Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Small ; : e2406691, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394991

RESUMO

Functional third components targeted to improve a specific property of organic solar cells is an effective strategy. However, introducing a third component to simultaneously improve efficiency and stability and achieve good performance in thick-film devices has rarely been reported. Herein, low diffusion third components IDCN and ID2CN are reported to achieve a power conversion efficiency (PCE) of 18.08% and a high short-circuit current (J SC) of 27.82 mA cm-2, one of the highest values based on PM6:Y6. They increase light harvesting in the range of 400-500 nm while enhancing energy transfer via Förster resonance energy transfer (FRET). A tightly ordered molecular arrangement is achieved by modulating the preaggregation and film formation kinetics of Y6, which enhance exciton dissociation and charge transport. Moreover, the low-diffusion third component can effectively restrict the diffusion of Y6 to improve the morphology stability, and the T90 lifetime is increased from 689 to 1545 h. In 300 nm thick-film devices, PM6:ID2CN:Y6 achieves a PCE of 15.01%, much higher than PM6:Y6's 12.83%, demonstrating the great potential of ID2CN in thick-film devices.

2.
Small ; 20(24): e2309486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174606

RESUMO

Inorganic thick-film dielectric capacitors with ultrahigh absolute recovered energy at low electric fields are extremely desired for their wide application in pulsed power systems. However, a long-standing technological bottleneck exists between high absolute energy and large recovered energy density. A new strategy is offered to fabricate selected all-inorganic 0-3 composite thick films up to 10 µm by a modified sol-slurry method. Here, the ceramic powder is dispersed into the sol-gel matrix to form a uniform suspension, assisted by powder, therefore, the 2 µm-thickness after single layer spin coating. To enhance the energy-storage performances, the composites process is thoroughly optimized by ultrafine powder (<50 nm) technique based on a low-cost coprecipitation method instead of the solid-state and sol-gel methods. 0D coprecipitation powder has a similar dielectric constant to the corresponding 3D films, thus uneven electrical field distributions is overcome. Moreover, the increase of interfacial polarization is realized due to the larger specific surface area. A maximum recoverable energy density of 14.62 J cm-3 is obtained in coprecipitation thick films ≈2.2 times that of the solid-state powder and ≈1.3 times for sol-gel powder. This study provides a new paradigm for further guiding the design of composite materials.

3.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610357

RESUMO

Nanoparticles of MgSb2O6 were synthesized using a microwave-assisted wet chemistry method, followed by calcination at 700 °C. Their ability to detect different concentrations of propane gas (C3H8) at various operating voltages was evaluated. The material's crystalline phase was identified using X-ray powder diffraction (XRD). The morphology was analyzed by scanning electron microscopy (SEM), finding bar- and polyhedron-type geometries. Through transmission electron microscopy (TEM), we found particle sizes of 8.87-99.85 nm with an average of ~27.63 nm. Employing ultraviolet-visible (UV-Vis) spectroscopy, we found a band gap value of ~3.86 eV. Thick films made with MgSb2O6 powders were exposed to atmospheres containing 150, 300, 400, and 600 ppm of propane gas for dynamic testing. The time-dependent sensitivities were ~61.09, ~88.80, ~97.65, and ~112.81%. In addition, tests were carried out at different operating voltages (5-50 V), finding very short response and recovery times (~57.25 and ~18.45 s, respectively) at 50 V. The excellent dynamic response of the MgSb2O6 is attributed mainly to the synthesis method because it was possible to obtain nanometric-sized particles. Our results show that the trirutile-type oxide MgSb2O6 possesses the ability, efficiency, and thermal stability to be applied as a gas sensor for propane.

4.
Small ; 19(52): e2305357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635124

RESUMO

Solution-processed organic-inorganic hybrid perovskite polycrystalline thick films have shown great potential in X-ray detection. However, the preparation of compact perovskite thick films with large area is still challenging due to the limitation of feasible ink formulation and pinholes caused by solvent volatilization. Post-treatment and hot-pressing are usually involved to improve the film quality, which is however unsuitable for subsequent integration. In this work, a homogeneous bridging strategy is developed to prepare compact perovskite films directly. A stable perovskite slurry with suitable viscosity consisting of undissolved grains and supersaturated solution is formed by adding a weak coordination solvent to the pre-synthesized microcrystalline powders. Small perovskite grains in situ grow from the saturated solution during the annealing, filling the pinholes and connecting the surrounding original grains. As a result, large-area perovskite thick film with tight grain arrangement and ultralow current drift is blade-coated to achieve X-ray imaging. The optimal device displays an impressive mobility-lifetime product of 2.2 × 10-3  cm2  V-1 and a champion ratio of sensitivity to the dark current density of 2.23 × 1011  µC Gyair -1  A-1 . This work provides a simple and effective route to prepare high-quality perovskite thick films, which is instructive for the development of perovskite-based X-ray flat-panel detectors.

5.
Sensors (Basel) ; 23(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36772353

RESUMO

TiO2 and CeO2 are well known as oxygen sensing materials. Despite high sensitivity, the actual utilization of these materials in gas detection remains limited. Research conducted over the last two decades has revealed synergistic effects of TiO2-CeO2 mixed oxides that have the potential to improve some aspects of oxygen monitoring. However, there are no studies on the sensing properties of the TiO2-CeO2 obtained by mechanochemical treatment. We have tested the applicability of the mechanochemically treated TiO2-CeO2 for oxygen detection and presented the results in this study. The sensing layers are prepared as a porous structure by screen printing a thick film on a commercial substrate. The obtained structures were exposed to various O2 concentrations. The results of electrical measurements showed that TiO2-CeO2 films have a significantly lower resistance than pure oxide films. Mixtures of composition TiO2:CeO2 = 0.8:0.2, ground for 100 min, have the lowest electrical resistance among the tested materials. Mixtures of composition TiO2:CeO2 = 0.5:0.5 and ground for 100 min proved to be the most sensitive. The operating temperature can be as low as 320 °C, which places this sensor in the class of semiconductor sensors working at relatively lower temperatures.

6.
Macromol Rapid Commun ; 43(2): e2100585, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34734443

RESUMO

Asymmetric and nanostructured polystyrene-block-poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO or SVEO, S:V:EO ≈ 56:34:10, 79.5 kg mol-1 ) thick films blended with 20 wt% of a short PS homopolymer (hPS, 10.5 kg mol-1 ) are achieved by combining the non-solvent induced phase separation (NIPS) process with a solvent vapor annealing (SVA) treatment. Here, the NIPS step allows for the formation of a highly-permeable sponge-like substructure topped by a dense thin layer exhibiting poorly-ordered nanopores while the subsequent SVA treatment enables to reconstruct the material top surface into a porous monolayer of well-ordered hexagonal perforated lamellae (HPL). This optimized film architecture generated by NIPS-SVA shows a water permeability of 860 L h-1 m-2 bar-1 , which is roughly two times higher than the flux measured through NIPS made PS-b-P2VP-b-PEO/hPS materials having poorly-ordered nanopores. The post-SVA treatment is also revealed as a powerful tool to tailor the thickness of the nanostructure formed within the blended material because monoliths entirely composed of a HPL phase are produced by increasing the time of exposure to a chloroform stream. The water flux of such PS-b-P2VP-b-PEO/hPS monoliths is found to be an order of magnitude lower than that of their asymmetric film homologues.


Assuntos
Nanoestruturas , Gases , Porosidade , Solventes
7.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35590911

RESUMO

Thick films with nominal composition (K0.5Na0.5)0.99Sr0.005NbO3 (KNNSr) on porous ceramics with identical nominal composition were investigated as potential candidates for environmentally benign ultrasonic transducers composed entirely of inorganic materials. In this paper, the processing of the multilayer structure, namely, the thick film by screen printing and the porous ceramic by sacrificial template method, is related to their phase composition, microstructure, electromechanical, and acoustic properties to understand the performance of the devices. The ceramic with a homogeneous distribution of 8 µm pores had a sufficiently high attenuation coefficient of 0.5 dB/mm/MHz and served as an effective backing. The KNNSr thick films sintered at 1100 °C exhibited a homogeneous microstructure and a relative density of 97%, contributing to a large dielectric permittivity and elastic constant and yielding a thickness coupling factor kt of ~30%. The electroacoustic response of the multilayer structure in water provides a centre frequency of 15 MHz and a very large fractional bandwidth (BW) of 127% at -6 dB. The multilayer structure is a candidate for imaging applications operating above 15 MHz, especially by realising focused-beam structure through lenses to further increase the sensitivity in the focal zone.

8.
Sensors (Basel) ; 21(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668546

RESUMO

Zinc oxide (ZnO) is one of the main functional materials used to realize chemiresistive gas sensors. In addition, ZnO can be grown through many different methods obtaining the widest family of unique morphologies. However, the relationship between the ZnO morphologies and their gas sensing properties needs more detailed investigations, also with the aim to improve the sensor performances. In this work, seven nanoforms (such as leaves, bisphenoids, flowers, needles, etc.) were prepared through simple wet chemical synthesis. Morphological and structural characterizations were performed to figure out their growth mechanisms. Then, the obtained powders were deposited through screen-printing technique to realize thick film gas sensors. The gas sensing behavior was tested toward some traditional target gases and some volatile organic compounds (acetone, acetaldehyde, etc.) and compared with ZnO morphologies. Results showed a direct correlation between the sensors responses and the powders features (morphology and size), which depend on the specific synthesis process. The sensors can be divided in two behavioral classes, following the two main morphology kinds: aggregates of nanocrystals (leaves and bisphenoids), exhibiting best performances versus all tested gases and monocrystal based (stars, needle, long needles, flowers, and prisms).

9.
Sensors (Basel) ; 18(5)2018 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-29757249

RESUMO

Micro-electromechanical systems comprising antiferroelectric layers can offer both actuation and transduction to integrated technologies. Micro-cantilevers based on the (Pb0.97La0.02)(Zr0.95Ti0.05)O3 (PLZT) antiferroelectric thick film are fabricated by the micro-nano manufacturing process, to utilize the effect of phase transition induced strain and sharp phase switch of antiferroelectric materials. When micro-cantilevers made of antiferroelectric thick films were driven by sweep voltages, there were two resonant peaks corresponding to the natural frequency shift from 27.8 to 27.0 kHz, before and after phase transition. This is the compensation principle for the PLZT micro-cantilever to tune the natural frequency by the amplitude modulation of driving voltage, rather than of frequency modulation. Considering the natural frequency shift about 0.8 kHz and the frequency tuning ability about 156 Hz/V before the phase transition, this can compensate the frequency shift caused by increasing temperature by tuning only the amplitude of driving voltage, when the ultrasonic micro-transducer made of antiferroelectric thick films works for such a long period. Therefore, antiferroelectric thick films with hetero-structures incorporated into PLZT micro-cantilevers not only require a lower driving voltage (no more than 40 V) than rival bulk piezoelectric ceramics, but also exhibit better performance of frequency invariability, based on the amplitude modulation.

10.
Small ; 13(21)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28398016

RESUMO

Large-scale fabrication of organic solar cells requires an active layer with high thickness tolerability and the use of environment-friendly solvents. Thick films with high-performance can be achieved via a ternary strategy studied herein. The ternary system consists of one polymer donor, one small molecule donor, and one fullerene acceptor. The small molecule enhances the crystallinity and face-on orientation of the active layer, leading to improved thickness tolerability compared with that of a polymer-fullerene binary system. An active layer with 270 nm thickness exhibits an average power conversion efficiency (PCE) of 10.78%, while the PCE is less than 8% with such thick film for binary system. Furthermore, large-area devices are successfully fabricated using polyethylene terephthalate (PET)/Silver gride or indium tin oxide (ITO)-based transparent flexible substrates. The product shows a high PCE of 8.28% with an area of 1.25 cm2 for a single cell and 5.18% for a 20 cm2 module. This study demonstrates that ternary organic solar cells exhibit great potential for large-scale fabrication and future applications.

11.
Small Methods ; : e2400589, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934342

RESUMO

The evolutions of chip thermal management and micro energy harvesting put forward urgent need for micro thermoelectric devices. Nevertheless, low-performance thermoelectric thick films as well as the complicated precision cutting process for hundred-micron thermoelectric legs still remain the bottleneck hindering the advancement of micro thermoelectric devices. In this work, an innovative direct melt-calendaring manufacturing technology is first proposed with specially designed and assembled equipment, that enables direct, rapid, and cost-effective continuous manufacturing of Bi2Te3-based films with thickness of hundred microns. Based on the strain engineering with external glass coating confinement and controlled calendaring deformation degree, enhanced thermoelectric performance has been achieved for (Bi,Sb)2Te3 thick films with highly textured nanocrystals, which can promote carrier mobility over 182.6 cm2 V-1 s-1 and bring out a record-high zT value of 0.96 and 1.16 for n-type and p-type (Bi,Sb)2Te3 thick films, respectively. The nanoscale interfaces also further improve the mechanical strength with excellent elastic modules (over 42.0 GPa) and hardness (over 1.7 GPa), even superior to the commercial zone-melting ingots and comparable to the hot-extrusion (Bi,Sb)2Te3 alloys. This new fabrication strategy is versatile to a wide range of inorganic thermoelectric thick films, which lays a solid foundation for the development of micro thermoelectric devices.

12.
Materials (Basel) ; 17(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39274739

RESUMO

A bottleneck characterized by high strain and low hysteresis has constantly existed in the design process of piezoelectric actuators. In order to solve the problem that actuator materials cannot simultaneously exhibit large strain and low hysteresis under relatively high electric fields, Nb5+-doped 0.975(Ba0.85Ca0.15)[(Zr0.1Ti0.9)0.999Nb0.001]O3-0.025(Bi0.5Na0.5)ZrO3 (BCZTNb0.001-0.025BiNZ) ceramic thick films were prepared by a film scraping process combined with a solid-state twin crystal method, and the influence of sintering temperature was studied systematically. All BCZTNb0.001-0.025BiNZ ceramic thick films sintered at different sintering temperatures have a pure perovskite structure with multiphase coexistence, dense microstructure and typical dielectric relaxation behavior. The conduction mechanism of all samples at high temperatures is dominated by oxygen vacancies confirmed by linear fitting using the Arrhenius law. As the sintering temperature elevates, the grain size increases, inducing the improvement of dielectric, ferroelectric and field-induced strain performance. The 1325 °C sintered BCZTNb0.001-0.025BiNZ ceramic thick film has the lowest hysteresis (1.34%) and relatively large unipolar strain (0.104%) at 60 kV/cm, showing relatively large strain and nearly zero strain hysteresis compared with most previously reported lead-free piezoelectric ceramics and presenting favorable application prospects in the actuator field.

13.
Adv Sci (Weinh) ; 11(28): e2309185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38741387

RESUMO

Quasi-2D perovskite quantum wells are increasingly recognized as promising candidates for direct-conversion X-ray detection. However, the fabrication of oriented and uniformly thick quasi-2D perovskite films, crucial for effective high-energy X-ray detection, is hindered by the inherent challenges of preferential crystallization at the gas-liquid interface, resulting in poor film quality. In addressing this limitation, a carbonyl array-synergized crystallization (CSC) strategy is employed for the fabrication of thick films of a quasi-2D Ruddlesden-Popper (RP) phase perovskite, specifically PEA2MA4Pb5I16. The CSC strategy involves incorporating two forms of carbonyls in the perovskite precursor, generating large and dense intermediates. This design reduces the nucleation rate at the gas-liquid interface, enhances the binding energies of Pb2+ at (202) and (111) planes, and passivates ion vacancy defects. Consequently, the construction of high-quality thick films of PEA2MA4Pb5I16 RP perovskite quantum wells is achieved and characterized by vertical orientation and a pure well-width distribution. The corresponding PEA2MA4Pb5I16 RP perovskite X-ray detectors exhibit multi-dimensional advantages in performance compared to previous approaches and commercially available a-Se detectors. This CSC strategy promotes 2D perovskites as a candidate for next-generation large-area flat-panel X-ray detection systems.

14.
J Phys Condens Matter ; 35(34)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37187189

RESUMO

We report on systematic study of transport properties of a 1000 nm HgTe film. Unlike thinner and strained HgTe films, which are known as high-quality three-dimensional topological insulators, the film under study is much thicker than the limit of pseudomorphic growth of HgTe on a CdTe substrate. Therefore, the 1000 nm HgTe film is expected to be fully relaxed and has the band structure of bulk HgTe, i.e. a zero gap semiconductor. Additionally, the system is characterized by the bands inversion, so that the two-dimensional topological surface states (TSSs) are expected to exist. To check this claim we studied classical and quantum transport response of the system. We demonstrate that by tuning the top-gate voltage one can change the electron-dominating transport to the hole one. The highest electron mobility is found to be more than300×103 cm2 Vs-1. The system exhibits Shubnikov-de Haas (SdH) oscillations with a complicated pattern and shows up to five independent frequencies in corresponding Fourier spectra. These Fourier peaks are attributed to the TSSs, Volkov-Pankratov states and spin-degenerate bulk states in the accumulation layer near the gate. The observed peculiarities of the quantum transport are the strong SdH oscillations of the Hall resistance, and the suppressed oscillatory response of the TSSs.

15.
Micromachines (Basel) ; 14(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37893314

RESUMO

In this work, an enhanced tunable microwave phase shifter is presented. The phase shifter consists of three short circuited stubs and a tapered line. The stubs are connected to graphene pads. Graphene's tunable conductivity is varied by a DC voltage. This in turn causes a reactance variation at the input of the tapered line, which causes a phase variation. The physical parameters of the stubs are optimized for a maximum reactance variation by the help of analytical models, circuit and full wave simulations. Measurements of an optimized prototype are performed and a dynamic phase variation of 59∘ is obtained with an amplitude variation of less than 1 dB.

16.
Micromachines (Basel) ; 14(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38138332

RESUMO

Carbon-based materials, such as graphene, exhibit interesting physical properties and have been recently investigated in sensing applications. In this paper, a novel technique for glucose concentration correlation with the resonant frequency of a microwave resonator is performed. The resonator exploits the variation of the electrical properties of graphene at radio frequency (RF). The described approach is based on the variation in transmission coefficient resonating frequency of a microstrip ring resonator modified with a graphene film. The graphene film is doctor-bladed on the ring resonator and functionalised in order to detect glucose. When a drop with a given concentration is deposited on the graphene film, the resonance peak is shifted. The graphene film is modelled with a lumped element analysis. Several prototypes are realised on Rogers Kappa substrate and their transmission coefficient measured for different concentrations of glucose. Results show a good correlation between the frequency shift and the concentration applied on the film.

17.
Nanomaterials (Basel) ; 12(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296787

RESUMO

Given the demanding use of controlled drug delivery systems, our attention was focused on developing a magnetic film that can be triggered in the presence of a magnetic field for both drug delivery and the actuating mechanism in micropump biomedical microelectromechanical systems (BioMEMS). Magnetic alginate films were fabricated in three steps: the co-precipitation of iron salts in an alkaline environment to obtain magnetite nanoparticles (Fe3O4), the mixing of the obtained nanoparticles with a sodium alginate solution containing glycerol as a plasticizer and folic acid as an active substance, and finally the casting of the final solution in a Petri dish followed by cross-linking with calcium chloride solution. Magnetite nanoparticles were incorporated in the alginate matrix because of the well-established biocompatibility of both materials, a property that would make the film convenient for implantable BioMEMS devices. The obtained film was analyzed in terms of its magnetic, structural, and morphological properties. To demonstrate the hypothesis that the magnetic field can be used to trigger drug release from the films, we studied the release profile in an aqueous medium (pH = 8) using a NdFeB magnet as a triggering factor.

18.
Small Methods ; 6(2): e2101030, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35174984

RESUMO

Large-area fabrication and stacking of various nanometer-thick functional layers from solutions is essentially important for the construction of flexible thin-film optoelectronic devices, but very challenging. The existing fabrication methods suffer from either non-uniformity caused by the coffee-ring effect or serious solution waste (excess of 90% for spin coating), and are hard to scale up and create stacks. Here, it is shown that centrifugal casting is a universal, scalable, and efficient method to fabricate uniform nanometer-thick films and their stacks of various materials. The coffee-ring effect is effectively suppressed, the solution utilization ratio is higher than ≈61%, and the films/stacks show a smooth surface/high-quality interface. Using this method, flexible quantum dot light-emitting diode displays with uniform luminance in a large lighting area of ≈115 cm2 that have not been achieved even on rigid substrates by the existing methods, are realized. This efficient and low-cost solution processing method paves a way for large-area fabrication of various flexible thin-film optoelectronic devices.

19.
Materials (Basel) ; 15(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35057184

RESUMO

The vital role of high-quality-factor (Q) high-frequency (f) dielectric resonators in the growing microwave telecommunication, satellite broadcasting and intelligent transport systems has long motivated the search for new, small size, and lightweight integrated components and packages, prepared by low cost and sustainable processes. One approach is replacing the currently used bulk ceramic dielectrics by thick films of low-sintering-temperature dielectrics fabricated by affordable processes. Here we demonstrate the fabrication of high-Q TiTe3O8 thick films directly on low loss Al2O3 substrates by electrophoretic deposition using sacrificial carbon layer. Nineteen-micrometre-thick TiTe3O8 films on Al2O3 sintered at 700 °C are found to have a relative permittivity εr of 32 and Q × f > 21,000 GHz. Being thus able to measure and provide for the first time the microwave dielectric properties of these films, our results suggest that TiTe3O8 films on Al2O3 substrates are suitable for microlayer microstrip array applications.

20.
Adv Mater ; 34(45): e2206269, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36106624

RESUMO

With the continuous breakthrough of the efficiency of organic photovoltaics (OPVs), their practical applications are on the agenda. However, the thickness tolerance and upscaling in recently reported high-efficiency devices remains challenging. In this work, the multiphase morphology and desired carrier behaviors are realized by utilizing a quaternary strategy. Notably, the exciton separation, carrier mobility, and carrier lifetime are enhanced significantly, the carrier recombination and the energy loss (Eloss ) are reduced, thus beneficial for a higher short-circuit density (JSC ), fill factor (FF), and open-circuit voltage (VOC ) of the quaternary system. Moreover, the intermixing-phase size is optimized, which is favorable for constructing the thick-film and large-area devices. Finally, the device with a 110 nm-thick active layer shows an outstanding power conversion efficiency (PCE) of 19.32% (certified 19.35%). Furthermore, the large-area (1.05 and 72.25 cm2 ) devices with 110 nm thickness present PCEs of 18.25% and 12.20%, and the device with a 305 nm-thick film (0.0473 cm2 ) delivers a PCE of 17.55%, which are among the highest values reported. The work demonstrates the potential of the quaternary strategy for large-area and thick-film OPVs and promotes the practical application of OPVs in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA