Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Pharm Res ; 41(3): 411-417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366233

RESUMO

Drugs with multiple targets, often annotated as 'unselective', 'promiscuous', 'multitarget', or 'polypharmacological', are widely considered in both academic and industrial research as a high risk due to the likelihood of adverse effects. However, retrospective analyses have shown that particularly approved drugs bear rich polypharmacological profiles. This raises the question whether our perception of the specificity paradigm ('one drug-one target concept') is correct - and if specifically multitarget drugs should be developed instead of being rejected. These questions provoke a paradigm shift - regarding the development of polypharmacological drugs not as a 'waste of investment', but acknowledging the existence of a 'lack of investment'. This perspective provides an insight into modern drug development highlighting latest drug candidates that have not been assessed in a broader polypharmacology-based context elsewhere embedded in a historic framework of classical and modern approved multitarget drugs. The article shall be an inspiration to the scientific community to re-consider current standards, and more, to evolve to a better understanding of polypharmacology from a challenge to an opportunity.


Assuntos
Sistemas de Liberação de Medicamentos , Polifarmacologia , Estudos Retrospectivos
2.
J Comput Aided Mol Des ; 34(12): 1275-1288, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067653

RESUMO

Fatty acid binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic ligands. In cestodes, due to their inability to synthesise fatty acids and cholesterol de novo, FABPs, together with other lipid binding proteins, have been proposed as essential, involved in the trafficking and delivery of such lipophilic metabolites. Pharmacological agents that modify specific parasite FABP function may provide control of lipid signalling pathways, inflammatory responses and metabolic regulation that could be of crucial importance for the parasite development and survival. Echinococcus multilocularis and Echinococcus granulosus are, respectively, the causative agents of alveolar and cystic echinococcosis (or hydatidosis). These diseases are included in the World Health Organization's list of priority neglected tropical diseases. Here, we explore the potential of FABPs from cestodes as drug targets. To this end, we have applied a target repurposing approach to identify novel inhibitors of Echinococcus spp. FABPs. An ensemble of computational models was developed and applied in a virtual screening campaign of DrugBank library. 21 hits belonging to the applicability domain of the ensemble models were identified, and 3 of the hits were assayed against purified E. multilocularis FABP, experimentally confirming the model's predictions. Noteworthy, this is to our best knowledge the first report on isolation and purification of such four FABP, for which initial structural and functional characterization is reported here.


Assuntos
Simulação por Computador , Reposicionamento de Medicamentos/métodos , Equinococose/tratamento farmacológico , Echinococcus multilocularis/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Animais , Anti-Helmínticos/farmacologia , Equinococose/parasitologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Helminto/antagonistas & inibidores
3.
Bioorg Med Chem Lett ; 26(11): 2569-76, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27080183

RESUMO

Neglected tropical diseases (NTDs) and other diseases of the developing world, such as malaria, attract research investments that are disproportionately low compared to their impact on human health worldwide. Therefore, pragmatic methods for launching new drug discovery programs have emerged that repurpose existing chemical matter as new drugs or new starting points for optimization. In this Digest we describe applications of different repurposing approaches for NTDs, and provide a means by which these approaches may be differentiated from each other. These include drug repurposing, target repurposing, target class repurposing, and lead repurposing.


Assuntos
Descoberta de Drogas , Doenças Negligenciadas/tratamento farmacológico , Humanos , Estrutura Molecular
4.
Front Pharmacol ; 15: 1419110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092220

RESUMO

Medicinal polypharmacology is one answer to the complex reality of multifactorial human diseases that are often unresponsive to single-targeted treatment. It is an admittance that intrinsic feedback mechanisms, crosstalk, and disease networks necessitate drugs with broad modes-of-action and multitarget affinities. Medicinal polypharmacology grew to be an independent research field within the last two decades and stretches from basic drug development to clinical research. It has developed its own terminology embedded in general terms of pharmaceutical drug discovery and development at the intersection of medicinal chemistry, chemical biology, and clinical pharmacology. A clear and precise language of critical terms and a thorough understanding of underlying concepts is imperative; however, no comprehensive work exists to this date that could support researchers in this and adjacent research fields. In order to explore novel options, establish interdisciplinary collaborations, and generate high-quality research outputs, the present work provides a first-in-field glossary to clarify the numerous terms that have originated from various individual disciplines.

5.
Front Genet ; 13: 814093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360842

RESUMO

Indication expansion aims to find new indications for existing targets in order to accelerate the process of launching a new drug for a disease on the market. The rapid increase in data types and data sources for computational drug discovery has fostered the use of semantic knowledge graphs (KGs) for indication expansion through target centric approaches, or in other words, target repositioning. Previously, we developed a novel method to construct a KG for indication expansion studies, with the aim of finding and justifying alternative indications for a target gene of interest. In contrast to other KGs, ours combines human-curated full-text literature and gene expression data from biomedical databases to encode relationships between genes, diseases, and tissues. Here, we assessed the suitability of our KG for explainable target-disease link prediction using a glass-box approach. To evaluate the predictive power of our KG, we applied shortest path with tissue information- and embedding-based prediction methods to a graph constructed with information published before or during 2010. We also obtained random baselines by applying the shortest path predictive methods to KGs with randomly shuffled node labels. Then, we evaluated the accuracy of the top predictions using gene-disease links reported after 2010. In addition, we investigated the contribution of the KG's tissue expression entity to the prediction performance. Our experiments showed that shortest path-based methods significantly outperform the random baselines and embedding-based methods outperform the shortest path predictions. Importantly, removing the tissue expression entity from the KG severely impacts the quality of the predictions, especially those produced by the embedding approaches. Finally, since the interpretability of the predictions is crucial in indication expansion, we highlight the advantages of our glass-box model through the examination of example candidate target-disease predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA