Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 163(7): 1756-69, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687360

RESUMO

Information processing relies on precise patterns of synapses between neurons. The cellular recognition mechanisms regulating this specificity are poorly understood. In the medulla of the Drosophila visual system, different neurons form synaptic connections in different layers. Here, we sought to identify candidate cell recognition molecules underlying this specificity. Using RNA sequencing (RNA-seq), we show that neurons with different synaptic specificities express unique combinations of mRNAs encoding hundreds of cell surface and secreted proteins. Using RNA-seq and protein tagging, we demonstrate that 21 paralogs of the Dpr family, a subclass of immunoglobulin (Ig)-domain containing proteins, are expressed in unique combinations in homologous neurons with different layer-specific synaptic connections. Dpr interacting proteins (DIPs), comprising nine paralogs of another subclass of Ig-containing proteins, are expressed in a complementary layer-specific fashion in a subset of synaptic partners. We propose that pairs of Dpr/DIP paralogs contribute to layer-specific patterns of synaptic connectivity.


Assuntos
Proteínas de Drosophila/metabolismo , Imunoglobulinas/metabolismo , Neurônios/metabolismo , Receptores Imunológicos/metabolismo , Sinapses , Animais , Drosophila , Citometria de Fluxo , Análise de Sequência de RNA , Visão Ocular
2.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920224

RESUMO

Synaptic connections between neurons are often formed in precise subcellular regions of dendritic arbors with implications for information processing within neurons. Cell-cell interactions are widely important for circuit wiring; however, their role in subcellular specificity is not well understood. We studied the role of axon-axon interactions in precise targeting and subcellular wiring of Drosophila somatosensory circuitry. Axons of nociceptive and gentle touch neurons terminate in adjacent, non-overlapping layers in the central nervous system (CNS). Nociceptor and touch receptor axons synapse onto distinct dendritic regions of a second-order interneuron, the dendrites of which span these layers, forming touch-specific and nociceptive-specific connectivity. We found that nociceptor ablation elicited extension of touch receptor axons and presynapses into the nociceptor recipient region, supporting a role for axon-axon interactions in somatosensory wiring. Conversely, touch receptor ablation did not lead to expansion of nociceptor axons, consistent with unidirectional axon-axon interactions. Live imaging provided evidence for sequential arborization of nociceptive and touch neuron axons in the CNS. We propose that axon-axon interactions and modality-specific timing of axon targeting play key roles in subcellular connection specificity of somatosensory circuitry.


Assuntos
Axônios , Proteínas de Drosophila , Animais , Axônios/fisiologia , Drosophila , Sinapses/fisiologia , Proteínas de Drosophila/genética , Células Receptoras Sensoriais , Dendritos/fisiologia
3.
J Neurosci ; 44(40)2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358025

RESUMO

Motor circuits represent the main output of the central nervous system and produce dynamic behaviors ranging from relatively simple rhythmic activities like swimming in fish and breathing in mammals to highly sophisticated dexterous movements in humans. Despite decades of research, the development and function of motor circuits remain poorly understood. Breakthroughs in the field recently provided new tools and tractable model systems that set the stage to discover the molecular mechanisms and circuit logic underlying motor control. Here, we describe recent advances from both vertebrate (mouse, frog) and invertebrate (nematode, fruit fly) systems on cellular and molecular mechanisms that enable motor circuits to develop and function and highlight conserved and divergent mechanisms necessary for motor circuit development.


Assuntos
Neurônios Motores , Animais , Humanos , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/crescimento & desenvolvimento
4.
Development ; 148(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128984

RESUMO

The specificity of monosynaptic connections between proprioceptive sensory neurons and their recipient spinal motor neurons depends on multiple factors, including motor neuron positioning and dendrite morphology, axon projection patterns of proprioceptive sensory neurons in the spinal cord, and the ligand-receptor molecules involved in cell-to-cell recognition. However, with few exceptions, the transcription factors engaged in this process are poorly characterized. Here, we show that members of the HoxD family of transcription factors play a crucial role in the specificity of monosynaptic sensory-motor connections. Mice lacking Hoxd9, Hoxd10 and Hoxd11 exhibit defects in locomotion but have no obvious defects in motor neuron positioning or dendrite morphology through the medio-lateral and rostro-caudal axes. However, we found that quadriceps motor neurons in these mice show aberrant axon development and receive inappropriate inputs from proprioceptive sensory axons innervating the obturator muscle. These genetic studies demonstrate that the HoxD transcription factors play an integral role in the synaptic specificity of monosynaptic sensory-motor connections in the developing spinal cord.


Assuntos
Proteínas de Ligação a DNA/genética , Células Receptoras Sensoriais/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/genética , Animais , Axônios/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Camundongos , Modelos Biológicos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas , Células Receptoras Sensoriais/citologia , Fatores de Transcrição/metabolismo
5.
Bioessays ; 43(1): e2000166, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33145823

RESUMO

The quest for molecular mechanisms that guide axons or specify synaptic contacts has largely focused on molecules that intuitively relate to the idea of an "instruction." By contrast, "permissive" factors are traditionally considered background machinery without contribution to the information content of a molecularly executed instruction. In this essay, I recast this dichotomy as a continuum from permissive to instructive actions of single factors that provide relative contributions to a necessarily collaborative effort. Individual molecules or other factors do not constitute absolute instructions by themselves; they provide necessary context for each other, thereby creating a composite that defines the overall instruction. The idea of composite instructions leads to two main conclusions: first, a composite of many seemingly permissive factors can define a specific instruction even in the absence of a single dominant contributor; second, individual factors are not necessarily related intuitively to the overall instruction or phenotypic outcome.


Assuntos
Axônios , Encéfalo , Humanos
6.
Genes Cells ; 24(7): 496-510, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31124270

RESUMO

In the Drosophila brain, neurons form genetically specified synaptic connections with defined neuronal targets. It is proposed that each central nervous system neuron expresses specific cell surface proteins, which act as identification tags. Through an RNAi screen of cell surface molecules in the Drosophila visual system, we found that the cell adhesion molecule Klingon (Klg) plays an important role in repressing the ectopic formation of extended axons, preventing the formation of excessive synapses. Cell-specific manipulation of klg showed that Klg is required in both photoreceptors and the glia, suggesting that the balanced homophilic interaction between photoreceptor axons and the glia is required for normal synapse formation. Previous studies suggested that Klg binds to cDIP and our genetic analyses indicate that cDIP is required in glia for ectopic synaptic repression. These data suggest that Klg play a critical role together with cDIP in refining synaptic specificity and preventing unnecessary connections in the brain.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas do Olho/metabolismo , Neuroglia/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Sinapses/fisiologia , Vias Visuais , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/fisiologia , Axônios/fisiologia , Moléculas de Adesão Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Feminino
7.
Brain Sci ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391729

RESUMO

Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.

8.
Neuron ; 112(6): 942-958.e13, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262414

RESUMO

Neurons express various combinations of neurotransmitter receptor (NR) subunits and receive inputs from multiple neuron types expressing different neurotransmitters. Localizing NR subunits to specific synaptic inputs has been challenging. Here, we use epitope-tagged endogenous NR subunits, expansion light-sheet microscopy, and electron microscopy (EM) connectomics to molecularly characterize synapses in Drosophila. We show that in directionally selective motion-sensitive neurons, different multiple NRs elaborated a highly stereotyped molecular topography with NR localized to specific domains receiving cell-type-specific inputs. Developmental studies suggested that NRs or complexes of them with other membrane proteins determine patterns of synaptic inputs. In support of this model, we identify a transmembrane protein selectively associated with a subset of spatially restricted synapses and demonstrate its requirement for synapse formation through genetic analysis. We propose that mechanisms that regulate the precise spatial distribution of NRs provide a molecular cartography specifying the patterns of synaptic connections onto dendrites.


Assuntos
Conectoma , Sinapses/fisiologia , Neurônios Motores/metabolismo , Microscopia Eletrônica , Receptores de GABA-A/metabolismo
9.
Elife ; 122024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470230

RESUMO

In the process of synaptic formation, neurons must not only adhere to specific principles when selecting synaptic partners but also possess mechanisms to avoid undesirable connections. Yet, the strategies employed to prevent unwarranted associations have remained largely unknown. In our study, we have identified the pivotal role of combinatorial clustered protocadherin gamma (γ-PCDH) expression in orchestrating synaptic connectivity in the mouse neocortex. Through 5' end single-cell sequencing, we unveiled the intricate combinatorial expression patterns of γ-PCDH variable isoforms within neocortical neurons. Furthermore, our whole-cell patch-clamp recordings demonstrated that as the similarity in this combinatorial pattern among neurons increased, their synaptic connectivity decreased. Our findings elucidate a sophisticated molecular mechanism governing the construction of neural networks in the mouse neocortex.


Assuntos
Proteínas Relacionadas a Caderinas , Neocórtex , Animais , Camundongos , Caderinas/genética , Redes Neurais de Computação
10.
Cell Rep ; 43(2): 113798, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381608

RESUMO

Neurons establish specific synapses based on the adhesive properties of cell-surface proteins while also retaining the ability to form synapses in a relatively non-selective manner. However, comprehensive understanding of the underlying mechanism reconciling these opposing characteristics remains incomplete. Here, we have identified Side-IV/Beat-IIb, members of the Drosophila immunoglobulin superfamily, as a combination of cell-surface recognition molecules inducing synapse formation. The Side-IV/Beat-IIb combination transduces bifurcated signaling with Side-IV's co-receptor, Kirre, and a synaptic scaffold protein, Dsyd-1. Genetic experiments and subcellular protein localization analyses showed the Side-IV/Beat-IIb/Kirre/Dsyd-1 complex to have two essential functions. First, it narrows neuronal binding specificity through Side-IV/Beat-IIb extracellular interactions. Second, it recruits synapse formation factors, Kirre and Dsyd-1, to restrict synaptic loci and inhibit miswiring. This dual function explains how the combinations of cell-surface molecules enable the ranking of preferred interactions among neuronal pairs to achieve synaptic specificity in complex circuits in vivo.


Assuntos
Comunicação Celular , Imunoglobulinas , Animais , Imunoglobulinas/genética , Membrana Celular , Drosophila , Proteínas de Membrana
11.
Curr Biol ; 33(18): 3998-4005.e6, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37647901

RESUMO

Advances in brain connectomics have demonstrated the extraordinary complexity of neural circuits.1,2,3,4,5 Developing neurons encounter the axons and dendrites of many different neuron types and form synapses with only a subset of them. During circuit assembly, neurons express cell-type-specific repertoires comprising many cell adhesion molecules (CAMs) that can mediate interactions between developing neurites.6,7,8 Many CAM families have been shown to contribute to brain wiring in different ways.9,10 It has been challenging, however, to identify receptor-ligand pairs directly matching neurons with their synaptic targets. Here, we integrated the synapse-level connectome of the neural circuit11,12 with the developmental expression patterns7 and binding specificities of CAMs6,13 on pre- and postsynaptic neurons in the Drosophila visual system. To overcome the complexity of neural circuits, we focus on pairs of genetically related neurons that make differential wiring choices. In the motion detection circuit,14 closely related subtypes of T4/T5 neurons choose between alternative synaptic targets in adjacent layers of neuropil.12 This choice correlates with the matching expression in synaptic partners of different receptor-ligand pairs of the Beat and Side families of CAMs. Genetic analysis demonstrated that presynaptic Side-II and postsynaptic Beat-VI restrict synaptic partners to the same layer. Removal of this receptor-ligand pair disrupts layers and leads to inappropriate targeting of presynaptic sites and postsynaptic dendrites. We propose that different Side/Beat receptor-ligand pairs collaborate with other recognition molecules to determine wiring specificities in the fly brain. Combining transcriptomes, connectomes, and protein interactome maps allow unbiased identification of determinants of brain wiring.


Assuntos
Conectoma , Animais , Transcriptoma , Ligantes , Neurônios/fisiologia , Drosophila/genética , Drosophila/metabolismo , Encéfalo/metabolismo , Sinapses/fisiologia , Moléculas de Adesão Celular/metabolismo
12.
Front Neurosci ; 16: 889155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573298

RESUMO

Precise wiring of neural circuits is essential for brain connectivity and function. During development, axons respond to diverse cues present in the extracellular matrix or at the surface of other cells to navigate to specific targets, where they establish precise connections with post-synaptic partners. Cell adhesion molecules (CAMs) represent a large group of structurally diverse proteins well known to mediate adhesion for neural circuit assembly. Through their adhesive properties, CAMs act as major regulators of axon navigation, fasciculation, and synapse formation. While the adhesive functions of CAMs have been known for decades, more recent studies have unraveled essential, non-adhesive functions as well. CAMs notably act as guidance cues and modulate guidance signaling pathways for axon pathfinding, initiate contact-mediated repulsion for spatial organization of axonal arbors, and refine neuronal projections during circuit maturation. In this review, we summarize the classical adhesive functions of CAMs in axonal development and further discuss the increasing number of other non-adhesive functions CAMs play in neural circuit assembly.

13.
Trends Neurosci ; 45(7): 517-528, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577622

RESUMO

Multiple synaptic adhesion proteins are thought to collectively define the properties of specific synapses and thereby shape the architectures of neural circuits. Growing evidence supports a molecular model in which a set of central hub proteins interacts with a vast number of other proteins to organize multifarious synaptic adhesion pathways. However, several fundamental open questions remain, partly owing to drawbacks in current approaches and interpretations. In this opinion, we provide an overview of synaptic adhesion pathways, underscoring open questions to be addressed in future work, and highlighting approaches for advancing understanding of synaptic adhesion processes.


Assuntos
Sinapses , Humanos , Sinapses/metabolismo
14.
Neuron ; 110(13): 2094-2109.e10, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35550065

RESUMO

The diversification of cell adhesion molecules by alternative splicing is proposed to underlie molecular codes for neuronal wiring. Transcriptomic approaches mapped detailed cell-type-specific mRNA splicing programs. However, it has been hard to probe the synapse-specific localization and function of the resulting protein splice isoforms, or "proteoforms," in vivo. We here apply a proteoform-centric workflow in mice to test the synapse-specific functions of the splice isoforms of the synaptic adhesion molecule Neurexin-3 (NRXN3). We uncover a major proteoform, NRXN3 AS5, that is highly expressed in GABAergic interneurons and at dendrite-targeting GABAergic terminals. NRXN3 AS5 abundance significantly diverges from Nrxn3 mRNA distribution and is gated by translation-repressive elements. Nrxn3 AS5 isoform deletion results in a selective impairment of dendrite-targeting interneuron synapses in the dentate gyrus without affecting somatic inhibition or glutamatergic perforant-path synapses. This work establishes cell- and synapse-specific functions of a specific neurexin proteoform and highlights the importance of alternative splicing regulation for synapse specification.


Assuntos
Processamento Alternativo , Proteínas do Tecido Nervoso , Processamento Alternativo/genética , Animais , Moléculas de Adesão Celular/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Sinapses/fisiologia
15.
Wiley Interdiscip Rev Dev Biol ; 10(1): e379, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267095

RESUMO

The central nervous system (CNS) is composed of precisely assembled circuits which support a variety of physiological functions and behaviors. These circuits include multiple subtypes of neurons with unique morphologies, electrical properties, and molecular identities. How these component parts are precisely wired-up has been a topic of great interest to the field of developmental neurobiology and has implications for our understanding of the etiology of many neurological disorders and mental illnesses. To date, many molecules involved in synaptic choice and specificity have been identified, including members of several families of cell-adhesion molecules (CAMs), which are cell-surface molecules that mediate cell-cell contacts and subsequent intracellular signaling. One favored hypothesis is that unique expression patterns of CAMs define specific neuronal subtype populations and determine compatible pre- and postsynaptic neuronal partners based on the expression of these unique CAMs. The mouse retina has served as a beautiful model for investigations into mammalian CAM interactions due to its well-defined neuronal subtypes and distinct circuits. Moreover, the retina is readily amenable to visualization of circuit organization and electrophysiological measurement of circuit function. The advent of recent genetic, genomic, and imaging technologies has opened the field up to large-scale, unbiased approaches for identification of new molecular determinants of synaptic specificity. Thus, building on the foundation of work reviewed here, we can expect rapid expansion of the field, harnessing the mouse retina as a model to understand the molecular basis for synaptic specificity and functional circuit assembly. This article is categorized under: Nervous System Development > Vertebrates: General Principles Nervous System Development > Vertebrates: Regional Development.


Assuntos
Retina/fisiologia , Sinapses/fisiologia , Animais , Humanos
16.
Cell Rep ; 37(12): 110145, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936868

RESUMO

Variability of synapse numbers and partners despite identical genes reveals the limits of genetic determinism. Here, we use developmental temperature as a non-genetic perturbation to study variability of brain wiring and behavior in Drosophila. Unexpectedly, slower development at lower temperatures increases axo-dendritic branching, synapse numbers, and non-canonical synaptic partnerships of various neurons, while maintaining robust ratios of canonical synapses. Using R7 photoreceptors as a model, we show that changing the relative availability of synaptic partners using a DIPγ mutant that ablates R7's preferred partner leads to temperature-dependent recruitment of non-canonical partners to reach normal synapse numbers. Hence, R7 synaptic specificity is not absolute but based on the relative availability of postsynaptic partners and presynaptic control of synapse numbers. Behaviorally, movement precision is temperature robust, while movement activity is optimized for the developmentally encountered temperature. These findings suggest genetically encoded relative and scalable synapse formation to develop functional, but not identical, brains and behaviors.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Temperatura , Adaptação Fisiológica , Animais , Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Neurogênese , Células Fotorreceptoras de Invertebrados/metabolismo
17.
Dev Cell ; 56(23): 3235-3249.e4, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34741804

RESUMO

Electrical synapses are established between specific neurons and within distinct subcellular compartments, but the mechanisms that direct gap junction assembly in the nervous system are largely unknown. Here, we show that a developmental program tunes cAMP signaling to direct the neuron-specific assembly and placement of electrical synapses in the C. elegans motor circuit. We use live-cell imaging to visualize electrical synapses in vivo and an optogenetic assay to confirm that they are functional. In ventral A class (VA) motor neurons, the UNC-4 transcription factor blocks expression of cAMP antagonists that promote gap junction miswiring. In unc-4 mutants, VA electrical synapses are established with an alternative synaptic partner and are repositioned from the VA axon to soma. cAMP counters these effects by driving gap junction trafficking into the VA axon for electrical synapse assembly. Thus, our experiments establish that cAMP regulates gap junction trafficking for the biogenesis of functional electrical synapses.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , AMP Cíclico/farmacologia , Sinapses Elétricas/fisiologia , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/fisiologia , Frações Subcelulares/fisiologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Axônios/efeitos dos fármacos , Axônios/fisiologia , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Conexinas/genética , Conexinas/metabolismo , Sinapses Elétricas/efeitos dos fármacos , Junções Comunicantes , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Neurônios Motores/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos
18.
Cell Rep ; 37(3): 109828, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686348

RESUMO

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.


Assuntos
Região CA1 Hipocampal/metabolismo , Células Piramidais/metabolismo , Receptores Imunológicos/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Células de Lugar/metabolismo , Receptores Imunológicos/genética , Proteínas Roundabout
19.
Neuron ; 109(1): 105-122.e7, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33120017

RESUMO

The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.


Assuntos
Conectoma/métodos , Interneurônios/metabolismo , Rede Nervosa/metabolismo , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Interneurônios/química , Rede Nervosa/química , Optogenética/métodos , Sinapses/química , Sinapses/genética
20.
Front Neural Circuits ; 14: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848633

RESUMO

During development, neurons navigate a tangled thicket of thousands of axons and dendrites to synapse with just a few specific targets. This phenomenon termed wiring specificity, is critical to the assembly of neural circuits and the way neurons manage this feat is only now becoming clear. Recent studies in the mouse retina are shedding new insight into this process. They show that specific wiring arises through a series of stages that include: directed axonal and dendritic growth, the formation of neuropil layers, positioning of such layers, and matching of co-laminar synaptic partners. Each stage appears to be directed by a distinct family of recognition molecules, suggesting that the combinatorial expression of such family members might act as a blueprint for retinal connectivity. By reviewing the evidence in support of each stage, and by considering their underlying molecular mechanisms, we attempt to synthesize these results into a wiring model which generates testable predictions for future studies. Finally, we conclude by highlighting new optical methods that could be used to address such predictions and gain further insight into this fundamental process.


Assuntos
Vias Neurais/citologia , Optogenética , Neurônios Retinianos/citologia , Sinapses , Orientação de Axônios/fisiologia , Humanos , Vias Neurais/fisiologia , Crescimento Neuronal/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Retina/citologia , Retina/fisiologia , Neurônios Retinianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA