Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Subcell Biochem ; 104: 181-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963488

RESUMO

Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.


Assuntos
DNA Viral , Proteínas Virais , DNA Viral/genética , DNA Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Empacotamento do Genoma Viral/fisiologia , Empacotamento do DNA , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/metabolismo , Genoma Viral
2.
J Virol ; 97(6): e0047523, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272800

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA (dsDNA) gammaherpesvirus with a poorly characterized lytic replication cycle. However, the lytic replication cycle of the alpha- and betaherpesviruses are well characterized. During lytic infection of alpha- and betaherpesviruses, the viral genome is replicated as a precursor form, which contains tandem genomes linked via terminal repeats (TRs). One genomic unit of the precursor form is packaged into a capsid and is cleaved at the TR by the terminase complex. While the alpha- and betaherpesvirus terminases are well characterized, the KSHV terminase remains poorly understood. KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5 are presumed to be components of the terminase complex based on their homology to other terminase proteins. We previously reported that ORF7-deficient KSHV formed numerous immature soccer ball-like capsids and failed to cleave the TRs. ORF7 interacted with ORF29 and ORF67.5; however, ORF29 and ORF67.5 did not interact with each other. While these results suggested that ORF7 is important for KSHV terminase function and capsid formation, the function of ORF67.5 was completely unknown. Therefore, to analyze the function of ORF67.5, we constructed ORF67.5-deficient BAC16. ORF67.5-deficient KSHV failed to produce infectious virus and cleave the TRs, and numerous soccer ball-like capsids were observed in ORF67.5-deficient KSHV-harboring cells. Furthermore, ORF67.5 promoted the interaction between ORF7 and ORF29, and ORF29 increased the interaction between ORF67.5 and ORF7. Thus, our data indicated that ORF67.5 functions as a component of the KSHV terminase complex by contributing to TR cleavage, terminase complex formation, capsid formation, and virus production. IMPORTANCE Although the formation and function of the alpha- and betaherpesvirus terminase complexes are well understood, the Kaposi's sarcoma-associated herpesvirus (KSHV) terminase complex is still largely uncharacterized. This complex presumably contains KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5. We were the first to report the presence of soccer ball-like capsids in ORF7-deficient KSHV-harboring lytic-induced cells. Here, we demonstrated that ORF67.5-deficient KSHV also formed soccer ball-like capsids in lytic-induced cells. Moreover, ORF67.5 was required for terminal repeat (TR) cleavage, infectious virus production, and enhancement of the interaction between ORF7 and ORF29. ORF67.5 has several highly conserved regions among its human herpesviral homologs. These regions were necessary for virus production and for the interaction of ORF67.5 with ORF7, which was supported by the artificial intelligence (AI)-predicted structure model. Importantly, our results provide the first evidence showing that ORF67.5 is essential for terminase complex formation and TR cleavage.


Assuntos
Herpesvirus Humano 8 , Proteínas Virais , Humanos , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
3.
Biol Pharm Bull ; 47(5): 912-916, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692868

RESUMO

The human herpesviruses (HHVs) are classified into the following three subfamilies: Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. These HHVs have distinct pathological features, while containing a highly conserved viral replication pathway. Among HHVs, the basic viral particle structure and the sequential processes of viral replication are nearly identical. In particular, the capsid formation mechanism has been proposed to be highly similar among herpesviruses, because the viral capsid-organizing proteins are highly conserved at the structural and functional levels. Herpesviruses form capsids containing the viral genome in the nucleus of infected cells during the lytic phase, and release infectious virus (i.e., virions) to the cell exterior. In the capsid formation process, a single-unit-length viral genome is encapsidated into a preformed capsid. The single-unit-length viral genome is produced by cleavage from a viral genome precursor in which multiple unit-length viral genomes are tandemly linked. This encapsidation and cleavage is carried out by the terminase complex, which is composed of viral proteins. Since the terminase complex-mediated encapsidation and cleavage is a virus-specific mechanism that does not exist in humans, it may be an excellent inhibitory target for anti-viral drugs with high virus specificity. This review provides an overview of the functions of the terminase complexes of HHVs.


Assuntos
Herpesviridae , Humanos , Herpesviridae/fisiologia , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Animais , Genoma Viral , Capsídeo/metabolismo , Replicação Viral
4.
J Virol ; 96(18): e0068422, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36073924

RESUMO

During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection, lytic-related proteins are synthesized, viral genomes are replicated as a tandemly repeated form, and subsequently, capsids are assembled. The herpesvirus terminase complex is proposed to package an appropriate genome unit into an immature capsid, by cleavage of terminal repeats (TRs) flanking tandemly linked viral genomes. Although the mechanism of capsid formation in alpha- and betaherpesviruses are well-studied, in KSHV, it remains largely unknown. It has been proposed that KSHV ORF7 is a terminase subunit, and ORF7 harbors a zinc-finger motif, which is conserved among other herpesviral terminases. However, the biological significance of ORF7 is unknown. We previously reported that KSHV ORF17 is essential for the cleavage of inner scaffold proteins in capsid maturation, and ORF17 knockout (KO) induced capsid formation arrest between the procapsid and B-capsid stages. However, it remains unknown if ORF7-mediated viral DNA cleavage occurs before or after ORF17-mediated scaffold collapse. We analyzed the role of ORF7 during capsid formation using ORF7-KO-, ORF7&17-double-KO (DKO)-, and ORF7-zinc-finger motif mutant-KSHVs. We found that ORF7 acted after ORF17 in the capsid formation process, and ORF7-KO-KSHV produced incomplete capsids harboring nonspherical internal structures, which resembled soccer balls. This soccer ball-like capsid was formed after ORF17-mediated B-capsid formation. Moreover, ORF7-KO- and zinc-finger motif KO-KSHV failed to appropriately cleave the TR on replicated genome and had a defect in virion production. Interestingly, ORF17 function was also necessary for TR cleavage. Thus, our data revealed ORF7 contributes to terminase-mediated viral genome cleavage and capsid formation. IMPORTANCE In herpesviral capsid formation, the viral terminase complex cleaves the TR sites on newly synthesized tandemly repeating genomes and inserts an appropriate genomic unit into an immature capsid. Herpes simplex virus 1 (HSV-1) UL28 is a subunit of the terminase complex that cleaves the replicated viral genome. However, the physiological importance of the UL28 homolog, KSHV ORF7, remains poorly understood. Here, using several ORF7-deficient KSHVs, we found that ORF7 acted after ORF17-mediated scaffold collapse in the capsid maturation process. Moreover, ORF7 and its zinc-finger motif were essential for both cleavage of TR sites on the KSHV genome and virus production. ORF7-deficient KSHVs produced incomplete capsids that resembled a soccer ball. To our knowledge, this is the first report showing ORF7-KO-induced soccer ball-like capsids production and ORF7 function in the KSHV capsid assembly process. Our findings provide insights into the role of ORF7 in KSHV capsid formation.


Assuntos
Capsídeo , Genoma Viral , Infecções por Herpesviridae , Herpesvirus Humano 8 , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Humanos , Dedos de Zinco
5.
J Biol Chem ; 295(12): 3783-3793, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32014998

RESUMO

Tailed bacteriophages use a DNA-packaging motor to encapsulate their genome during viral particle assembly. The small terminase (TerS) component of this DNA-packaging machinery acts as a molecular matchmaker that recognizes both the viral genome and the main motor component, the large terminase (TerL). However, how TerS binds DNA and the TerL protein remains unclear. Here we identified gp83 of the thermophilic bacteriophage P74-26 as the TerS protein. We found that TerSP76-26 oligomerizes into a nonamer that binds DNA, stimulates TerL ATPase activity, and inhibits TerL nuclease activity. A cryo-EM structure of TerSP76-26 revealed that it forms a ring with a wide central pore and radially arrayed helix-turn-helix domains. The structure further showed that these helix-turn-helix domains, which are thought to bind DNA by wrapping the double helix around the ring, are rigidly held in an orientation distinct from that seen in other TerS proteins. This rigid arrangement of the putative DNA-binding domain imposed strong constraints on how TerSP76-26 can bind DNA. Finally, the TerSP76-26 structure lacked the conserved C-terminal ß-barrel domain used by other TerS proteins for binding TerL. This suggests that a well-ordered C-terminal ß-barrel domain is not required for TerSP76-26 to carry out its matchmaking function. Our work highlights a thermophilic system for studying the role of small terminase proteins in viral maturation and presents the structure of TerSP76-26, revealing key differences between this thermophilic phage and its mesophilic counterparts.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacteriófagos/metabolismo , Endodesoxirribonucleases/metabolismo , Montagem de Vírus/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Microscopia Crioeletrônica , DNA Viral/química , DNA Viral/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Simulação de Dinâmica Molecular , Mutagênese , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Eletricidade Estática
6.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787152

RESUMO

Tailed double-stranded DNA (dsDNA) bacteriophages, herpesviruses, and adenoviruses package their genetic material into a precursor capsid through a dodecameric ring complex called the portal protein, which is located at a unique 5-fold vertex. In several phages and viruses, including T4, Φ29, and herpes simplex virus 1 (HSV-1), the portal forms a nucleation complex with scaffolding proteins (SPs) to initiate procapsid (PC) assembly, thereby ensuring incorporation of only one portal ring per capsid. However, for bacteriophage P22, the role of its portal protein in initiation of procapsid assembly is unclear. We have developed an in vitro P22 assembly assay where portal protein is coassembled into procapsid-like particles (PLPs). Scaffolding protein also catalyzes oligomerization of monomeric portal protein into dodecameric rings, possibly forming a scaffolding protein-portal protein nucleation complex that results in one portal ring per P22 procapsid. Here, we present evidence substantiating that the P22 portal protein, similarly to those of other dsDNA viruses, can act as an assembly nucleator. The presence of the P22 portal protein is shown to increase the rate of particle assembly and contribute to proper morphology of the assembled particles. Our results highlight a key function of portal protein as an assembly initiator, a feature that is likely conserved among these classes of dsDNA viruses.IMPORTANCE The existence of a single portal ring is essential to the formation of infectious virions in the tailed double-stranded DNA (dsDNA) phages, herpesviruses, and adenoviruses and, as such, is a viable antiviral therapeutic target. How only one portal is selectively incorporated at a unique vertex is unclear. In many dsDNA viruses and phages, the portal protein acts as an assembly nucleator. However, early work on phage P22 assembly in vivo indicated that the portal protein did not function as a nucleator for procapsid (PC) assembly, leading to the suggestion that P22 uses a unique mechanism for portal incorporation. Here, we show that portal protein nucleates assembly of P22 procapsid-like particles (PLPs). Addition of portal rings to an assembly reaction increases the rate of formation and yield of particles and corrects improper particle morphology. Our data suggest that procapsid assembly may universally initiate with a nucleation complex composed minimally of portal and scaffolding proteins (SPs).


Assuntos
Bacteriófago P22/química , Capsídeo/química , Montagem de Vírus , Bacteriófago P22/metabolismo , Capsídeo/metabolismo
7.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534034

RESUMO

Genetic exchange mediated by viruses of bacteria (bacteriophages) is the primary driver of rapid bacterial evolution. The priority of viruses is usually to propagate themselves. Most bacteriophages use the small terminase protein to identify their own genome and direct its inclusion into phage capsids. Gene transfer agents (GTAs) are descended from bacteriophages, but they instead package fragments of the entire bacterial genome without preference for their own genes. GTAs do not selectively target specific DNA, and no GTA small terminases are known. Here, we identified the small terminase from the model Rhodobacter capsulatus GTA, which then allowed prediction of analogues in other species. We examined the role of the small terminase in GTA production and propose a structural basis for random DNA packaging.IMPORTANCE Random transfer of any and all genes between bacteria could be influential in the spread of virulence or antimicrobial resistance genes. Discovery of the true prevalence of GTAs in sequenced genomes is hampered by their apparent similarity to bacteriophages. Our data allowed the prediction of small terminases in diverse GTA producer species, and defining the characteristics of a "GTA-type" terminase could be an important step toward novel GTA identification. Importantly, the GTA small terminase shares many features with its phage counterpart. We propose that the GTA terminase complex could become a streamlined model system to answer fundamental questions about double-stranded DNA (dsDNA) packaging by viruses that have not been forthcoming to date.


Assuntos
Empacotamento do DNA , Endodesoxirribonucleases/genética , Transferência Genética Horizontal , Rhodobacter capsulatus/genética , Bacteriófagos/genética , Proteínas do Capsídeo/genética , DNA , Proteínas de Ligação a DNA , Farmacorresistência Bacteriana , Endodesoxirribonucleases/metabolismo , Evolução Molecular , Família Multigênica , Rhodobacter capsulatus/virologia , Alinhamento de Sequência , Análise de Sequência de Proteína , Transdução Genética , Montagem de Vírus
8.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045987

RESUMO

Alphaherpesvirus-associated ocular infections in humans caused by human alphaherpesvirus 1 (HHV-1) remain challenging to treat due to the frequency of drug application required and the potential for the selection of drug-resistant viruses. Repurposing on-the-market drugs is a viable strategy to accelerate the pace of drug development. It has been reported that the human immunodeficiency virus (HIV) integrase inhibitor raltegravir inhibits HHV-1 replication by targeting the DNA polymerase accessory factor and limits terminase-mediated genome cleavage of human betaherpesvirus 5 (HHV-5). We have previously shown, both in vitro and in vivo, that raltegravir can also inhibit the replication of felid alphaherpesvirus 1 (FeHV-1), a common ocular pathogen of cats with a pathogenesis similar to that of HHV-1 ocular disease. In contrast to what was reported for HHV-1, we were unable to select for a raltegravir-resistant FeHV-1 strain in order to define any basis for drug action. A candidate-based approach to explore the mode of action of raltegravir against FeHV-1 showed that raltegravir did not impact FeHV-1 terminase function, as described for HHV-5. Instead, raltegravir inhibited DNA replication, similarly to HHV-1, but by targeting the initiation of viral DNA replication rather than elongation. In addition, we found that raltegravir specifically repressed late gene expression independently of DNA replication, and both activities are consistent with inhibition of ICP8. Taken together, these results suggest that raltegravir could be a valuable therapeutic agent against herpesviruses.IMPORTANCE The rise of drug-resistant herpesviruses is a longstanding concern, particularly among immunocompromised patients. Therefore, therapies targeting viral proteins other than the DNA polymerase that may be less likely to lead to drug-resistant viruses are urgently needed. Using FeHV-1, an alphaherpesvirus closely related to HHV-1 that similarly causes ocular herpes in its natural host, we found that the HIV integrase inhibitor raltegravir targets different stages of the virus life cycle beyond DNA replication and that it does so without developing drug resistance under the conditions tested. This shows that the drug could provide a viable strategy for the treatment of herpesvirus infections.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Raltegravir Potássico/farmacologia , Varicellovirus/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Gatos , Linhagem Celular , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Varicellovirus/efeitos dos fármacos , Proteínas Virais/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-30061278

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma, belongs to the Herpesviridae family, whose members employ a multicomponent terminase to resolve nonparametric viral DNA into genome-length units prior to their packaging. Homology modeling of the ORF29 C-terminal nuclease domain (pORF29C) and bacteriophage Sf6 gp2 have suggested an active site clustered with four acidic residues, D476, E550, D661, and D662, that collectively sequester the catalytic divalent metal (Mn2+) and also provided important insight into a potential inhibitor binding mode. Using this model, we have expressed, purified, and characterized the wild-type pORF29C and variants with substitutions at the proposed active-site residues. Differential scanning calorimetry demonstrated divalent metal-induced stabilization of wild-type (WT) and D661A pORF29C, consistent with which these two enzymes exhibited Mn2+-dependent nuclease activity, although the latter mutant was significantly impaired. Thermal stability of WT and D661A pORF29C was also enhanced by binding of an α-hydroxytropolone (α-HT) inhibitor shown to replace divalent metal at the active site. For the remaining mutants, thermal stability was unaffected by divalent metal or α-HT binding, supporting their role in catalysis. pORF29C nuclease activity was also inhibited by two classes of small molecules reported to inhibit HIV RNase H and integrase, both of which belong to the superfamily of nucleotidyltransferases. Finally, α-HT inhibition of KSHV replication suggests ORF29 nuclease function as an antiviral target that could be combined with latency-activating compounds as a shock-and-kill antiviral strategy.


Assuntos
Endonucleases/química , Endonucleases/metabolismo , Herpesvirus Humano 8/enzimologia , Sarcoma de Kaposi/virologia , Varredura Diferencial de Calorimetria , Domínio Catalítico , DNA Viral/genética , Endodesoxirribonucleases/genética , Endonucleases/genética , Ativação Enzimática/efeitos dos fármacos , Inibidores de Integrase de HIV/farmacologia , Herpesvirus Humano 8/genética , Integrases/genética , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta/genética , Estrutura Secundária de Proteína , Ribonuclease H/genética
10.
J Gen Virol ; 99(1): 119-134, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205134

RESUMO

The cleavage and packaging of the human cytomegalovirus (HCMV) genome is accomplished by the viral terminase, comprising pUL56 and pUL89, and the recently identified pUL51 subunit. Since knowledge about pUL51 is scarce, we aimed at identifying pUL51 domains that are important for terminase assembly. In silico analysis suggested that the N-terminal half of pUL51 is intrinsically disordered, and that α-helices are present in the C-terminal part. Linker-scanning mutagenesis of pUL51 in the context of the viral genome revealed that amino acid insertions into the predicted α-helices are not compatible with viral growth, whereas upon mutagenesis of the putatively disordered parts interaction with pUL56 and pUL89 was retained and viral progeny was produced. Replacement of pUL51 with the closely related M51 protein of mouse cytomegalovirus did not lead to viable virus, indicating that M51 cannot substitute for pUL51, and swapping the M51 and UL51 N- and C-termini demonstrated the critical role of the pUL51 C-terminal part in building the terminase complex. Notably, the pUL51 C-terminus alone turned out to be sufficient to enable terminase assembly, its nuclear localization and plaque formation. Using HCMV mutants expressing differently tagged pUL51 versions, we did not detect oligomerization of pUL51, as has been proposed for the pUL51 orthologues of other herpesviruses. These data provide an insight into the interaction of pUL51 with the other two terminase components, and provide the basis for unravelling the mode of action of novel antiviral drugs targeting the HCMV terminase.


Assuntos
Citomegalovirus/química , Endodesoxirribonucleases/química , Proteínas Intrinsicamente Desordenadas/química , Subunidades Proteicas/química , Proteínas Virais/química , Sequência de Aminoácidos , Linhagem Celular , Citomegalovirus/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Células Epiteliais , Fibroblastos , Expressão Gênica , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Muromegalovirus/química , Muromegalovirus/genética , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881652

RESUMO

The human cytomegalovirus terminase complex cleaves concatemeric genomic DNA into unit lengths during genome packaging and particle assembly. This process is an attractive drug target because cleavage of concatemeric DNA is not required in mammalian cell DNA replication, indicating that drugs targeting the terminase complex could be safe and selective. One component of the human cytomegalovirus terminase complex, pUL89, provides the endonucleolytic activity for genome cleavage, and the domain responsible is reported to have an RNase H-like fold. We hypothesize that the pUL89 endonuclease activity is inhibited by known RNase H inhibitors. Using a novel enzyme-linked immunosorbent assay (ELISA) format as a screening assay, we found that a hydroxypyridonecarboxylic acid compound, previously reported to be an inhibitor of human immunodeficiency virus RNase H, inhibited pUL89 endonuclease activity at low-micromolar concentrations. Further characterization revealed that this pUL89 endonuclease inhibitor blocked human cytomegalovirus replication at a relatively late time point, similarly to other reported terminase complex inhibitors. Importantly, this inhibitor also prevented the cleavage of viral genomic DNA in infected cells. Taken together, these results substantiate our pharmacophore hypothesis and validate our ligand-based approach toward identifying novel inhibitors of pUL89 endonuclease. IMPORTANCE: Human cytomegalovirus infection in individuals lacking a fully functioning immune system, such as newborns and transplant patients, can have severe and debilitating consequences. The U.S. Food and Drug Administration-approved anti-human cytomegalovirus drugs mainly target the viral polymerase, and resistance to these drugs has appeared. Therefore, anti-human cytomegalovirus drugs from novel targets are needed for use instead of, or in combination with, current polymerase inhibitors. pUL89 is a viral ATPase and endonuclease and is an attractive target for anti-human cytomegalovirus drug development. We identified and characterized an inhibitor of pUL89 endonuclease activity that also inhibits human cytomegalovirus replication in cell culture. pUL89 endonuclease, therefore, should be explored as a potential target for antiviral development against human cytomegalovirus.


Assuntos
Citomegalovirus/efeitos dos fármacos , Citomegalovirus/fisiologia , Endodesoxirribonucleases/antagonistas & inibidores , Genoma Viral , Subunidades Proteicas/antagonistas & inibidores , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , DNA Viral/metabolismo , Endodesoxirribonucleases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Subunidades Proteicas/química , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química
12.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356534

RESUMO

Human cytomegalovirus (HCMV) genome encapsidation requires several essential viral proteins, among them pUL56, pUL89, and the recently described pUL51, which constitute the viral terminase. To gain insight into terminase complex assembly, we investigated interactions between the individual subunits. For analysis in the viral context, HCMV bacterial artificial chromosomes carrying deletions in the open reading frames encoding the terminase proteins were used. These experiments were complemented by transient-transfection assays with plasmids expressing the terminase components. We found that if one terminase protein was missing, the levels of the other terminase proteins were markedly diminished, which could be overcome by proteasome inhibition or providing the missing subunit in trans These data imply that sequestration of the individual subunits within the terminase complex protects them from proteasomal turnover. The finding that efficient interactions among the terminase proteins occurred only when all three were present together is reminiscent of a folding-upon-binding principle leading to cooperative stability. Furthermore, whereas pUL56 was translocated into the nucleus on its own, correct nuclear localization of pUL51 and pUL89 again required all three terminase constituents. Altogether, these features point to a model of the HCMV terminase as a multiprotein complex in which the three players regulate each other concerning stability, subcellular localization, and assembly into the functional tripartite holoenzyme.IMPORTANCE HCMV is a major risk factor in immunocompromised individuals, and congenital CMV infection is the leading viral cause for long-term sequelae, including deafness and mental retardation. The current treatment of CMV disease is based on drugs sharing the same mechanism, namely, inhibiting viral DNA replication, and often results in adverse side effects and the appearance of resistant virus strains. Recently, the HCMV terminase has emerged as an auspicious target for novel antiviral drugs. A new drug candidate inhibiting the HCMV terminase, Letermovir, displayed excellent potency in clinical trials; however, its precise mode of action is not understood yet. Here, we describe the mutual dependence of the HCMV terminase constituents for their assembly into a functional terminase complex. Besides providing new basic insights into terminase formation, these results will be valuable when studying the mechanism of action for drugs targeting the HCMV terminase and developing additional substances interfering with viral genome encapsidation.


Assuntos
Citomegalovirus/enzimologia , Endodesoxirribonucleases/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , Citomegalovirus/genética , Citomegalovirus/metabolismo , DNA Viral , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Fibroblastos/virologia , Genoma Viral , Células HeLa , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Estabilidade Proteica , Proteínas Virais/genética , Proteínas Estruturais Virais/genética
13.
J Struct Biol ; 200(3): 343-359, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842338

RESUMO

Bacteriophages of nitrogen-fixing rhizobial bacteria are revealing a wealth of novel structures, diverse enzyme combinations and genomic features. Here we report the cryo-EM structure of the phage capsid at 4.9-5.7Å-resolution, the phage particle proteome, and the genome of the Sinorhizobium meliloti-infecting Podovirus ΦM5. This is the first structure of a phage with a capsid and capsid-associated structural proteins related to those of the LUZ24-like viruses that infect Pseudomonas aeruginosa. Like many other Podoviruses, ΦM5 is a T=7 icosahedron with a smooth capsid and short, relatively featureless tail. Nonetheless, this group is phylogenetically quite distinct from Podoviruses of the well-characterized T7, P22, and epsilon 15 supergroups. Structurally, a distinct bridge of density that appears unique to ΦM5 reaches down the body of the coat protein to the extended loop that interacts with the next monomer in a hexamer, perhaps stabilizing the mature capsid. Further, the predicted tail fibers of ΦM5 are quite different from those of enteric bacteria phages, but have domains in common with other rhizophages. Genomically, ΦM5 is highly mosaic. The ΦM5 genome is 44,005bp with 357bp direct terminal repeats (DTRs) and 58 unique ORFs. Surprisingly, the capsid structural module, the tail module, the DNA-packaging terminase, the DNA replication module and the integrase each appear to be from a different lineage. One of the most unusual features of ΦM5 is its terminase whose large subunit is quite different from previously-described short-DTR-generating packaging machines and does not fit into any of the established phylogenetic groups.


Assuntos
Bacteriófagos/química , Bacteriófagos/genética , Capsídeo/química , Genoma Viral , Sinorhizobium meliloti/virologia , Bacteriófagos/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Endodesoxirribonucleases/genética , Genes Bacterianos , Processamento de Imagem Assistida por Computador/métodos , Fases de Leitura Aberta , Filogenia , Proteínas Virais/metabolismo , Vírion
14.
J Biol Chem ; 291(21): 11420-33, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27033706

RESUMO

The tripartite terminase complex of herpesviruses assembles in the cytoplasm of infected cells and exploits the host nuclear import machinery to gain access to the nucleus, where capsid assembly and genome-packaging occur. Here we analyzed the structure and conservation of nuclear localization signal (NLS) sequences previously identified in herpes simplex virus 1 (HSV-1) large terminase and human cytomegalovirus (HCMV) small terminase. We found a monopartite NLS at the N terminus of large terminase, flanking the ATPase domain, that is conserved only in α-herpesviruses. In contrast, small terminase exposes a classical NLS at the far C terminus of its helical structure that is conserved only in two genera of the ß-subfamily and absent in α- and γ-herpesviruses. In addition, we predicted a classical NLS in the third terminase subunit that is partially conserved among herpesviruses. Bioinformatic analysis revealed that both location and potency of NLSs in terminase subunits evolved more rapidly than the rest of the amino acid sequence despite the selective pressure to keep terminase gene products active and localized in the nucleus. We propose that swapping NLSs among terminase subunits is a regulatory mechanism that allows different herpesviruses to regulate the kinetics of terminase nuclear import, reflecting a mechanism of virus:host adaptation.


Assuntos
Citomegalovirus , Endodesoxirribonucleases , Evolução Molecular , Herpesvirus Humano 1 , Sinais de Localização Nuclear , Animais , Citomegalovirus/enzimologia , Citomegalovirus/genética , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/genética , Humanos , Camundongos , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Estrutura Terciária de Proteína
15.
Artigo em Inglês | MEDLINE | ID: mdl-28827420

RESUMO

Letermovir, GW275175X (a benzimidazole), and tomeglovir (Bay38-4766) are chemically unrelated human cytomegalovirus (CMV) terminase complex inhibitors that have been tested in human subjects. UL56 gene mutations are the dominant pathway of letermovir resistance, while UL89 and UL56 mutations are known to confer benzimidazole resistance. This study compares the mutations elicited by the three inhibitors during in vitro CMV propagation. GW275175X consistently selected for UL89 D344E and sometimes selected for UL89 C347S, UL89 R351H, or UL56 Q204R. Tomeglovir consistently selected for UL89 V362M and sometimes selected for UL89 N329S, T350M, H389N, or N405D or UL56 L208M, E407D, H637Q, or V639M. Adding to known and novel UL56 mutations, letermovir occasionally selected for UL89 N320H, D344E, or M359I. Recombinant phenotyping confirmed that UL89 D344E conferred 9-fold resistance (an increased 50% effective concentration [EC50]) for GW275175X and increased the letermovir and tomeglovir EC50s by 1.7- to 2.1-fold for the baseline virus and the UL56 Q204R, E237D, F261L, and M329T mutants. UL89 N320H and M359I conferred <2-fold letermovir resistance but 7-fold tomeglovir resistance; the N320H mutant was also 4-fold resistant to GW275175X. UL89 N329S conferred tomeglovir and letermovir cross-resistance. UL89 T350M conferred resistance to all three inhibitors. UL89 C347S conferred 27-fold GW275175X resistance. UL89 V362M and H389N conferred 98-fold and 29-fold tomeglovir resistance, respectively, without conferring cross-resistance. Thus, characteristic UL89 mutations confer substantial resistance to GW275175X and tomeglovir and are an uncommon accessory pathway of letermovir resistance. Instances of moderate cross-resistance and the proximity of the selected UL89 and UL56 mutations suggest targeting of a similar terminase functional locus involving UL56 and UL89 interaction.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/genética , Farmacorresistência Viral/genética , Endodesoxirribonucleases/genética , Mutação , Acetatos/farmacologia , Benzimidazóis/farmacologia , Citomegalovirus/patogenicidade , Farmacorresistência Viral/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Naftalenossulfonatos/farmacologia , Quinazolinas/farmacologia , Ribonucleosídeos/farmacologia , Proteínas Virais/genética , Proteínas Estruturais Virais/genética
16.
Br J Clin Pharmacol ; 83(12): 2678-2686, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28722153

RESUMO

AIMS: Human cytomegalovirus constitutes a prevalent and serious threat to immunocompromised individuals and requires new treatments. Letermovir is a novel viral-terminase inhibitor that has demonstrated prophylactic/pre-emptive activity against human cytomegalovirus in Phase 2 and 3 transplant trials. As unchanged letermovir is primarily excreted via the liver by bile, this trial aimed to assess the effect of hepatic impairment on letermovir pharmacokinetics. METHODS: Phase 1, open-label, parallel-group pharmacokinetic and safety comparison of multiple once-daily oral letermovir in female subjects with hepatic impairment and healthy matched controls. For 8 days, subjects with moderate hepatic impairment (n = 8) and their matched healthy controls (n = 9) received 60 mg letermovir/day and those with severe hepatic impairment (n = 8) and their matched healthy controls (n = 8) received 30 mg letermovir/day. Pharmacokinetic parameters were determined from blood samples. RESULTS: For subjects with moderate hepatic impairment, maximal observed concentration at steady state (Css,max ) and the area under the concentration vs. time curve over a dosing interval at steady state (AUCτ,ss ) for total letermovir were 1.37-fold (90% confidence interval: 0.87, 2.17) and 1.59-fold (0.98, 2.57) higher, respectively, than in healthy subjects. For subjects with severe hepatic impairment, Css,max and AUCτ,ss values of total letermovir were 2.34-fold (1.91, 2.88) and 3.82-fold (2.94, 4.97) higher, respectively, compared with healthy subjects. CONCLUSIONS: Moderate hepatic impairment increased exposure to letermovir <2-fold, while severe hepatic impairment increased letermovir exposure approximately 4-fold as compared with healthy subjects. Letermovir 60/30 mg/day was generally well-tolerated in subjects with hepatic impairment.


Assuntos
Acetatos/farmacocinética , Antivirais/farmacocinética , Infecções por Citomegalovirus/tratamento farmacológico , Hepatopatias/metabolismo , Fígado/metabolismo , Quinazolinas/farmacocinética , Acetatos/administração & dosagem , Acetatos/efeitos adversos , Acetatos/sangue , Administração Oral , Adolescente , Adulto , Idoso , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Antivirais/sangue , Área Sob a Curva , Esquema de Medicação , Feminino , Meia-Vida , Humanos , Fígado/fisiopatologia , Hepatopatias/diagnóstico , Hepatopatias/fisiopatologia , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Quinazolinas/administração & dosagem , Quinazolinas/efeitos adversos , Quinazolinas/sangue , Federação Russa , Índice de Gravidade de Doença , Resultado do Tratamento , Adulto Jovem
17.
Proc Natl Acad Sci U S A ; 111(37): 13319-24, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25161284

RESUMO

Packaging specific exogenous active proteins and DNAs together within a single viral-nanocontainer is challenging. The bacteriophage T4 capsid (100 × 70 nm) is well suited for this purpose, because it can hold a single long DNA or multiple short pieces of DNA up to 170 kb packed together with more than 1,000 protein molecules. Any linear DNA can be packaged in vitro into purified procapsids. The capsid-targeting sequence (CTS) directs virtually any protein into the procapsid. Procapsids are assembled with specific CTS-directed exogenous proteins that are encapsidated before the DNA. The capsid also can display on its surface high-affinity eukaryotic cell-binding peptides or proteins that are in fusion with small outer capsid and head outer capsid surface-decoration proteins that can be added in vivo or in vitro. In this study, we demonstrate that the site-specific recombinase cyclic recombination (Cre) targeted into the procapsid is enzymatically active within the procapsid and recircularizes linear plasmid DNA containing two terminal loxP recognition sites when packaged in vitro. mCherry expression driven by a cytomegalovirus promoter in the capsid containing Cre-circularized DNA is enhanced over linear DNA, as shown in recipient eukaryotic cells. The efficient and specific packaging into capsids and the unpackaging of both DNA and protein with release of the enzymatically altered protein-DNA complexes from the nanoparticles into cells have potential in numerous downstream drug and gene therapeutic applications.


Assuntos
Bacteriófago T4/química , Capsídeo/química , DNA/química , Expressão Gênica , Técnicas de Transferência de Genes , Integrases/metabolismo , Nanopartículas/química , Sítios de Ligação Microbiológicos , Sequência de Bases , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , DNA/isolamento & purificação , Empacotamento do DNA , DNA Circular/metabolismo , Citometria de Fluxo , Fluorescência , Humanos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Coloração e Rotulagem , Transformação Genética
18.
BMC Genomics ; 17: 679, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561606

RESUMO

BACKGROUND: Phage genome analysis is a rapidly growing field. Recurrent obstacles include software access and usability, as well as genome sequences that vary in sequence orientation and/or start position. Here we describe modifications to the phage comparative genomics software program, Phamerator, provide public access to the code, and include instructions for creating custom Phamerator databases. We further report genomic analysis techniques to determine phage packaging strategies and identification of the physical ends of phage genomes. RESULTS: The original Phamerator code can be successfully modified and custom databases can be generated using the instructions we provide. Results of genome map comparisons within a custom database reveal obstacles in performing the comparisons if a published genome has an incorrect complementarity or an incorrect location of the first base of the genome, which are common issues in GenBank-downloaded sequence files. To address these issues, we review phage packaging strategies and provide results that demonstrate identification of the genome start location and orientation using raw sequencing data and software programs such as PAUSE and Consed to establish the location of the physical ends of the genome. These results include determination of exact direct terminal repeats (DTRs) or cohesive ends, or whether phages may use a headful packaging strategy. Phylogenetic analysis using ClustalO and phamily circles in Phamerator demonstrate that the large terminase gene can be used to identify the phage packaging strategy and thereby aide in identifying the physical ends of the genome. CONCLUSIONS: Using available online code, the Phamerator program can be customized and utilized to generate databases with individually selected genomes. These databases can then provide fruitful information in the comparative analysis of phages. Researchers can identify packaging strategies and physical ends of phage genomes using raw data from high-throughput sequencing in conjunction with phylogenetic analyses of large terminase proteins and the use of custom Phamerator databases. We promote publication of phage genomes in an orientation consistent with the physical structure of the phage chromosome and provide guidance for determining this structure.


Assuntos
Bacteriófagos/fisiologia , Genoma Viral , Genômica , Software , Montagem de Vírus/genética , Bacteriófagos/classificação , DNA Viral , Bases de Dados de Ácidos Nucleicos , Genômica/métodos , Filogenia , Interface Usuário-Computador
19.
Proc Natl Acad Sci U S A ; 110(20): 8075-80, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630261

RESUMO

Many DNA viruses use powerful molecular motors to cleave concatemeric viral DNA into genome-length units and package them into preformed procapsid powered by ATP hydrolysis. Here we report the structures of the DNA-packaging motor gp2 of bacteriophage Sf6, which reveal a unique clade of RecA-like ATPase domain and an RNase H-like nuclease domain tethered by a regulatory linker domain, exhibiting a strikingly distinct domain arrangement. The gp2 structures complexed with nucleotides reveal, at the atomic detail, the catalytic center embraced by the ATPase domain and the linker domain. The gp2 nuclease activity is modulated by the ATPase domain and is stimulated by ATP. An extended DNA-binding surface is formed by the linker domain and the nuclease domain. These results suggest a unique mechanism for translation of chemical reaction into physical motion of DNA and provide insights into coordination of DNA translocation and cleavage in a viral DNA-packaging motor, which may be achieved via linker-domain-mediated interdomain communication driven by ATP hydrolysis.


Assuntos
Bacteriófagos/enzimologia , DNA Viral/química , Endodesoxirribonucleases/química , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Domínio Catalítico , Empacotamento do DNA , DNA Viral/genética , Genoma Viral , Hidrólise , Nucleotídeos/química , Ligação Proteica , Estrutura Terciária de Proteína
20.
J Biol Chem ; 288(23): 16998-17007, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23632014

RESUMO

During bacteriophage morphogenesis DNA is translocated into a preformed prohead by the complex formed by the portal protein, or connector, plus the terminase, which are located at an especial prohead vertex. The terminase is a powerful motor that converts ATP hydrolysis into mechanical movement of the DNA. Here, we have determined the structure of the T7 large terminase by electron microscopy. The five terminase subunits assemble in a toroid that encloses a channel wide enough to accommodate dsDNA. The structure of the complete connector-terminase complex is also reported, revealing the coupling between the terminase and the connector forming a continuous channel. The structure of the terminase assembled into the complex showed a different conformation when compared with the isolated terminase pentamer. To understand in molecular terms the terminase morphological change, we generated the terminase atomic model based on the crystallographic structure of its phage T4 counterpart. The docking of the threaded model in both terminase conformations showed that the transition between the two states can be achieved by rigid body subunit rotation in the pentameric assembly. The existence of two terminase conformations and its possible relation to the sequential DNA translocation may shed light into the molecular bases of the packaging mechanism of bacteriophage T7.


Assuntos
Bacteriófago T7/química , DNA Viral/química , Endodesoxirribonucleases/química , Simulação de Acoplamento Molecular , Proteínas Virais/química , Bacteriófago T7/fisiologia , Bacteriófago T7/ultraestrutura , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Estrutura Quaternária de Proteína , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA