Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 295-324, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30649989

RESUMO

Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.


Assuntos
Citocinas/metabolismo , Imunoterapia/tendências , Animais , Citocinas/genética , Humanos , Imunidade Humoral , Imunomodulação , Multimerização Proteica , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia
2.
Annu Rev Biochem ; 87: 263-294, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29709199

RESUMO

Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , Proteína Homóloga a MRE11/metabolismo , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunidade Inata , Proteína Homóloga a MRE11/química , Proteína Homóloga a MRE11/genética , Modelos Biológicos , Modelos Moleculares , Transdução de Sinais , Telômero/metabolismo
3.
Genes Dev ; 34(17-18): 1128-1146, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873579

RESUMO

The p53 tumor suppressor functions as a tetrameric transcription factor to regulate hundreds of genes-many in a tissue-specific manner. Missense mutations in cancers in the p53 DNA-binding and tetramerization domains cement the importance of these domains in tumor suppression. p53 mutants with a functional tetramerization domain form mixed tetramers, which in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. DNA damage appears necessary but not sufficient for DNE, indicating that upstream signals impact DNE. Posttranslational modifications and protein-protein interactions alter p53 tetramerization affecting transcription, stability, and localization. These regulatory components limit the dominant-negative effects of mutant p53 on wild-type p53 activity. A deeper understanding of the molecular basis for DNE may drive development of drugs that release WT p53 and allow tumor suppression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Mutação de Sentido Incorreto , Polimerização , Domínios Proteicos/genética , Estabilidade Proteica , Transporte Proteico/genética
4.
Am J Physiol Cell Physiol ; 327(3): C790-C797, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39099423

RESUMO

Within the tetramerization domain (T1) of most voltage-gated potassium channels (Kv) are highly conserved charged residues that line the T1-T1 interface. We investigated the Kv1.1 residue R86 located at the narrowest region of the T1 interface. A Kv1.1 R86Q mutation was reported in a child diagnosed with lower limb dyskinesia (Set KK, Ghosh D, Huq AHM, Luat AF. Mov Disord Clin Pract 4: 784-786, 2017). The child did not present with episodic ataxia 1 (EA1) symptoms typically associated with Kv1.1 loss-of-function mutations. We characterized the electrophysiological outcome of the R86Q substitution by expressing Kv1.1 in Xenopus laevis oocytes. Mutated α-subunits were able to form functional channels that pass delayed rectifier currents. Oocytes that expressed only mutated α-subunits produced a significant reduction in Kv1.1 current and showed a positive shift in voltage dependence of activation. In addition, there was substantially slower activation and faster deactivation implying a reduction in the time the channel is in its open state. Oocytes co-injected with both mutated and wild-type cRNA in equal amounts, to mimic the heterozygous condition of the disease, showed a decrease in current amplitude at -10 mV, a positive shift in activation voltage-dependence and faster deactivation kinetics when compared with the wild-type channel. These findings indicate that T1 plays a role in Kv1.1's voltage-dependent activation and in its kinetics of activation and deactivation.NEW & NOTEWORTHY This is the first Kv1.1 study to characterize the electrophysiological and structural phenotype of a tetramerization (T1) domain mutation. Surprisingly, the mutated α-subunits were able to tetramerize, albeit with different gating kinetics and voltage dependence. This novel finding points to a clear role of T1 in the channel's voltage dependence and gating. Mimicking the heterozygous condition resulted in milder alterations in channel function when compared with previously reported mutations. This is in agreement with the child's milder symptoms.


Assuntos
Ativação do Canal Iônico , Canal de Potássio Kv1.1 , Oócitos , Xenopus laevis , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.1/química , Animais , Humanos , Oócitos/metabolismo , Cinética , Mutação , Potenciais da Membrana , Multimerização Proteica , Feminino
5.
J Physiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979871

RESUMO

Although synapsins have long been proposed to be key regulators of synaptic vesicle (SV) clustering, their mechanism of action has remained mysterious and somewhat controversial. Here, we review synapsins and their associations with each other and with SVs. We highlight the recent hypothesis that synapsin tetramerization is a mechanism for SV clustering. This hypothesis, which aligns with numerous experimental results, suggests that the larger size of synapsin tetramers, in comparison to dimers, allows tetramers to form optimal bridges between SVs that overcome the repulsive force associated with the negatively charged membrane of SVs and allow synapsins to form a reserve pool of SVs within presynaptic terminals.

6.
J Biol Chem ; 299(3): 102924, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736897

RESUMO

G protein-coupled receptors (GPCRs) initiate an array of intracellular signaling programs by activating heterotrimeric G proteins (Gα and Gßγ subunits). Therefore, G protein modifiers are well positioned to shape GPCR pharmacology. A few members of the potassium channel tetramerization domain (KCTD) protein family have been found to adjust G protein signaling through interaction with Gßγ. However, comprehensive details on the KCTD interaction with Gßγ remain unresolved. Here, we report that nearly all the 25 KCTD proteins interact with Gßγ. In this study, we screened Gßγ interaction capacity across the entire KCTD family using two parallel approaches. In a live cell bioluminescence resonance energy transfer-based assay, we find that roughly half of KCTD proteins interact with Gßγ in an agonist-induced fashion, whereas all KCTD proteins except two were found to interact through coimmunoprecipitation. We observed that the interaction was dependent on an amino acid hot spot in the C terminus of KCTD2, KCTD5, and KCTD17. While KCTD2 and KCTD5 require both the Bric-à-brac, Tramtrack, Broad complex domain and C-terminal regions for Gßγ interaction, we uncovered that the KCTD17 C terminus is sufficient for Gßγ interaction. Finally, we demonstrated the functional consequence of the KCTD-Gßγ interaction by examining sensitization of the adenylyl cyclase-cAMP pathway in live cells. We found that Gßγ-mediated sensitization of adenylyl cyclase 5 was blunted by KCTD. We conclude that the KCTD family broadly engages Gßγ to shape GPCR signal transmission.


Assuntos
AMP Cíclico , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Canais de Potássio , Adenilil Ciclases/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , AMP Cíclico/metabolismo
7.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35703323

RESUMO

Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analyzing three-dimensional structure and dynamics of macromolecules at atomic resolution. Recent advances have exploited the unique properties of NMR in exchanging systems to detect, characterize and visualize excited sparsely populated states of biological macromolecules and their complexes, which are only transient. These states are invisible to conventional biophysical techniques, and play a key role in many processes, including molecular recognition, protein folding, enzyme catalysis, assembly and fibril formation. All the NMR techniques make use of exchange between sparsely populated NMR-invisible and highly populated NMR-visible states to transfer a magnetization property from the invisible state to the visible one where it can be easily detected and quantified. There are three classes of NMR experiments that rely on differences in distance, chemical shift or transverse relaxation (molecular mass) between the NMR-visible and -invisible species. Here, I illustrate the application of these methods to unravel the complex mechanism of sub-millisecond pre-nucleation oligomerization of the N-terminal region of huntingtin, encoded by exon-1 of the huntingtin gene, where CAG expansion leads to Huntington's disease, a fatal autosomal-dominant neurodegenerative condition. I also discuss how inhibition of tetramerization blocks the much slower (by many orders of magnitude) process of fibril formation.


Assuntos
Doença de Huntington , Éxons , Humanos , Doença de Huntington/genética , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína
8.
J Neurosci ; 42(9): 1648-1665, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35017224

RESUMO

GABAB receptors in habenula cholinergic neurons mediate strong presynaptic excitation and control aversive memory expression. K+ channel tetramerization domain (KCTD) proteins are key interacting partners of GABAB receptors; it remains unclear whether and how KCTDs contribute to GABAB excitatory signaling. Here, we show that KCTD8 and KCTD12 in these neurons facilitate the GABAB receptors expression in axonal terminals and contribute to presynaptic excitation by GABAB receptors. Genetically knocking out KCTD8/12/16 or KCTD8/12, but not other combinations of the three KCTD isoforms, substantially reduced GABAB receptors-mediated potentiation of glutamate release and presynaptic Ca2+ entry in response to axonal stimulation, whereas they had no effect on GABAB-mediated inhibition in the somata of cholinergic neurons within the habenulo-interpeduncular pathway in mice of either sex. The physiological phenotypes were associated with a significant decrease in the GABAB expression within the axonal terminals but not the somata. Overexpressing either KCTD8 or KCTD12 in the KCTD8/12/16 triple knock-out mice reversed the changes in axonal GABAB expression and presynaptic excitation. In mice lacking the KCTDs, aversion-predicting cues produced stronger neuronal activation in the interpeduncular nucleus, and the infusion of GABAB agonist in this nucleus produced a weaker effect on fear extinction. Collectively, our results reveal isoform-specific roles of KCTD proteins in enriching the axonal expression of GABAB receptors, facilitating their presynaptic signaling, and modulating aversion-related memory processes.SIGNIFICANCE STATEMENT GABAB receptors represent the principal inhibitory neurotransmitter receptor, but they mediate strong presynaptic excitation in the habenulo-interpeduncular pathway and modulate aversion memory expression. KCTD proteins are integral constituents of GABAB receptors. By analyzing the physiological, neuroanatomical, and behavioral phenotypes of multiple KCTD knock-out mouse lines, we show that KCTD8 and KCTD12 facilitate the axonal expression and hence presynaptic excitation of GABAB receptors in habenula cholinergic neurons and control cued-aversion memory formation and expression in the habenulo-interpeduncular pathway. These results expand the physiological and behavioral functions of KCTDs in modulating the brain neural circuits.


Assuntos
Axônios , Neurônios Colinérgicos , Habenula , Peptídeos e Proteínas de Sinalização Intracelular , Receptores de GABA-B , Receptores de GABA , Animais , Axônios/metabolismo , Neurônios Colinérgicos/metabolismo , Extinção Psicológica , Medo/fisiologia , Habenula/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Receptores de GABA/metabolismo , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
J Transl Med ; 21(1): 888, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062516

RESUMO

BACKGROUND: Right ventricle failure (RVF) is a progressive heart disease that has yet to be fully understood at the molecular level. Elevated M-type pyruvate kinase 2 (PKM2) tetramerization alleviates heart failure, but detailed molecular mechanisms remain unclear. OBJECTIVE: We observed changes in PKM2 tetramerization levels during the progression of right heart failure and in vitro cardiomyocyte hypertrophy and explored the causal relationship between altered PKM2 tetramerization and the imbalance of redox homeostasis in cardiomyocytes, as well as its underlying mechanisms. Ultimately, our goal was to propose rational intervention strategies for the treatment of RVF. METHOD: We established RVF in Sprague Dawley (SD) rats by intraperitoneal injection of monocrotaline (MCT). The pulmonary artery pressure and right heart function of rats were assessed using transthoracic echocardiography combined with right heart catheterization. TEPP-46 was used both in vivo and in vitro to promote PKM2 tetramerization. RESULTS: We observed that oxidative stress and mitochondrial disorganization were associated with increased apoptosis in the right ventricular tissue of RVF rats. Quantitative proteomics revealed that PKM2 was upregulated during RVF and negatively correlated with the cardiac function. Facilitating PKM2 tetramerization promoted mitochondrial network formation and alleviated oxidative stress and apoptosis during cardiomyocyte hypertrophy. Moreover, enhancing PKM2 tetramer formation improved cardiac mitochondrial morphology, mitigated oxidative stress and alleviated heart failure. CONCLUSION: Disruption of PKM2 tetramerization contributed to RVF by inducing mitochondrial fragmentation, accumulating ROS, and finally promoted the progression of cardiomyocyte apoptosis. Facilitating PKM2 tetramerization holds potential as a promising therapeutic approach for RVF.


Assuntos
Insuficiência Cardíaca , Piruvato Quinase , Animais , Ratos , Ventrículos do Coração , Hipertrofia/complicações , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068946

RESUMO

The p53 protein is a transcriptional regulatory factor and many of its functions require that it forms a tetrameric structure. Although the tetramerization domain of mammalian p53 proteins (p53TD) share significant sequence similarities, it was recently shown that the tree shrew p53TD is considerably more thermostable than the human p53TD. To determine whether other mammalian species display differences in this domain, we used biophysical, functional, and structural studies to compare the properties of the p53TDs from six mammalian model organisms (human, tree shrew, guinea pig, Chinese hamster, sheep, and opossum). The results indicate that the p53TD from the opossum and tree shrew are significantly more stable than the human p53TD, and there is a correlation between the thermostability of the p53TDs and their ability to activate transcription. Structural analysis of the tree shrew and opossum p53TDs indicated that amino acid substitutions within two distinct regions of their p53TDs can dramatically alter hydrophobic packing of the tetramer, and in particular substitutions at positions corresponding to F341 and Q354 of the human p53TD. Together, the results suggest that subtle changes in the sequence of the p53TD can dramatically alter the stability, and potentially lead to important changes in the functional activity, of the p53 protein.


Assuntos
Proteína Supressora de Tumor p53 , Animais , Cobaias , Humanos , Gambás/metabolismo , Ovinos , Proteína Supressora de Tumor p53/metabolismo , Tupaia/metabolismo
11.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762619

RESUMO

Potassium Channel Tetramerization Domain 5 (KCTD5) regulates diverse aspects of physiology, ranging from neuronal signaling to colorectal cancer. A key feature of KCTD5 is its self-assembly into multi-subunit oligomers that seemingly enables participation in an array of protein-protein interactions. KCTD5 has recently been reported to form hetero-oligomeric complexes with two similar KCTDs (KCTD2 and KCTD17). However, it is not known if KCTD5 forms hetero-oligomeric complexes with the remaining KCTD protein family which contains over two dozen members. Here, we demonstrate that KCTD5 interacts with various KCTD proteins when assayed through co-immunoprecipitation in lysed cells. We reinforced this dataset by examining KCTD5 interactions in a live-cell bioluminescence resonance energy transfer (BRET)-based approach. Finally, we developed an IP-luminescence approach to map regions on KCTD5 required for interaction with a selection of KCTD that have established roles in neuronal signaling. We report that different regions on KCTD5 are responsible for uniquely contributing to interactions with other KCTD proteins. While our results help unravel additional interaction partners for KCTD5, they also reveal additional complexities in KCTDs' biology. Moreover, our findings also suggest that KCTD hetero-oligomeric interactions may occur throughout the KCTD family.


Assuntos
Canais de Potássio , Transdução de Sinais , Canais de Potássio/genética , Canais de Potássio/metabolismo
12.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902393

RESUMO

The phototransduction cascade in vertebrate rod visual cells is initiated by the photoactivation of rhodopsin, which enables the activation of the visual G protein transducin. It is terminated by the phosphorylation of rhodopsin, followed by the binding of arrestin. Here we measured the solution X-ray scattering of nanodiscs containing rhodopsin in the presence of rod arrestin to directly observe the formation of the rhodopsin/arrestin complex. Although arrestin self-associates to form a tetramer at physiological concentrations, it was found that arrestin binds to phosphorylated and photoactivated rhodopsin at 1:1 stoichiometry. In contrast, no complex formation was observed for unphosphorylated rhodopsin upon photoactivation, even at physiological arrestin concentrations, suggesting that the constitutive activity of rod arrestin is sufficiently low. UV-visible spectroscopy demonstrated that the rate of the formation of the rhodopsin/arrestin complex well correlates with the concentration of arrestin monomer rather than the tetramer. These findings indicate that arrestin monomer, whose concentration is almost constant due to the equilibrium with the tetramer, binds to phosphorylated rhodopsin. The arrestin tetramer would act as a reservoir of monomer to compensate for the large changes in arrestin concentration in rod cells caused by intense light or adaptation.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes , Rodopsina , Rodopsina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Arrestina/metabolismo , Fosforilação , Proteínas de Ligação ao GTP/metabolismo
13.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049864

RESUMO

To gain molecular-level insight into the intricate features of the catalytic behavior of chromium-diphosphine complexes regarding ethylene tri- and tetramerizations, we performed density functional theory (DFT) calculations. The selective formation of 1-hexene and 1-octene by the tri- and tetramerizations of ethylene are generally accepted to follow the metallacycle mechanism. To explore the mechanism of ethylene tri- and tetramerizations, we used a real Sasol chromium complex with a nitrogen-bridged diphosphine ligand with ortho- and para-methoxyaryl substituents. We explore the trimerization mechanism for ethylene first and, later on for comparison, we extend the potential energy surfaces (PES) for the tetramerization of ethylene with both catalysts. The calculated results reveal that the formation of 1-hexene and 1-octene with the ortho-methoxyaryl and para-methoxyaryl Cr-PNP catalysts have nearly similar potential energy surfaces (PES). From the calculated results important insights are gained into the tri- and tetramerizations. The tetramerization of ethylene with the para-methoxyaryl Cr-PNP catalyst lowers the barrier height by ~2.6 kcal/mol compared to that of ethylene with the ortho-methoxyaryl Cr-PNP catalyst. The selectivity toward trimerization or tetramerization comes from whether the energy barrier for ethylene insertion to metallacycloheptane is higher than ß-hydride transfer to make 1-hexene. The metallacycle mechanism with Cr (I)-Cr (III) intermediates is found to be the most favored, with the oxidative coupling of the two coordinated ethylenes to form chromacyclopentane being the rate-determining step.

14.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887312

RESUMO

The formation of a tetrameric assembly is essential for the ability of the tumor suppressor protein p53 to act as a transcription factor. Such a quaternary conformation is driven by a specific tetramerization domain, separated from the central DNA-binding domain by a flexible linker. Despite the distance, functional crosstalk between the two domains has been reported. This phenomenon can explain the pathogenicity of some inherited or somatically acquired mutations in the tetramerization domain, including the widespread R337H missense mutation present in the population in south Brazil. In this work, we combined computational predictions through extended all-atom molecular dynamics simulations with functional assays in a genetically defined yeast-based model system to reveal structural features of p53 tetramerization domains and their transactivation capacity and specificity. In addition to the germline and cancer-associated R337H and R337C, other rationally designed missense mutations targeting a significant salt-bridge interaction that stabilizes the p53 tetramerization domain were studied (i.e., R337D, D352R, and the double-mutation R337D plus D352R). The simulations revealed a destabilizing effect of the pathogenic mutations within the p53 tetramerization domain and highlighted the importance of electrostatic interactions between residues 337 and 352. The transactivation assay, performed in yeast by tuning the expression of wild-type and mutant p53 proteins, revealed that p53 tetramerization mutations could decrease the transactivation potential and alter transactivation specificity, in particular by better tolerating negative features in weak DNA-binding sites. These results establish the effect of naturally occurring variations at positions 337 and 352 on p53's conformational stability and function.


Assuntos
Saccharomyces cerevisiae , Proteína Supressora de Tumor p53 , DNA , Proteínas Mutantes/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Supressora de Tumor p53/metabolismo
15.
J Biol Chem ; 295(30): 10446-10455, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32518163

RESUMO

Transthyretin (TTR) is an abundant homotetrameric serum protein and was selected here for engineering higher-valency molecules because of its compact size, simple structure, and natural propensity to tetramerize. To demonstrate this utility, we fused TTR to the C terminus of conatumumab, an antibody that targets tumor necrosis factor-related apoptosis-inducing ligand receptor 2, as heavy chains to form antibody dimers and Fab heavy chains to form Fab tetramers. Moreover, we used constant heavy domain 3 heterodimerization substitutions to create TTR-mediated conatumumab tetramers. The conatumumab-TTR fusions displayed substantially enhanced potency in cell-based assays, as well as in murine tumor xenograft models. We conclude that antibody-TTR fusions may provide a powerful platform for multimerizing antibody and Fab fragments to enhance the capabilities of human therapeutics that benefit from target clustering and higher-order antigen-binding valency.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Fragmentos Fab das Imunoglobulinas , Neoplasias Experimentais , Pré-Albumina , Multimerização Proteica , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/farmacologia , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Pré-Albumina/genética , Pré-Albumina/farmacocinética , Pré-Albumina/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Dev Neurosci ; 43(6): 348-357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34469883

RESUMO

Early-onset epileptic encephalopathies (EOEE) affect cognitive, sensory, and motor development. Genetic variations are among the identifiable primary causes of these syndromes. However, some patients have been reported to be affected by EOEE without any other clinical symptoms and signs. We study the genotype and phenotype of patients with nonsyndromic early-onset epileptic encephalopathy (NSEOEE) and report 2 novel patients from Iran. A comprehensive search was conducted in PubMed, John Willy, Springer, Elsevier, and Google Scholar databases to collect related information of all the previously reported cases with KCTD7 mutations. Fifty-four patients (from 40 families) were investigated. Using trio-whole-exome sequencing (trio-WES) and Sanger sequencing, the possible genetic causes of the disorder were checked. The probable impacts of the identified variants on the KCTD7 protein structure and function were predicted. This study provided a detailed overview of all published KCTD7 mutations and 2 de novo ones. We identified 2 novel homozygous variants of uncertain significance, c.458 G > A p. Arg153His and c.529C > T (p.Arg177Cys), in KCTD7 (NM_153033.4) (Chr7(GRCh37)). There is a significant wide distribution of the KCTD7 gene causing NSEOEE among different populations. In conclusion, KCTD7 mutations demonstrate a diverse geographical distribution alongside a wide range of ethnicities. This highlights the importance of careful consideration in the WES data analysis. Mutations of this gene may be a common cause of NSEOEE. Also, this study imprints targeted therapeutic opportunities for potassium channelepsies such as KCTD7-related NSEOEE.


Assuntos
Encefalopatias , Humanos , Mutação/genética , Fenótipo , Canais de Potássio/genética
17.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885830

RESUMO

Dihydroorotase (DHOase), a dimetalloenzyme containing a carbamylated lysine within the active site, is a member of the cyclic amidohydrolase family, which also includes allantoinase (ALLase), dihydropyrimidinase (DHPase), hydantoinase, and imidase. Unlike most known cyclic amidohydrolases, which are tetrameric, DHOase exists as a monomer or dimer. Here, we report and analyze two crystal structures of the eukaryotic Saccharomyces cerevisiae DHOase (ScDHOase) complexed with malate. The structures of different DHOases were also compared. An asymmetric unit of these crystals contained four crystallographically independent ScDHOase monomers. ScDHOase shares structural similarity with Escherichia coli DHOase (EcDHOase). Unlike EcDHOase, ScDHOase can form tetramers, both in the crystalline state and in solution. In addition, the subunit-interacting residues of ScDHOase for dimerization and tetramerization are significantly different from those of other DHOases. The tetramerization pattern of ScDHOase is also different from those of DHPase and ALLase. Based on sequence analysis and structural evidence, we identify two unique helices (α6 and α10) and a loop (loop 7) for tetramerization, and discuss why the residues for tetramerization in ScDHOase are not necessarily conserved among DHOases.


Assuntos
Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Multimerização Proteica , Saccharomyces cerevisiae/enzimologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , Estabilidade Enzimática , Humanos , Ligação de Hidrogênio , Lisina/metabolismo , Malatos/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/genética , Soluções , Temperatura
18.
Molecules ; 26(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671782

RESUMO

CrCl3(thf)3 is a common starting material in the synthesis of organometallic and coordination compounds of Cr. Deposited as an irregular solid with no possibility of recrystallization, it is not a purity guaranteed chemical, causing problems in some cases. In this work, we disclose a well-defined form of the THF adduct of CrCl3 ([CrCl2(µ-Cl)(thf)2]2), a crystalline solid, that enables structure determination by X-ray crystallography. The EA data and XRD pattern of the bulk agreed with the revealed structure. Moreover, its preparation procedure is facile: evacuation of CrCl3·6H2O at 100 °C, treatment with 6 equivalents of Me3SiCl in a minimal amount of THF, and crystallization from CH2Cl2. The ethylene tetramerization catalyst [iPrN{P(C6H4-p-Si(nBu)3)2}2CrCl2]+[B(C6F5)4]- prepared using well-defined [CrCl2(µ-Cl)(thf)2]2 as a starting material exhibited a reliably high activity (6600 kg/g-Cr/h; 1-octene selectivity at 40 °C, 75%), while that of the one prepared using the impure CrCl3(thf)3 was inconsistent and relatively low (~3000 kg/g-Cr/h). By using well-defined [CrCl2(µ-Cl)(thf)2]2 as a Cr source, single crystals of [(CH3CN)4CrCl2]+[B(C6F5)4]- and [{Et(Cl)Al(N(iPr)2)2}Cr(µ-Cl)]2 were obtained, allowing structure determination by X-ray crystallography, which had been unsuccessful when the previously known CrCl3(thf)3 was used as the Cr source.


Assuntos
Cromo/química , Complexos de Coordenação/química , Furanos/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
19.
J Biol Chem ; 294(38): 14081-14095, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31366730

RESUMO

TP53 is the most frequently mutated tumor suppressor gene in many cancers, yet biochemical characterization of several of its reported mutations with probable biological significance have not been accomplished enough. Specifically, missense mutations in TP53 can contribute to tumorigenesis through gain-of-function of biochemical and biological properties that stimulate tumor growth. Here, we identified a relatively rare mutation leading to a proline to leucine substitution (P152L) in TP53 at the very end of its DNA-binding domain (DBD) in a sample from an Indian oral cancer patient. Although the P152Lp53 DBD alone bound to DNA, the full-length protein completely lacked binding ability at its cognate DNA motifs. Interestingly, P152Lp53 could efficiently tetramerize, and the mutation had only a limited impact on the structure and stability of full-length p53. Significantly, when we expressed this variant in a TP53-null cell line, it induced cell motility, proliferation, and invasion compared with a vector-only control. Also, enhanced tumorigenic potential was observed when P152Lp53-expressing cells were xenografted into nude mice. Investigating the effects of P152Lp53 expression on cellular pathways, we found that it is associated with up-regulation of several pathways, including cell-cell and cell-extracellular matrix signaling, epidermal growth factor receptor signaling, and Rho-GTPase signaling, commonly active in tumorigenesis and metastasis. Taken together, our findings provide a detailed account of the biochemical and cellular alterations associated with the cancer-associated P152Lp53 variant and establish it as a gain-of-function TP53 variant.


Assuntos
Carcinogênese/genética , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Mutação com Ganho de Função , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biochem Biophys Res Commun ; 521(3): 681-686, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31690451

RESUMO

The p53 protein plays a number of roles in protecting organisms from different genotoxic stresses and this includes DNA damage induced by acetaldehyde, a metabolite of alcohol. Since the common tree shrew ingests high levels of alcohol as part of its normal diet, this suggests that its p53 protein may possess unique properties. Using a combination of biophysical and modeling studies, we demonstrate that the tetramerization domain of the tree shrew p53 protein is considerably more stable than the corresponding domain from humans despite sharing almost 90% sequence identity. Based on modeling and mutagenesis studies, we determine that a glutamine to methionine substitution at position 354 plays a key role in this difference. Given the link between stability of the p53 tetramerization domain and its transcriptional activity, the results suggest that this enhanced stability could lead to important consequences at p53-regulated genes in the tree shrew.


Assuntos
Proteína Supressora de Tumor p53/química , Tupaiidae , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Estabilidade Proteica , Homologia de Sequência de Aminoácidos , Temperatura , Termodinâmica , Tupaiidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA