Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(13): e2117770119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312359

RESUMO

Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector­vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host­pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.


Assuntos
Proteínas de Bactérias , Borrelia burgdorferi , Complemento C1q , Evasão da Resposta Imune , Lipoproteínas , Doença de Lyme , Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Complemento C1q/imunologia , Humanos , Imunoglobulinas/imunologia , Lipoproteínas/imunologia , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Proteoma/imunologia
2.
J Clin Microbiol ; 62(3): e0104823, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38329335

RESUMO

Human granulocytic anaplasmosis (HGA) is an emerging, rickettsial tick-borne disease caused by Anaplasma phagocytophilum. Sero-epidemiological data demonstrate that this pathogen has a worldwide distribution. The diagnosis of HGA requires a high index of clinical suspicion, even in endemic areas. In recent years, HGA has increasingly been reported from Asia and described in China, Japan, and Korea. We serologically and molecularly screened 467 patients with clinical suspicion of Anaplasmosis. The present study describes the epidemiology, clinical, and laboratory details of 6 confirmed and 43 probable cases of human granulocytic anaplasmosis. One of the HGA patients developed secondary invasive opportunistic Aspergillus fumigatus and Acinetobacter baumanii infection during the illness, which resulted in a fatal infection. The HGA patients without severe complications had excellent treatment responses to doxycycline. The emergence of this newly recognized tick-borne zoonotic HGA in North India is a significant concern for public health and is likely underdiagnosed, underreported, and untreated. Hence, it is also essential to establish a well-coordinated system for actively conducting tick surveillance, especially in the forested areas of the country.IMPORTANCEThe results of the present study show the clinical and laboratory evidence of autochthonous cases of Anaplasma phagocytophilum in North India. The results suggest the possibility of underdiagnosis of HGA in this geographical area. One of the HGA patients developed secondary invasive opportunistic Aspergillus fumigatus and Acinetobacter baumanii infection during the illness, which resulted in a fatal infection.


Assuntos
Anaplasma phagocytophilum , Anaplasmose , Doenças Transmitidas por Carrapatos , Animais , Humanos , Anaplasmose/diagnóstico , Anaplasmose/tratamento farmacológico , Anaplasmose/epidemiologia , Doxiciclina/uso terapêutico , China/epidemiologia , Índia
3.
Appl Environ Microbiol ; 90(7): e0082224, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38899883

RESUMO

Borrelia burgdorferi, a Lyme disease spirochete, causes a range of acute and chronic maladies in humans. However, a primary vertebrate reservoir in the United States, the white-footed deermouse Peromyscus leucopus, is reported not to have reduced fitness following infection. Although laboratory strains of Mus musculus mice have successfully been leveraged to model acute human Lyme disease, the ability of these rodents to model B. burgdorferi-P. leucopus interactions remains understudied. Here, we compared infection of P. leucopus with B. burgdorferi B31 with infection of the traditional B. burgdorferi murine models-C57BL/6J and C3H/HeN Mus musculus, which develop signs of inflammation akin to human disease. We find that B. burgdorferi was able to reach much higher burdens (10- to 30-times higher) in multiple M. musculus skin sites and that the overall dynamics of infection differed between the two rodent species. We also found that P. leucopus remained transmissive to larval Ixodes scapularis for a far shorter period than either M. musculus strain. In line with these observations, we found that P. leucopus does launch a modest but sustained inflammatory response against B. burgdorferi in the skin, which we hypothesize leads to reduced bacterial viability and rodent-to-tick transmission in these hosts. Similarly, we also observe evidence of inflammation in infected P. leucopus hearts. These observations provide new insight into reservoir species and the B. burgdorferi enzootic cycle.IMPORTANCEA Lyme disease-causing bacteria, Borrelia burgdorferi, must alternate between infecting a vertebrate host-usually rodents or birds-and ticks. In order to be successful in that endeavor, the bacteria must avoid being killed by the vertebrate host before it can infect a new larval tick. In this work, we examine how B. burgdorferi and one of its primary vertebrate reservoirs, Peromyscus leucopus, interact during an experimental infection. We find that B. burgdorferi appears to colonize its natural host less successfully than conventional laboratory mouse models, which aligns with a sustained seemingly anti-bacterial response by P. leucopus against the microbe. These data enhance our understanding of P. leucopus host-pathogen interactions and could potentially serve as a foundation to uncover ways to disrupt the spread of B. burgdorferi in nature.


Assuntos
Borrelia burgdorferi , Reservatórios de Doenças , Doença de Lyme , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Peromyscus , Animais , Peromyscus/microbiologia , Camundongos , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Doença de Lyme/veterinária , Borrelia burgdorferi/fisiologia , Borrelia burgdorferi/genética , Reservatórios de Doenças/microbiologia , Modelos Animais de Doenças , Ixodes/microbiologia
4.
Trop Med Int Health ; 29(7): 541-583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38813598

RESUMO

Rickettsia africae is a tick-borne bacteria known to cause African tick bite fever (ATBF). While the disease was first described more than 100 years ago, knowledge of transmission risk factors and disease burden remain poorly described. To better understand the burden of R. africae, this article reviewed and summarized the published literature related to ATBF epidemiology and clinical management. Using a systematic approach, consistent with the PRISMA guidelines, we identified more than 100 eligible articles, including 65 epidemiological studies and 41 case reports. Most reports described R. africae in ticks and livestock, while human studies were less common. Human disease case reports were exclusively among returning travellers from non-endemic areas, which limits our disease knowledge among at-risk populations: people living in endemic regions. Substantial efforts to elucidate the ATBF risk factors and clinical manifestations among local populations are needed to develop effective preventative strategies and facilitate appropriate and timely diagnosis.


Assuntos
Infecções por Rickettsia , Rickettsia , Animais , Humanos , África Subsaariana/epidemiologia , Rickettsia/isolamento & purificação , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/microbiologia , Fatores de Risco , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/microbiologia
5.
Parasitology ; : 1-8, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586999

RESUMO

Ticks represent a major concern for society worldwide. Ticks are also difficult to control, and vaccines represent the most efficacious, safe, economically feasible and environmentally sustainable intervention. The evolution of tick vaccinology has been driven by multiple challenges such as (1) Ticks are difficult to control, (2) Vaccines control tick infestations by reducing ectoparasite fitness and reproduction, (3) Vaccine efficacy against multiple tick species, (4) Impact of tick strain genetic diversity on vaccine efficacy, (5) Antigen combination to improve vaccine efficacy, (6) Vaccine formulations and delivery platforms and (7) Combination of vaccines with transgenesis and paratransgenesis. Tick vaccine antigens evolved from organ protein extracts to recombinant proteins to chimera designed by vaccinomics and quantum vaccinomics. Future directions will advance in these areas together with other novel technologies such as multiomics, AI and Big Data, mRNA vaccines, microbiota-driven probiotics and vaccines, and combination of vaccines with other interventions in collaboration with regions with high incidence of tick infestations and tick-borne diseases for a personalized medicine approach.

6.
J Infect Chemother ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574814

RESUMO

Human granulocytic anaplasmosis (HGA) is a tick-borne infection caused by Anaplasma phagocytophilum. Only seven cases of HGA have been reported in Japan to date. We report the case of a 61-year-old female farmer who developed HGA with rash and rhabdomyolysis. The patient had fever and erythema covering the entire body, including the palms. An induration with an eschar was observed on the right leg, indicating that the patient had been bitten by a tick. Elevated serum creatinine and creatinine kinase levels and hematuria indicated rhabdomyolysis. We suspected Japanese spotted fever, a tick-borne illness caused by Rickettsia Japonica, and administered minocycline and ciprofloxacin for a week. Transient neutropenia and thrombocytopenia were observed, but the symptoms improved. Polymerase chain reaction (PCR) and antibody tests for R. japonica and Orientia tsutsugamushi, which causes scrub typhus, were both negative. The PCR test for severe fever with thrombocytopenia syndrome virus was also negative. Antibodies against A. phagocytophilum-related proteins were detected by western blotting, indicating seroconversion of IgG with paired serum samples, and the patient was diagnosed with HGA. HGA should be suspected in acute febrile patients with a history of outdoor activity and cytopenia, with or without a rash. A testing system and the accumulation of cases in Japan are necessary for the early diagnosis and appropriate treatment of HGA.

7.
J Infect Chemother ; 30(7): 590-596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38159641

RESUMO

INTRODUCTION: Tick-borne diseases (TBDs) are a growing threat in Japan. However, distribution of ticks and their possession of human pathogens remain poorly understood. METHODS: In the present study, we collected 3477 ticks at 6 remote, woodland sites in Ibaraki prefecture between May 23 and November 4, 2021, and investigated the distribution and the possession of spotted fever group Rickettia (SFGR). RESULTS: The collected ticks included Haemaphysalis flava (78.3 %), Haemaphysalis longicornis (9.0 %), Haemaphysalis hystricis (4.6 %), Ixodes turdus (4.3 %), Amblyomma testudinarium (2.1 %), Haemaphysalis cornigera (0.9 %), Haemaphysalis formosensis (0.9 %), Haemaphysalis megaspinosa (0.2 %), Ixodes ovatus (0.1 %), Ixodes nipponensis (0.09 %), and Ixodes columnae (0.03 %). Of 2160 DNA samples extracted from the ticks, the gltA gene and the 17-kDa antigen gene of SFGR were detected in 67 samples. Among 1682 samples from adult and nymph ticks, the positive rate of SFGR was 2.7 %. Sequence analyses of the partial 17-kDa antigen gene demonstrated that the detected SFGR were classified into 8 groups (G1 to G8). The sequences of G2, G4, G5, G6, and G7 were either identical to or differed by one base pair from those of Rickettsia asiatica, Rickettsia tamurae, Rickettsia monacensis, Rickettsia canadensis, and Rickettsia felis, respectively. CONCLUSION: The present study revealed a diverse tick fauna in Ibaraki prefecture, including detection of species commonly found in southwestern Japan. Although the prevalence of SFGR in ticks was lower than in previous studies, several SFGR causing human infection may be present.


Assuntos
Rickettsia , Animais , Japão/epidemiologia , Rickettsia/isolamento & purificação , Rickettsia/genética , Rickettsia/classificação , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Rickettsiose do Grupo da Febre Maculosa/microbiologia , Humanos , Feminino , Masculino , Carrapatos/microbiologia , Ixodidae/microbiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , DNA Bacteriano/genética , Filogenia
8.
BMC Public Health ; 24(1): 1180, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671429

RESUMO

BACKGROUND: Infectious diseases are emerging across temperate regions of the world, and, for some, links have been made between landscapes and emergence dynamics. For tick-borne diseases, public parks may be important exposure sites for people living in urbanized areas of North America and Europe. In most cases, we know more about the ecological processes that determine the hazard posed by ticks as disease vectors than we do about how human population exposure varies in urban natural parks. METHODS: In this study, infrared counters were used to monitor visitor use of a public natural park in southern Quebec, Canada. A risk index representing the probability of encounters between humans and infected vectors was constructed. This was done by combining the intensity of visitor trail use and the density of infected nymphs obtained from field surveillance. Patterns of risk were examined using spatial cluster analysis. Digital forest data and park infrastructure data were then integrated using spatially explicit models to test whether encounter risk levels and its components vary with forest fragmentation indicators and proximity to park infrastructure. RESULTS: Results suggest that, even at a very fine scales, certain landscape features and infrastructure can be predictors of risk levels. Both visitors and Borrelia burgdorferi-infected ticks concentrated in areas where forest cover was dominant, so there was a positive association between forest cover and the risk index. However, there were no associations between indicators of forest fragmentation and risk levels. Some high-risk clusters contributed disproportionately to the risk distribution in the park relative to their size. There were also two high-risk periods, one in early summer coinciding with peak nymphal activity, and one in early fall when park visitation was highest. CONCLUSIONS: Here, we demonstrate the importance of integrating indicators of human behaviour visitation with tick distribution data to characterize risk patterns for tick-borne diseases in public natural areas. Indeed, understanding the environmental determinants of human-tick interactions will allow organisations to deploy more effective risk reduction interventions targeted at key locations and times, and improve the management of public health risks associated with tick-borne diseases in public spaces.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Parques Recreativos , Animais , Humanos , Borrelia burgdorferi/isolamento & purificação , Parques Recreativos/estatística & dados numéricos , Quebeque/epidemiologia , Doença de Lyme/epidemiologia , Ixodes/microbiologia , Florestas , Medição de Risco
9.
Euro Surveill ; 29(18)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699900

RESUMO

BackgroundTick-borne encephalitis (TBE) is a severe, vaccine-preventable viral infection of the central nervous system. Symptoms are generally milder in children and adolescents than in adults, though severe disease does occur. A better understanding of the disease burden and duration of vaccine-mediated protection is important for vaccination recommendations.AimTo estimate TBE vaccination coverage, disease severity and vaccine effectiveness (VE) among individuals aged 0-17 years in Switzerland.MethodsVaccination coverage between 2005 and 2022 was estimated using the Swiss National Vaccination Coverage Survey (SNVCS), a nationwide, repeated cross-sectional study assessing vaccine uptake. Incidence and severity of TBE between 2005 and 2022 were determined using data from the Swiss disease surveillance system and VE was calculated using a case-control analysis, matching TBE cases with SNVCS controls.ResultsOver the study period, vaccination coverage increased substantially, from 4.8% (95% confidence interval (CI): 4.1-5.5%) to 50.1% (95% CI: 48.3-52.0%). Reported clinical symptoms in TBE cases were similar irrespective of age. Neurological involvement was less likely in incompletely (1-2 doses) and completely (≥ 3 doses) vaccinated cases compared with unvaccinated ones. For incomplete vaccination, VE was 66.2% (95% CI: 42.3-80.2), whereas VE for complete vaccination was 90.8% (95% CI: 87.7-96.4). Vaccine effectiveness remained high, 83.9% (95% CI: 69.0-91.7) up to 10 years since last vaccination.ConclusionsEven children younger than 5 years can experience severe TBE. Incomplete and complete vaccination protect against neurological manifestations of the disease. Complete vaccination offers durable protection up to 10 years against TBE.


Assuntos
Encefalite Transmitida por Carrapatos , Cobertura Vacinal , Vacinação , Vacinas Virais , Humanos , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/epidemiologia , Adolescente , Estudos de Casos e Controles , Suíça/epidemiologia , Criança , Estudos Transversais , Masculino , Feminino , Pré-Escolar , Lactente , Vacinação/estatística & dados numéricos , Cobertura Vacinal/estatística & dados numéricos , Vacinas Virais/administração & dosagem , Incidência , Eficácia de Vacinas/estatística & dados numéricos , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Recém-Nascido , Vigilância da População
10.
Exp Appl Acarol ; 93(2): 421-437, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38940943

RESUMO

Due to the extensive use of green urban areas as recreation places, city residents are exposed to tick-borne pathogens. The objectives of our study were (i) to determine the occurrence of ticks in urban green areas, focussing on areas used by humans such as parks, schools and kindergartens, and urban forests, and (ii) to assess the prevalence of Borrelia infections in ticks in Zielona Góra, a medium-sized city in western Poland. A total of 161 ticks representing the two species Ixodes ricinus (34 males, 51 females, 30 nymphs) and Dermacentor reticulatus (20 males, 26 females) were collected from 29 of 72 (40.3%) study sites. In total, 26.1% of the ticks (85.7% of I. ricinus and 14.3% of D. reticulatus) yielded DNA of Borrelia. The difference in the infection rate between I. ricinus and D. reticulatus was significant. Among infected ticks, the most frequent spirochete species were B. lusitaniae (50.0%) and B. afzelii (26.2%), followed by B. spielmanii (9.5%), B. valaisiana (7.1%), B. burgdorferi sensu stricto, (4.8%) and B. miyamotoi (2.4%). No co-infections were found. We did not observe a correlation in the occurrence of Borrelia spirochetes in ticks found in individual study sites that differed in terms of habitat type and height of vegetation. Our findings demonstrate that the Borrelia transmission cycles are active within urban habitats, pointing the need for monitoring of tick-borne pathogens in public green areas. They could serve as guidelines for authorities for the proper management of urban green spaces in a way that may limit tick populations and the potential health risks posed by tick-borne pathogens.


Assuntos
Borrelia , Cidades , Dermacentor , Ixodes , Ninfa , Animais , Polônia , Borrelia/isolamento & purificação , Feminino , Masculino , Ixodes/microbiologia , Ixodes/crescimento & desenvolvimento , Dermacentor/microbiologia , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Parques Recreativos
11.
Exp Appl Acarol ; 93(1): 49-69, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38869724

RESUMO

Ixodes ricinus is a vector of several pathogens of public health interest. While forests are the primary habitat for I. ricinus, its abundance and infection prevalence are expected to vary within forest stands. This study assesses the spatio-temporal variations in tick abundance and infection prevalence with three pathogens in and around a peri-urban forest where human exposure is high. Ticks were sampled multiple times in 2016 and 2018 in multiple locations with a diversity of undergrowth, using the consecutive drags method. Three zoonotic pathogens were screened for, Borrelia burgdorferi s.l., Coxiella burnetii, and Francisella tularensis. The influence of season, type of site and micro-environmental factors on tick abundance were assessed with negative binomial generalized linear mixed-effects models. We collected 1642 nymphs and 181 adult ticks. Ticks were most abundant in the spring, in warmer temperatures, and where undergrowth was higher. Sites with vegetation unaffected by human presence had higher abundance of ticks. Forest undergrowth type and height were significant predictors of the level of tick abundance in a forest. The consecutive drags method is expected to provide more precise estimates of tick abundance, presumably through more varied contacts with foliage. Borrelia burgdorferi s.l. prevalence was estimated from pooled ticks at 5.33%, C. burnetii was detected in six pools and F. tularensis was not detected. Borrelia afzelii was the dominant B. burgdorferi genospecies. Tick abundance and B. burgdorferi s.l. infection prevalence were lower than other estimates in Belgian forests.


Assuntos
Coxiella burnetii , Florestas , Francisella tularensis , Ixodes , Animais , Bélgica/epidemiologia , Ixodes/microbiologia , Ixodes/crescimento & desenvolvimento , Francisella tularensis/isolamento & purificação , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/fisiologia , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Borrelia burgdorferi/isolamento & purificação , Borrelia burgdorferi/fisiologia , Estações do Ano , Densidade Demográfica , Feminino
12.
Rev Argent Microbiol ; 2024 Aug 01.
Artigo em Espanhol | MEDLINE | ID: mdl-39095319

RESUMO

The first autochthonous case of rickettsiosis is reported here. The case occurred in the Costanera Sur Ecological Reserve, a protected area of the City of Buenos Aires, in August 2022, where 4 species of ticks were found, namely Amblyomma aureolatum, Ixodes auritulus sensu lato, Rhipicephalus sanguineus sensu stricto and Amblyomma triste. The epidemiological, ecological, clinical and laboratory aspects that allowed timely diagnosis and appropriate treatment are also described.

13.
Ecol Lett ; 26(12): 2029-2042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37882483

RESUMO

Although the role of host movement in shaping infectious disease dynamics is widely acknowledged, methodological separation between animal movement and disease ecology has prevented researchers from leveraging empirical insights from movement data to advance landscape scale understanding of infectious disease risk. To address this knowledge gap, we examine how movement behaviour and resource utilization by white-tailed deer (Odocoileus virginianus) determines blacklegged tick (Ixodes scapularis) distribution, which depend on deer for dispersal in a highly fragmented New York City borough. Multi-scale hierarchical resource selection analysis and movement modelling provide insight into how deer's movements contribute to the risk landscape for human exposure to the Lyme disease vector-I. scapularis. We find deer select highly vegetated and accessible residential properties which support blacklegged tick survival. We conclude the distribution of tick-borne disease risk results from the individual resource selection by deer across spatial scales in response to habitat fragmentation and anthropogenic disturbances.


Assuntos
Doenças Transmissíveis , Cervos , Ixodes , Infestações por Carrapato , Humanos , Animais , Animais Selvagens , Cidade de Nova Iorque , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Ixodes/fisiologia
14.
Emerg Infect Dis ; 29(12): 2546-2548, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987592

RESUMO

Serosurvey results for Crimean-Congo hemorrhagic fever virus antibodies in dromedary camels in Algeria indicate that the pathogen is circulating endemically in desertic areas, despite the hostile environment. Thus, dromedaries are suitable sentinels for detecting human risk for Crimean-Congo hemorrhagic fever in desertic areas.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Ixodidae , Animais , Humanos , Camelus , Argélia/epidemiologia , Febre Hemorrágica da Crimeia/epidemiologia
15.
Br J Haematol ; 201(3): 480-488, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36650117

RESUMO

The tick-borne pathogen Neoehrlichia (N.) mikurensis is implicated in persistent infection of the vascular endothelium. B cells are crucial for the host defence to this infection. Chronic stimulation of B cells may result in B-cell transformation and lymphoma. Five patients with malignant B-cell lymphoma and concomitant N. mikurensis infection were investigated regarding clinical picture, lymphoma subtype, B-cell lymphoma immunophenotype and IGHV (variable region of the immunoglobulin heavy) gene repertoire. Three of the five patients improved markedly and ceased lymphoma treatment after doxycycline treatment to eliminate N. mikurensis. Sequencing the B-cell lymphoma IGHV genes revealed preferred usage of the IGHV1 (IGHV1-2, and -69) and IGHV3 (IGHV3-15, -21, -23) families. In conclusion, N. mikurensis infection may drive the development of malignant B-cell lymphomas. Eradication of the pathogen appears to induce remission with apparent curing of the lymphoma in some cases.


Assuntos
Infecções por Anaplasmataceae , Linfoma de Células B , Doenças Transmitidas por Carrapatos , Infecções por Anaplasmataceae/complicações , Infecções por Anaplasmataceae/tratamento farmacológico , Infecções por Anaplasmataceae/microbiologia , Linfoma de Células B/etiologia , Linfoma de Células B/genética , Doenças Transmitidas por Carrapatos/microbiologia , Receptores de Antígenos de Linfócitos B , Doxiciclina/uso terapêutico , Antibacterianos/uso terapêutico , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Análise de Sequência de DNA , Imunofenotipagem
16.
J Intern Med ; 293(6): 782-790, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37013266

RESUMO

BACKGROUND: Neoehrlichia mikurensis (N. mikurensis) is a newly discovered tick-borne pathogen that can inflict life-threatening illness in immunocompromised patients. N. mikurensis infection is only detectable by polymerase chain reaction (PCR)-based methodologies. We describe three distinct clinical manifestations of N. mikurensis infection (neoehrlichiosis) in Danish patients receiving B-lymphocyte-depleting therapy, rituximab, for underlying hematological, rheumatological, or neurological disorders. All three patients went through a protracted pre-diagnostic period. METHODS: N. mikurensis DNA was detected and confirmed using two methods. Blood was tested by specific real-time PCR targeting the groEL gene and by 16S and 18S profiling followed by sequencing. Bone marrow was analyzed by 16S and 18S profiling. RESULTS: N. mikurensis was detected in blood samples in all three cases and in bone marrow from one of the three. The severity of the symptoms ranged from prolonged fever lasting more than 6 months to life-threatening hyperinflammation in the form of hemophagocytic lymphohistiocytosis (HLH). Interestingly, all patients presented with splenomegaly and two with hepatomegaly. After starting doxycycline therapy, symptoms were relieved within a few days, and biochemistry and organomegaly quickly normalized. CONCLUSION: We present three Danish patients recognized by the same clinician over a period of 6 months, strongly suggesting that many cases are going unrecognized. Second, we describe the first case of N. mikurensis-induced HLH and emphasize the potential severity of undetected neoehrlichiosis.


Assuntos
Infecções por Anaplasmataceae , Anaplasmataceae , Doenças Transmitidas por Carrapatos , Humanos , Infecções por Anaplasmataceae/diagnóstico , Infecções por Anaplasmataceae/tratamento farmacológico , Anaplasmataceae/genética , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/tratamento farmacológico , Reação em Cadeia da Polimerase em Tempo Real , Hospedeiro Imunocomprometido
17.
Glob Chang Biol ; 29(23): 6647-6660, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846616

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with increasing incidence and geographic extent. The extent to which global climate change affects the incidence of SFTS disease remains obscure. We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in China. The spatial distribution of habitat suitability for the tick Haemaphysalis longicornis was predicted by applying a boosted regression tree model under four alternative climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) for the periods 2030-2039, 2050-2059, and 2080-2089. We incorporate the SFTS cases in the mainland of China from 2010 to 2019 with environmental variables and the projected distribution of H. longicornis into a generalized additive model to explore the current and future spatiotemporal dynamics of SFTS. Our results demonstrate an expanded geographic distribution of H. longicornis toward Northern and Northwestern China, showing a more pronounced change under the RCP8.5 scenario. In contrast, the environmental suitability of H. longicornis is predicted to be reduced in Central and Eastern China. The SFTS incidence in three time periods (2030-2039, 2050-2059, and 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. A heterogeneous trend across provinces, however, was observed, when an increased incidence in Liaoning and Shandong provinces, while decreased incidence in Henan province is predicted. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for tick control and population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas.


Assuntos
Ixodidae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , China/epidemiologia , Ecossistema
18.
Ann Clin Microbiol Antimicrob ; 22(1): 20, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941613

RESUMO

BACKGROUND: The tick-borne bacterium, Neoehrlichia mikurensis (N. mikurensis) can cause severe febrile illness and thromboembolic complications in immunocompromised individuals. We investigated the presence of N. mikurensis DNA in retrospectively collected plasma from a well-characterized cohort of Danish immunocompromised patients. METHODS: Plasma samples from 239 patients with immune dysfunction related to hematological or rheumatological disease or due to immunosuppressive therapy, were retrieved from a transdisciplinary biobank (PERSIMUNE) at Rigshospitalet, Copenhagen, Denmark. Serving as immunocompetent controls, plasma samples from 192 blood donors were included. All samples were collected between 2015 and 2019. Real-time PCR targeting the groEL gene was used to detect N. mikurensis DNA. Sequencing was used for confirmation. Borrelia burgdorferi sensu lato IgG antibodies were detected by ELISA as a proxy of tick exposure. Prevalence was compared using Fisher's exact test. RESULTS: Neoehrlichia mikurensis DNA was detected in 3/239 (1.3%, 95% confidence interval (CI): 0.3 - 3.6%) patients, all of whom primarily had a hematological disease. Follow-up samples of these patients were negative. N. mikurensis DNA was not detected in any of the blood donor samples. IgG antibodies against B. burgdorferi s.l. were detected with similar prevalence in immunocompromised patients and blood donors, i.e., 18/239 (7.5%, 95% CI: 4.8-11.5%) and 11/192 (5.7%, 95%: CI 3.2-10.0%). CONCLUSION: In this study, patients with N. mikurensis were not identified by clinical indication and N. mikurensis may therefore be underdiagnosed in Danish patients. Further investigations are needed to explore the clinical significance and implications of this infection.


Assuntos
Infecções por Anaplasmataceae , Anaplasmataceae , Humanos , Estudos Retrospectivos , Infecções por Anaplasmataceae/epidemiologia , Infecções por Anaplasmataceae/microbiologia , Anaplasmataceae/genética , Hospedeiro Imunocomprometido , Dinamarca/epidemiologia
19.
Med Vet Entomol ; 37(2): 275-285, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36468449

RESUMO

Amblyomma hebraeum is the main vector of Rickettsia africae, the causative agent of African tick bite fever in southern Africa. Because pathogen dispersal is known to be influenced by tick adaptations to climate or host species, this study aimed to analyse the genetic diversity of A. hebraeum and R. africae infection of ticks collected from cattle in the Eastern Cape province of South Africa. DNA was extracted, amplified, and sequenced for the COI and ITS2 markers from A. hebraeum samples and the 17 kDa and ompA genes for rickettsial detection. Between six and ten haplotypes were identified from 40 COI and 31 ITS2 sequences; however, no population structuring was observed among sites (ΦST = 0.22, p < 0.05). All A. hebraeum isolates clustered with southern Africa GenBank isolates. Rickettsia africae was detected in 46.92% (95% CI = 41%-53%, n = 260) of ticks. All R. africae isolates clustered with strain PELE and Chucks, which were reported previously from South Africa. These results confirm that A. hebraeum populations are undergoing a recent population expansion driven by cattle movement, facilitating local and long dispersal events across the Eastern Cape province.


Assuntos
Rickettsia , Carrapatos , Animais , Bovinos , Amblyomma , África do Sul/epidemiologia , Variação Genética
20.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674613

RESUMO

The ectoparasite Ixodes ricinus is an important vector for many tick-borne diseases (TBD) in the northern hemisphere, such as Lyme borreliosis, rickettsiosis, human granulocytic anaplasmosis, or tick-borne encephalitis virus. As climate change will lead to rising temperatures in the next years, we expect an increase in tick activity, tick population, and thus in the spread of TBD. Consequently, it has never been more critical to understand relationships within the microbial communities in ticks that might contribute to the tick's fitness and the occurrence of TBD. Therefore, we analyzed the microbiota in different tick tissues such as midgut, salivary glands, and residual tick material, as well as the microbiota in complete Ixodes ricinus ticks using 16S rRNA gene amplicon sequencing. By using a newly developed DNA extraction protocol for tick tissue samples and a self-designed mock community, we were able to detect endosymbionts and pathogens that have been described in the literature previously. Further, this study displayed the usefulness of including a mock community during bioinformatic analysis to identify essential bacteria within the tick.


Assuntos
Ixodes , Doença de Lyme , Microbiota , Doenças Transmitidas por Carrapatos , Animais , Feminino , Humanos , Ixodes/genética , RNA Ribossômico 16S/genética , Glândulas Salivares/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA