is bound between the two cysteine rich domains (CRDs) of the heterodimer protein complex. Substitution to lysine in D29K resulted in an increased number of hydrogen bonds in the T1R2 receptor, while substitution to alanine in R43A ablated a polar interaction in the T1R3 receptor. The significantly altered interaction of the variants at the interface is consistent with a change of the sweetness. The high-resolution structure and the docking model in this study may provide a structural basis to understand the flavour mechanism induced by the sweet protein.


Assuntos
Cristalografia por Raios X , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ligação de Hidrogênio , Ligação Proteica , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Paladar
20.
J Nutr ; 152(5): 1228-1238, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35135006

RESUMO

BACKGROUND: Glucose induces the release of gastrointestinal (GI) satiation hormones, such as glucagon-like peptide 1 (GLP-1) and peptide tyrosine tyrosine (PYY), in part via the activation of the gut sweet taste receptor (T1R2/T1R3). OBJECTIVES: The primary objective was to investigate the importance of T1R2/T1R3 for the release of cholecystokinin (CCK), GLP-1, and PYY in response to D-allulose and erythritol by assessing the effect of the T1R2/T1R3 antagonist lactisole on these responses and as secondary objectives to study the effect of the T1R2/T1R3 blockade on gastric emptying, appetite-related sensations, and GI symptoms. METHODS: In this randomized, controlled, double-blind, crossover study, 18 participants (5 men) with a mean ± SD BMI (in kg/m2) of 21.9 ± 1.7 and aged 24 ± 4 y received an intragastric administration of 25 g D-allulose, 50 g erythritol, or tap water, with or without 450 parts per million (ppm) lactisole, respectively, in 6 different sessions. 13C-sodium acetate was added to all solutions to determine gastric emptying. At fixed time intervals, blood and breath samples were collected, and appetite-related sensations and GI symptoms were assessed. Data were analyzed with linear mixed-model analysis. RESULTS: D-allulose and erythritol induced a significant release of CCK, GLP-1, and PYY compared with tap water (all PHolm < 0.0001, dz >1). Lactisole did not affect the D-allulose- and erythritol-induced release of CCK, GLP-1, and PYY (all PHolm > 0.1). Erythritol significantly delayed gastric emptying, increased fullness, and decreased prospective food consumption compared with tap water (PHolm = 0.0002, dz = -1.05; PHolm = 0.0190, dz = 0.69; and PHolm = 0.0442, dz = -0.62, respectively). CONCLUSIONS: D-allulose and erythritol stimulate the secretion of GI satiation hormones in humans. Lactisole had no effect on CCK, GLP-1, and PYY release, indicating that D-allulose- and erythritol-induced GI satiation hormone release is not mediated via T1R2/T1R3 in the gut.


Assuntos
Hormônios Gastrointestinais , Colecistocinina , Estudos Cross-Over , Eritritol , Feminino , Frutose , Peptídeo 1 Semelhante ao Glucagon , Humanos , Masculino , Peptídeo YY , Saciação , Paladar , Tirosina , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA