Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 45(13): 985-994, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38197269

RESUMO

Thallium chemistry is experiencing unprecedented importance. Therefore, it is valuable to characterize some of the simplest thallium compounds. Stationary points along the singlet and triplet Tl 2 H 2 potential energy surface have been characterized. Stationary point geometries were optimized with the CCSD(T)/aug-cc-pwCVQZ-PP method. Harmonic vibrational frequencies were computed at the same level of theory while anharmonic vibrational frequencies were computed at the CCSD(T)/aug-cc-pwCVTZ-PP level of theory. Final energetics were obtained with the CCSDT(Q) method. Basis sets up to augmented quintuple-zeta cardinality (aug-cc-pwCV5Z-PP) were employed to obtain energetics in order to extrapolate to the complete basis set limits using the focal point approach. Zero-point vibrational energy corrections were appended to the extrapolated energies in order to determine relative energies at 0 K. It was found that the planar dibridged isomer lies lowest in energy while the linear structure lies highest in energy. The results were compared to other group 13 M 2 H 2 (M = B, Al, Ga, In, and Tl) theoretical studies and some interesting variations are found. With respect to experiment, incompatibilities exist.

2.
Chemistry ; 30(25): e202400390, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381600

RESUMO

Reaction of [CuH(PPh3)]6 with 1 equiv. of Tl(OTf) results in formation of [Cu6TlH6(PPh3)6][OTf] ([1]OTf]), which can be isolated in good yields. Variable-temperature 1H NMR spectroscopy, in combination with density functional theory (DFT) calculations, confirms the presence of a rare Tl-H orbital interaction. According to DFT, the 1H chemical shift of the Tl-adjacent hydride ligands of [1]+ includes 7.7 ppm of deshielding due to spin-orbit effects from the heavy Tl atom. This study provides valuable new insights into a rare class of metal hydrides, given that [1][OTf] is only the third isolable species reported to contain a Tl-H interaction.

3.
Environ Sci Technol ; 58(19): 8510-8517, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695484

RESUMO

Anthropogenic activities have fundamentally changed the chemistry of the Baltic Sea. According to results reported in this study, not even the thallium (Tl) isotope cycle is immune to these activities. In the anoxic and sulfidic ("euxinic") East Gotland Basin today, Tl and its two stable isotopes are cycled between waters and sediments as predicted based on studies of other redox-stratified basins (e.g., the Black Sea and Cariaco Trench). The Baltic seawater Tl isotope composition (ε205Tl) is, however, higher than predicted based on the results of conservative mixing calculations. Data from a short sediment core from East Gotland Basin demonstrates that this high seawater ε205Tl value originated sometime between about 1940 and 1947 CE, around the same time other prominent anthropogenic signatures begin to appear in the same core. This juxtaposition is unlikely to be coincidental and suggests that human activities in the surrounding area have altered the seawater Tl isotope mass-balance of the Baltic Sea.


Assuntos
Sedimentos Geológicos , Oceanos e Mares , Água do Mar , Tálio , Água do Mar/química , Sedimentos Geológicos/química , Atividades Humanas , Humanos , Monitoramento Ambiental , Poluentes Químicos da Água , Isótopos
4.
Environ Sci Technol ; 58(5): 2373-2383, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271998

RESUMO

Most nonoccupational human exposure to thallium (Tl) occurs via consumption of contaminated food crops. Brassica cultivars are common crops that can accumulate more than 500 µg Tl g-1. Knowledge of Tl uptake and translocation mechanisms in Brassica cultivars is fundamental to developing methods to inhibit Tl uptake or conversely for potential use in phytoremediation of polluted soils. Brassica cultivars (25 in total) were subjected to Tl dosing to screen for Tl accumulation. Seven high Tl-accumulating varieties were selected for follow-up Tl dosing experiments. The highest Tl accumulating Brassica cultivars were analyzed by synchrotron-based micro-X-ray fluorescence to investigate the Tl distribution and synchrotron-based X-ray absorption near-edge structure spectroscopy (XANES) to unravel Tl chemical speciation. The cultivars exhibited different Tl tolerance and accumulation patterns with some reaching up to 8300 µg Tl g-1. The translocation factors for all the cultivars were >1 with Brassica oleracea var. acephala (kale) having the highest translocation factor of 167. In this cultivar, Tl is preferentially localized in the venules toward the apex and along the foliar margins and in minute hot spots in the leaf blade. This study revealed through scanning electron microscopy and X-ray fluorescence analysis that highly Tl-enriched crystals occur in the stoma openings of the leaves. The finding is further validated by XANES spectra that show that Tl(I) dominates in the aqueous as well as in the solid form. The high accumulation of Tl in these Brassica crops has important implications for food safety and results of this study help to understand the mechanisms of Tl uptake and translocation in these crops.


Assuntos
Brassica , Poluentes do Solo , Humanos , Brassica/química , Tálio/análise , Verduras , Raios X , Fluorescência , Biodegradação Ambiental , Produtos Agrícolas
5.
Environ Res ; 241: 117577, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923109

RESUMO

The prevalence of toxic element thallium (Tl) in soils is of increasing concern as a hidden hazard in agricultural systems and food chains. In the present work, pure biochar (as a comparison) and jacobsite (MnFe2O4)-biochar composite (MFBC) were evaluated for their immobilization effects in Tl-polluted agricultural soils (Tl: ∼10 mg/kg). Overall, MFBC exhibited an efficient effect on Tl immobilization, and the effect was strengthened with the increase of amendment ratio. After being amended by MFBC for 15 and 30 days, the labile fraction of Tl in soil decreased from 1.55 to 0.97 mg/kg, and from 1.51 to 0.88 mg/kg, respectively. In addition, pH (3.05) of the highly acidic soil increased to a maximum of 3.97 after the immobilization process. Since the weak acid extractable and oxidizable Tl were the preponderantly mitigated fractions and displayed a negative correlation with pH, it can be inferred that pH may serve as one of the most critical factors in regulating the Tl immobilization process in MFBC-amended acidic soils. This study indicated a great potential of jacobsite-biochar amendment in stabilization and immobilization of Tl in highly acidic and Tl-polluted agricultural soils; and it would bring considerable environmental benefit to these Tl-contaminated sites whose occurrence has significantly increased in recent decades near the pyrite or other sulfide ore mining and smelting area elsewhere.


Assuntos
Poluentes do Solo , Tálio , Tálio/análise , Solo , Sulfetos , Poluentes do Solo/análise
6.
Environ Res ; 251(Pt 2): 118716, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490627

RESUMO

The effect of changes in microbial community structure on the migration and release of toxic heavy metal (loid)s is often ignored in ecological restoration. Here, we investigated a multi-metal (mercury and thallium, Tl) mine waste slag. With particular focus on its strong acidity, poor nutrition, and high toxicity pollution characteristics, we added fish manure and carbonate to the slag as environmental-friendly amendments. On this basis, ryegrass, which is suitable for the remediation of metal waste dumps, was then planted for ecological restoration. We finally explored the influence of changes in microbial community structure on the release of Tl and As in the waste slag during vegetation reconstruction. The results show that the combination of fish manure and carbonate temporarily halted the release of Tl, but subsequently promoted the release of Tl and arsenic (As), which was closely related to changes in the microbial community structure in the waste slag after fish manure and carbonate addition. The main reason for these patterns was that in the early stage of the experiment, Bacillaceae inhibited the release of Tl by secreting extracellular polymeric substances; with increasing time, Actinobacteriota became the dominant bacterium, which promoted the migration and release of Tl by mycelial disintegration of minerals. In addition, the exogenously added organic matter acted as an electron transport medium for reducing microorganisms and thus helped to reduce nitrate or As (Ⅴ) in the substrate, which reduced the redox potential of the waste slag and promoted As release. At the same time, the phylum Firmicutes, including specific dissimilatory As-reducing bacteria that are capable of converting As into a more soluble form, further promoted the release of As. Our findings provide a theoretical basis for guiding the ecological restoration of relevant heavy-metal (loid) mine waste dumps.


Assuntos
Mercúrio , Mineração , Tálio , Mercúrio/análise , Mercúrio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/química , Metais Pesados/análise , Microbiota/efeitos dos fármacos , Resíduos Industriais/análise , Recuperação e Remediação Ambiental/métodos , Microbiologia do Solo
7.
Arch Toxicol ; 98(7): 2085-2100, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619592

RESUMO

Thallium (Tl) and its two cationic species, Tl(I) and Tl(III), are toxic for most living beings. In this work, we investigated the effects of Tl (10-100 µM) on the viability and proliferation capacity of the adherent variant of PC12 cells (PC12 Adh cells). While both Tl(I) and Tl(III) halted cell proliferation from 24 h of incubation, their viability was ~ 90% even after 72 h of treatment. At 24 h, increased levels of γH2AX indicated the presence of DNA double-strand breaks. Simultaneously, increased expression of p53 and its phosphorylation at Ser15 were observed, which were associated with decreased levels of p-AKTSer473 and p-mTORSer2448. At 72 h, the presence of large cytoplasmic vacuoles together with increased autophagy predictor values suggested that Tl may induce autophagy in these cells. This hypothesis was corroborated by images obtained by transmission electron microscopy (TEM) and from the decreased expression at 72 h of incubation of SQSTM-1 and increased LC3ß-II to LC3ß-I ratio. TEM images also showed enlarged ER that, together with the increased expression of IRE1-α from 48 h of incubation, indicated that Tl-induced ER stress preceded autophagy. The inhibition of autophagy flux with chloroquine increased cell mortality, suggesting that autophagy played a cytoprotective role in Tl toxicity in these cells. Together, results indicate that Tl(I) or Tl(III) are genotoxic to PC12 Adh cells which respond to the cations inducing ER stress and cytoprotective autophagy.


Assuntos
Autofagia , Proliferação de Células , Sobrevivência Celular , Estresse do Retículo Endoplasmático , Tálio , Autofagia/efeitos dos fármacos , Células PC12 , Animais , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Tálio/toxicidade , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fosforilação , Microscopia Eletrônica de Transmissão
8.
Handb Exp Pharmacol ; 283: 249-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37563251

RESUMO

Transporters of the solute carrier family 12 (SLC12) carry inorganic cations such as Na+ and/or K+ alongside Cl across the plasma membrane of cells. These tightly coupled, electroneutral, transporters are expressed in almost all tissues/organs in the body where they fulfil many critical functions. The family includes two key transporters participating in salt reabsorption in the kidney: the Na-K-2Cl cotransporter-2 (NKCC2), expressed in the loop of Henle, and the Na-Cl cotransporter (NCC), expressed in the distal convoluted tubule. NCC and NKCC2 are the targets of thiazides and "loop" diuretics, respectively, drugs that are widely used in clinical medicine to treat hypertension and edema. Bumetanide, in addition to its effect as a loop diuretic, has recently received increasing attention as a possible therapeutic agent for neurodevelopmental disorders. This chapter also describes how over the past two decades, the pharmacology of Na+ independent transporters has expanded significantly to provide novel tools for research. This work has indeed led to the identification of compounds that are 100-fold to 1000-fold more potent than furosemide, the first described inhibitor of K-Cl cotransport, and identified compounds that possibly directly stimulate the function of the K-Cl cotransporter. Finally, the recent cryo-electron microscopy revolution has begun providing answers as to where and how pharmacological agents bind to and affect the function of the transporters.


Assuntos
Cloretos , Simportadores de Cloreto de Sódio-Potássio , Humanos , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Cloretos/metabolismo , Microscopia Crioeletrônica , Membro 3 da Família 12 de Carreador de Soluto , Cátions/metabolismo
9.
Ecotoxicol Environ Saf ; 276: 116290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599154

RESUMO

Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.


Assuntos
Arabidopsis , Estresse Oxidativo , Tálio , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Tálio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Poluentes do Solo/toxicidade
10.
Int J Phytoremediation ; : 1-18, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028288

RESUMO

Thallium (Tl), a key element in high-tech industries, is recognized as a priority pollutant by the US EPA and EC. Tl accumulation threatens aquatic ecosystems. Despite its toxicity, little is known about its impact on cyanobacteria. This study explores the biochemical mechanisms of Tl(I) toxicity in cyanobacteria, focusing on physiology, metabolism, oxidative damage, and antioxidant responses. To this end, Anabaena and Nostoc were exposed to 400 µg/L, and 800 µg/L of Tl(I) over seven days. Anabaena showed superior Tl(I) accumulation with 7.8% removal at 400 µg/L and 9.5% at 800 µg/L, while Nostoc removed 2.2% and 7.4%, respectively. Tl(I) exposure significantly reduced the photosynthesis rate and function, more than in Nostoc. It also altered primary metabolism, increasing sugar levels and led to higher amino and fatty acids levels. While Tl(I) induced cellular damage in both species, Anabaena was less affected. Both species enhanced their antioxidant defense systems, with Anabaena showing a 175.6% increase in SOD levels under a high Tl(I) dose. This suggests that Anabaena's robust biosorption and antioxidant systems could be effective for Tl(I) removal. The study improves our understanding of Tl(I) toxicity, tolerance, and phycoremediation in cyanobacteria, aiding future bioremediation strategies.


This study presents novel insights into thallium (Tl) phycoremediation using Anabaena laxa and Nostoc muscorum, crucial for addressing the increasing contamination concerns stemming from high-tech industries. Elucidating the tolerance mechanisms and physiological responses of these cyanobacterial species to Tl(I) exposure. It highlights the potential of Anabaena laxa as an effective bio-remediator, offering a sustainable solution to mitigate Tl(I) environmental impact.

11.
Sensors (Basel) ; 24(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38400364

RESUMO

This article presents a new working electrode based on a bismuth-plated, gold-based microelectrode array, which is suitable for determining thallium(I) species using anodic stripping voltammetry (ASV). It allowed a significant increase in the sensitivity as compared to other voltammetric sensors. The main experimental conditions and the instrumental parameters were optimized. A very good proportionality between the Tl(I) peak current and its concentration was evidenced in the range from 5 × 10-10 up to 5 × 10-7 mol L-1 (R = 0.9989) for 120 s of deposition and from 2 × 10-10 up to 2 × 10-7 mol L-1 (R = 0.9988) for 180 s. A limit of detection (LOD) of 8 × 10-11 mol L-1 for a deposition time of 180 s was calculated. The effects of interfering ions on the Tl(I) analytical signal were studied. The proposed method was applied for quantitative Tl(I) detection in water certified reference material TM 25.5 as well as in spiked real water samples, for which satisfactory recovery values between 98.7 and 101.8% were determined.

12.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731969

RESUMO

This review offers a synthesis of the current understanding of the impact of low-dose thallium (Tl) on public health, specifically emphasizing its diverse effects on various populations and organs. The article integrates insights into the cytotoxic effects, genotoxic potential, and molecular mechanisms of thallium in mammalian cells. Thallium, a non-essential heavy metal present in up to 89 different minerals, has garnered attention due to its adverse effects on human health. As technology and metallurgical industries advance, various forms of thallium, including dust, vapor, and wastewater, can contaminate the environment, extending to the surrounding air, water sources, and soil. Moreover, the metal has been identified in beverages, tobacco, and vegetables, highlighting its pervasive presence in a wide array of food sources. Epidemiological findings underscore associations between thallium exposure and critical health aspects such as kidney function, pregnancy outcomes, smoking-related implications, and potential links to autism spectrum disorder. Thallium primarily exerts cellular toxicity on various tissues through mitochondria-mediated oxidative stress and endoplasmic reticulum stress. This synthesis aims to shed light on the intricate web of thallium exposure and its potential implications for public health, emphasizing the need for vigilant consideration of its risks.


Assuntos
Saúde Pública , Tálio , Humanos , Tálio/toxicidade , Animais , Exposição Ambiental/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos
13.
J Environ Manage ; 365: 121524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897082

RESUMO

Thallium (Tl) as a prominent priority contaminant in aquatic environment necessitates rigorous regulation. However, limited horizon devotes the impact of selective oxidation on the process of thallium purification. In this study, selective active radical of singlet oxygen (1O2) was continually generated for Tl(Ⅰ) oxidation accomplished with efficient Tl(Ⅲ) immobilization using iron-driven copper oxide (CuFe)/peroxymonosulfate (PMS). Fe-doping changed the active center of electronic structure for enhancing the catalytic and adsorptive reactivities, and installed magnetism for solid-liquid separation. Rapid reaction rate (0.253 min-1) coupled with vigorous elimination efficiency (98.32%) relied on electrostatic attraction, surface complexation, and H-bond interaction. EPR and XPS analyses demonstrated that the synergistic effects of ≡ Cu(Ⅰ)/≡Cu(Ⅱ) and ≡ Fe(Ⅲ)/≡Fe(Ⅱ) redounded to the sustained generation of 1O2 through the pathway of PMS → •O2- → 1O2, and 1O2 exploited an advantage to selectively oxidize Tl(Ⅰ) to Tl(Ⅲ). 3D isosurface cubic charts revealed that the immobilizing ability of Tl(Ⅲ) hydrate for CuFe was notably superior to that of Tl(Ⅲ) hydrate for CuO and Tl(Ⅰ) hydrate for CuO/CuFe, which further attested surface reactivity promoted stable immobilization form. This work develops the continuous generation of 1O2 and stable immobilization with the goal of efficiently cleansing Tl-containing wastewater.


Assuntos
Ferro , Oxigênio Singlete , Tálio , Tálio/química , Ferro/química , Oxigênio Singlete/química , Oxirredução , Cobre/química , Catálise
14.
J Environ Manage ; 367: 121861, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096733

RESUMO

Thallium (Tl) is a highly toxic metal, and its contamination in soils entails high risks to human health via food chain. It remains largely unknown of the effects of applying biochar on Tl uptake in paddy systems despite that few studies have shown that biochar exhibits great potential for decreasing Tl bioavailability in soils. Herein, we examined the mitigating effects of the application of biochar (5 and 20 g/kg pristine biochar; 5 and 20 g/kg Fe/Mn-modified biochar) on Tl uptake in paddy soil and rice plant after an entire rice growth period. The results suggested that the application of Fe/Mn-modified biochar (FMBC) considerably mitigated the accumulation of Tl in different tissues of rice plants. Specifically, total Tl content in rice plants treated with FMBC-20 decreased by over 75% compared with control experiment. In addition, the amendment of FMBC in Tl-rich paddy soils can enhance the communities of microorganisms (Actinobacteria and Proteobacteria). Further analysis of the soil microbial symbiosis network revealed that FMBC promotes the living microorganisms to play modular synergistic interactions, which is crucial for FMBC-induced Tl stabilization in soils. All these findings indicated that FMBC is an efficient and environmentally friendly Tl-immobilization alternative material and can be potentially used in the remediation of Tl-contaminated paddy soils and/or cropland.


Assuntos
Carvão Vegetal , Oryza , Poluentes do Solo , Solo , Tálio , Oryza/crescimento & desenvolvimento , Carvão Vegetal/química , Solo/química , Microbiologia do Solo
15.
J Comput Chem ; 44(25): 2016-2029, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367222

RESUMO

We have investigated the NMR chemical shift of 205 Tl in several thallium compounds, ranging from small covalent Tl(I) and Tl(III) molecules to supramolecular complexes with large organic ligands and some thallium halides. NMR calculations were run at the ZORA relativistic level, with and without spin-orbit coupling using few selected GGA and hybrid functionals, namely BP86, PBE, B3LYP, and PBE0. We also tested solvent effects both at the optimization level and at the NMR calculation step. At the ZORA-SO-PBE0 (COSMO) level of theory we find a very good performance of the computational protocol that allows to discard or retain possible structures/conformations based on the agreement between the calculated chemical shift and the experimental value.

16.
Chemistry ; 29(4): e202202911, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36259382

RESUMO

The coordination chemistry of only Lewis-base (LB)-stabilized pnictogenylboranes EH2 BH2 ⋅NMe3 (E=P, As) towards Tl(I) salts has been studied. The reaction of Tl[BArCl ] (BArCl =[B(3,5-C6 H3 Cl2 )4 ]- ) with the corresponding pnictogenylborane results in the formation of [Tl(EH2 BH2 ⋅NMe3 )][BArCl ] (1 a: E=P; 1 b: E=As). Whereas the Tl ion in 1 a/b is monocoordinated, the exchange of the weakly coordinating anion (WCA) in the Tl(I) salt leads to the formation of a trigonal pyramidal coordination mode at the Tl atom by coordination of three equivalents of EH2 BH2 ⋅ NMe3 in [Tl(EH2 BH2 ⋅ NMe3 )3 ][WCA] (2 a: E=P, WCA=TEFCl ; 2 b: E=As, WCA=TEF) (TEF=[Al{OC(CF3 )3 }4 ]- , TEFCl =[Al{(OC(CF3 )2 (CCl3 )}4 ]- ). Furthermore, by using two equivalents of PH2 BH2 ⋅NMe3 , a Tl(I)-mediated P-P coupling takes place in CH2 Cl2 as solvent resulting in [Me3 N⋅BH2 PH2 PHBH2 ⋅NMe3 ][WCA] (WCA=TEF, 3 a; BArCl , 3 b; TEFCl , 3 c). In contrast, for the arsenic derivatives 1 b and 2 b, no coupling reaction is observed. The underlying chemical processes are elucidated by quantum chemical computations.

17.
Chemphyschem ; 24(17): e202300332, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268595

RESUMO

A remarkable distinction between boron and carbon hydrides lies in their extremely different bonding patterns and chemical reactivity, resulting in diverse areas of application. Particularly, carbon, characterized by classical two-center - two-electron bonds, gives rise to organic chemistry. In contrast, boron forms numerous exotic and non-intuitive compounds collectively called non-classical structures. It is reasonable to anticipate that other elements of Group 13 exhibit their own unusual bonding patterns; however, our knowledge of the hydride chemistry for other elements in Group 13 is much more limited, especially for the heaviest stable element, thallium. In this work, we performed a conformational analysis of Tl2 Hx and Tl3 Hy (x=0-6, y=0-5) series via Coalescence Kick global minimum search algorithm, DFT, and ab initio quantum chemistry methods; we investigated the bonding pattern using the AdNDP algorithm, thermodynamic stability, and stability toward electron detachment. All found global minimum structures are classified as non-classical structures featuring at least one multi-center bond.

18.
Environ Sci Technol ; 57(19): 7466-7477, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37134314

RESUMO

Thallium (Tl) redox state determines its speciation and fate in aqueous environments. Despite the high potential of natural organic matter (NOM) providing the reactive groups to complex and reduce Tl(III), the kinetics and mechanisms by which NOM influences the Tl redox transformation have remained insufficiently understood. Here, we studied the reduction kinetics of Tl(III) in acidic Suwannee River fulvic acid (SRFA) solutions under dark and solar-irradiated conditions. Our results show that the thermal Tl(III) reduction occurs by the reactive organic moieties in SRFA, with the electron-donating capacities of SRFA increased with pH and decreased with [SRFA]/[Tl(III)] ratios. Solar irradiation promoted Tl(III) reduction in SRFA solutions as a result of ligand-to-metal charge transfer (LMCT) within the photoactive Tl(III) species as well as an additional reduction process mediated by a photogenerated superoxide. We demonstrated that the formation of Tl(III)-SRFA complexes decreased the reducibility of Tl(III), with the kinetics dependent on the nature of the binding component and SRFA concentrations. A "three ligand class" kinetics model has been developed and satisfactorily describes Tl(III) reduction kinetics over a range of experimental conditions. The insights presented here should assist in understanding and predicting the NOM-mediated speciation and redox cycle of Tl in a sunlit environment.


Assuntos
Ferro , Tálio , Ferro/química , Luz Solar , Cinética , Ligantes , Oxirredução
19.
Environ Sci Technol ; 57(7): 2864-2876, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36745568

RESUMO

Element contamination, including that from heavy metals, is associated with gastrointestinal tumorigenesis, but the effects and mechanisms of crucial element exposure associated with colorectal cancer remain unclear. We profiled 56 elements by ICP-MS and used logistic regression, LASSO, BKMR, and GAM to identify colorectal cancer-relevant elements. A series of biochemical experiments were performed to demonstrate the cytotoxicity and the mechanisms of malignant transformation after metal exposure. Using an elementomics approach, we first found that the metal thallium (Tl) was positively correlated with many toxic metals and was associated with a significantly increased risk of colorectal cancer. Acute exposure to Tl induced cytotoxicity and cell death by accelerating the generation of reactive oxygen species and DNA damage. Chronic exposure to Tl led to the inhibition of cell death and thereby induced the malignant transformation of normal colon cells and xenograft tumor formation in nude mice. Furthermore, we describe the first identification of a significant metal quantitative trait locus for the novel colorectal cancer susceptibility locus rs1511625 near ATP13A3. Mechanistically, Tl increased the level of aberrant N6-methyladenosine (m6A) modification of ATP13A3 via the METLL3/METTL14/ALKBH5-ATP13A3 axis to promote colorectal tumorigenesis. This study provides a basis for the development of public health strategies for reducing metal exposure among populations at high risk for colorectal cancer.


Assuntos
Neoplasias Colorretais , Metais Pesados , Camundongos , Animais , Humanos , Camundongos Nus , Carcinogênese , Metais Pesados/toxicidade , Tálio/toxicidade , Neoplasias Colorretais/induzido quimicamente , Adenosina Trifosfatases , Proteínas de Membrana Transportadoras
20.
Biometals ; 36(5): 1125-1140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37222858

RESUMO

The similarities between thallium and potassium have suggested the use of calcium polystyrene sulfonate (CPS), an oral ion exchange resin, as a potential agent against thallium intoxication. Therefore, the study was an attempt to evaluate the efficacy of CPS and Prussian blue when given alone or in combination against thallium toxicity. The effect on binding capacity was investigated in terms of contact time, amount of CPS, influence of pH, simulated physiological solutions and interference of potassium ions. Also, rats were given single dose of thallium chloride (20 mg kg-1) and the treatment with PB and CPS was given for 28 days as CPS 30 g kg-1, orally, twice a day, PB 3 g kg-1, orally, twice a day and their combination. The effect of antidotal treatment was evaluated by calculating the thallium levels in various organs, blood, urine and feces. The results of the in vitro study indicated exceedingly quick binding in the combination of CPS and PB as compared to PB alone. Also, it was found that the binding capacity at pH 2.0 was considerably increased for PB with CPS (184.656 mg g-1) as compared to PB (37.771 mg g-1). Furthermore, statistically significant results were obtained in the in vivo study as after 7th day, thallium levels in blood of rats treated with combination were reduced by 64% as compared to control group and 52% as compared to alone PB treated group. Also, Tl retention in liver, kidney, stomach, colon and small intestine of combination treated rats was significantly reduced to 46%, 28%, 41%, 32% and 33% respectively, as compared to alone PB treated group. These findings demonstrate this as a good antidotal option against thallium intoxication.


Assuntos
Antídotos , Tálio , Ratos , Animais , Tálio/metabolismo , Antídotos/farmacologia , Antídotos/uso terapêutico , Ferrocianetos/farmacologia , Ferrocianetos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA