Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 2): 343-354, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372672

RESUMO

Recently, there has been a high demand for elucidating kinetics and visualizing reaction processes under extreme dynamic conditions, such as chemical reactions under meteorite impact conditions, structural changes under nonequilibrium conditions, and in situ observations of dynamic changes. To accelerate material science studies and Earth science fields under dynamic conditions, a submillisecond in situ X-ray diffraction measurement system has been developed using a diamond anvil cell to observe reaction processes under rapidly changing pressure and temperature conditions replicating extreme dynamic conditions. The development and measurements were performed at the high-pressure beamline BL10XU/SPring-8 by synchronizing a high-speed hybrid pixel array detector, laser heating and temperature measurement system, and gas-pressure control system that enables remote and rapid pressure changes using the diamond anvil cell. The synchronized system enabled momentary heating and rapid cooling experiments up to 5000 K via laser heating as well as the visualization of structural changes in high-pressure samples under extreme dynamic conditions during high-speed pressure changes.

2.
Indoor Air ; 31(3): 860-871, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33369785

RESUMO

The rapid development of automated measurement equipment enables researchers to collect greater quantities of time-resolved data from indoor and outdoor environments. While significant, the interpretation of the resulting data can be a time-consuming effort. This paper introduces an automated process of interpreting PM2.5 time-resolved data and differentiating PM2.5 emissions resulting from indoor and outdoor sources. We use Random Forest (RF), a machine learning approach, to study a dataset of 836 indoor emission events that occurred over a 2-week period in 18 apartments in California. In this paper, we show model development and evaluate its performance as the sample size and source vary. We discuss the characteristics of the dataset that tended to help the source identification and why. For example, we show that data from many events and from different apartments are essential for the model to be suitable for analyzing a new separate dataset. We also show that longitudinal data appear to be more helpful than the time frequency of measurements within a given apartment. We use the resulting RF model to analyze PM2.5 data of an entirely separate dataset collected from 65 new homes in California. The RF model identifies 442 indoor emission events, with only a few misidentifications.


Assuntos
Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Tamanho da Partícula , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Humanos , Aprendizado de Máquina , Material Particulado
3.
Int J Mol Sci ; 19(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899245

RESUMO

X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.


Assuntos
Voo Animal , Insetos/ultraestrutura , Fibras Musculares Esqueléticas/ultraestrutura , Difração de Raios X/métodos , Animais , Insetos/fisiologia , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/fisiologia
4.
Adv Exp Med Biol ; 977: 191-197, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685445

RESUMO

The accuracy of images obtained by Diffuse Optical Tomography (DOT) could be substantially increased by the newly developed time resolved (TR) cameras. These devices result in unprecedented data volumes, which present a challenge to conventional image reconstruction techniques. In addition, many clinical applications require taking photons in air regions like the trachea into account, where the diffusion model fails. Image reconstruction techniques based on photon tracking are mandatory in those cases but have not been implemented so far due to computing demands. We aimed at designing an inversion algorithm which could be implemented on commercial graphics processing units (GPUs) by making use of information obtained with other imaging modalities. The method requires a segmented volume and an approximately uniform value for the reduced scattering coefficient in the volume under study. The complex photon path is reduced to a small number of partial path lengths within each segment resulting in drastically reduced memory usage and computation time. Our approach takes advantage of wavelength normalized data which renders it robust against instrumental biases and skin irregularities which is critical for realistic clinical applications. The accuracy of this method has been assessed with both simulated and experimental inhomogeneous phantoms showing good agreement with target values. The simulation study analyzed a phantom containing a tumor next to an air region. For the experimental test, a segmented cuboid phantom was illuminated by a supercontinuum laser and data were gathered by a state of the art TR camera. Reconstructions were obtained on a GPU-installed computer in less than 2 h. To our knowledge, it is the first time Monte Carlo methods have been successfully used for DOT based on TR cameras. This opens the door to applications such as accurate measurements of oxygenation in neck tumors where the presence of air regions is a problem for conventional approaches.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Óptica/métodos , Ar/análise , Algoritmos , Gráficos por Computador , Simulação por Computador , Difusão , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Espectroscopia de Luz Próxima ao Infravermelho/métodos
5.
Indoor Air ; 24(6): 604-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24654966

RESUMO

UNLABELLED: This study is among the first to apply laser-induced fluorescence to characterize bioaerosols at high time and size resolution in an occupied, common-use indoor environment. Using an ultraviolet aerodynamic particle sizer, we characterized total and fluorescent biological aerosol particle (FBAP) levels (1-15 µm diameter) in a classroom, sampling with 5-min resolution continuously during eighteen occupied and eight unoccupied days distributed throughout a one-year period. A material-balance model was applied to quantify per-person FBAP emission rates as a function of particle size. Day-to-day and seasonal changes in FBAP number concentration (NF ) values in the classroom were small compared to the variability within a day that was attributable to variable levels of occupancy, occupant activities, and the operational state of the ventilation system. Occupancy conditions characteristic of lecture classes were associated with mean NF source strengths of 2 × 10(6) particles/h/person, and 9 × 10(4) particles per metabolic g CO2 . During transitions between lectures, occupant activity was more vigorous, and estimated mean, per-person NF emissions were 0.8 × 10(6) particles per transition. The observed classroom peak in FBAP size at 3-4 µm is similar to the peak in fluorescent and biological aerosols reported from several studies outdoors. PRACTICAL IMPLICATIONS: Coarse particles that exhibit fluorescence at characteristic wavelengths are considered to be proxies for biological particles. Recently developed instruments permit their detection and sizing in real time. In a mechanically ventilated classroom, emissions from human occupants were a strong determinant of coarse-mode fluorescent biological aerosol particle (FBAP) levels. Human FBAP emission rates were significant under quiet occupancy conditions and increased with activity level. Fluorescent particle emissions peaked at a diameter of 3­4 µm, which is the expected modal size of airborne particles with associated microbes. Human activity patterns, and associated coarse FBAP and total particle levels varied strongly on short timescales. Thus, the dynamic temporal behavior of aerosol concentrations must be considered when determining collection protocols for samples meant to be representative of average concentrations using time-integrated or 'snapshot' bioaerosol measurement techniques.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Aerossóis/análise , Monitoramento Ambiental , Fluorescência , Humanos , Tamanho da Partícula , Fatores de Tempo , Universidades , Ventilação
6.
Biochem Biophys Rep ; 38: 101712, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38903159

RESUMO

Single-molecule intramolecular dynamics were successfully measured for three variants of SARS-CoV-2 spike protein, alpha: B.1.1.7, delta: B.1.617, and omicron: B.1.1.529, with a time resolution of 100 µs using X-rays. The results were then compared with respect to the magnitude and directions of motions for the three variants. The largest 3-D intramolecular movement was observed for the omicron variant irrespective of ACE2 receptor binding. A more detailed analysis of the intramolecular motions revealed that the distribution state of intramolecular motion for the three variants was completely different with and without ACE2 receptor binding. The molecular dynamics for the trimeric spike protein of the omicron variant increased when ACE2 binding occurred. At that time, the diffusion constant increased from 71.0 [mrad2/ms] to 91.1 [mrad2/ms].

7.
Adv Sci (Weinh) ; 10(19): e2301876, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37096836

RESUMO

Determination of a reaction pathway is an important issue for the optimization of reactions. However, reactions in solid-state compounds have remained poorly understood because of their complexity and technical limitations. Here, using state-of-the-art high-speed time-resolved synchrotron X-ray techniques, the topochemical solid-gas reduction mechanisms in layered perovskite Sr3 Fe2 O7- δ (from δ ∼ 0.4 to δ = 1.0), which is promising for an environmental catalyst material is revealed. Pristine Sr3 Fe2 O7- δ shows a gradual single-phase structural evolution during reduction, indicating that the reaction continuously proceeds through thermodynamically stable phases. In contrast, a nonequilibrium dynamically-disordered phase emerges a few seconds before a first-order transition during the reduction of a Pd-loaded sample. This drastic change in the reaction pathway can be explained by a change in the rate-determining step. The synchrotron X-ray technique can be applied to various solid-gas reactions and provides an opportunity for gaining a better understanding and optimizing reactions in solid-state compounds.

8.
Environ Int ; 163: 107193, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339920

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), detrimental to human health, are key components contributing to the carcinogenicity of fine particles. The 16 priority PAHs listed by the United States Environment Protection Agency have been studied extensively. However, other than them, there is a large diversity of PAH species, whose atmospheric concentrations, risks, and variations remain elusive. Here, we carried out a time-resolved nontarget measurement in atmospheric PM2.5 using an improved comprehensive two-dimensional gas chromatography mass spectrometry. The measurement conducted during a 5-day pollution episode at an urban site of Beijing with a time resolution of 2 h. The nontarget analysis of time-resolved chromatographic data was performed for screening PAHs. A total number of 85 PAHs were identified and quantified. We found that other than 16 EPA PAHs, other screened PAHs contributed 43.3% of the total PAH mass concentration and 40.8% poential health risks. Dynamic variations of mass concentrations and their potential health risks of the screened PAHs were captured during a short-term heavy pollution episode, during which the instantaneous PAHs concentrations were much higher than their average concentrations. This study shows the potential for application of nontarget analysis for online comprehensive two-dimensional gas chromatography mass spectrometry and highlights the importance of time-resolved measurement of PAHs in PM2.5 and attention on extended PAHs species other than 16 EPA PAHs.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-36361487

RESUMO

Time-resolved monitoring of microalgae agglomeration facilitates screening of coagulants/flocculants (CFs) from numerous biopolymer candidates. Herein, a filtering-flowing analysis (FFA) apparatus was developed in which dispersed microalgal cells were separated from coagulates and flocs formed by CFs and pumped into spectrophotometer for real-time quantification. Polysaccharides-based CFs for Microcystis aeruginosa and several other microalgae were tested. Cationic hydroxyethyl cellulose (CHEC), chitosan quaternary ammonium (CQA) and cationic guar gum (CGG) all triggered coagulation obeying a pseudo-second-order model. Maximal coagulation efficiencies were achieved at their respective critical dosages, i.e., 0.086 g/gM.a. CHEC, 0.022 g/gM.a. CQA, and 0.216 g/gM.a. CGG. Although not active independently, bacterial exopolysaccharides (BEPS) aided coagulation of M. aeruginosa and allowed near 100% flocculation efficiency when 0.115 g/gM.a. CQA and 1.44 g/gM.a. xanthan were applied simultaneously. The apparatus is applicable to other microalgae species including Spirulina platensis, S. maxima, Chlorella vulgaris and Isochrysis galbana. Bio-based CFs sorted out using this apparatus could help develop cleaner processes for both remediation of harmful cyanobacterial blooms and microalgae-based biorefineries.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Floculação , Cátions
10.
Anal Sci ; 37(2): 367-375, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33100304

RESUMO

This paper investigated two-dimensional spatial and temporal images of a copper emission line in laser-induced breakdown spectroscopy (LIBS), in order to clarify the excitation/de-excitation processes occurring in a laser-induced plasma. The measurements were carried out under different plasma gases (argon, krypton, helium, and nitrogen), pressure levels (100 - 900 Pa) and delay times (100 - 1000 ns) with the aim of monitoring their effects on the behavior of the copper emission. Depending on the plasma gas type and the pressure level, large differences were found in the plasma shape and temporal intensity evolution of the copper emission profile. Namely, krypton produced the most compact plasma emitting larger intensities, compared to argon and helium, and an increase in the gas pressure made these plasmas to shrink, which could be related principally to the stopping power of the applied gases. Through temporally resolved analysis, the delay profiles could be obtained for each plasma gas, indicating that the helium plasma disappeared more rapidly than the argon and krypton plasmas. It was suggested that the variations in the emission intensity would be determined by interactions between gas particles and highly energetic particles in the plasma breakdown as well as interactions between excited gas particles and copper species during plasma expansion. These insights could prove to be useful in the understanding of the background of LIBS as well as the optimization of its practical applications.

11.
Ultramicroscopy ; 230: 113386, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34534748

RESUMO

Temporal changes in carrier relaxations, magnetic switching, and biological structures are known to be in the order of ns. These phenomena can be typically measured by means of an optical-pump & electron-probe method using an electron microscope combined with a pulsed electron source. A photoemission-type pulsed electron gun makes it possible to obtain a short-pulsed electron beam required for high temporal resolution. On the other hand, spatial resolution is restricted by the brightness of the pulsed electron gun used in electron microscopes when a low brightness electron source is used and an irradiation current larger than a certain value is required. Thus, we constructed a prototype pulsed electron gun using a negative electron affinity (NEA) photocathode for time-resolved measurement using a scanning electron microscope (SEM) with high spatiotemporal resolution. In this study, a high-speed detector containing an avalanche photodiode (APD) was used to directly measure waveforms of the pulsed electron beam excited by a rectangular-shape pulsed light with a variable pulse duration in the range of several ns to several µs. The measured waveforms were the same rectangular shape as incident pulsed excitation light. The maximum peak brightness of the pulsed electron beam was 4.2×107 A/m2/sr/V with a pulse duration of 3 ns. This value was larger than that of the continuous electron beam (1.6 × 107 A/m2/sr/V). Furthermore, an SEM image with image sharpness of 6.2 nm was obtained using an SEM equipped with a prototype pulsed electron gun at an acceleration voltage of 3 kV.

12.
Front Neurosci ; 14: 105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132894

RESUMO

Brain-computer interfaces (BCIs) are becoming increasingly popular as a tool to improve the quality of life of patients with disabilities. Recently, time-resolved functional near-infrared spectroscopy (TR-fNIRS) based BCIs are gaining traction because of their enhanced depth sensitivity leading to lower signal contamination from the extracerebral layers. This study presents the first account of TR-fNIRS based BCI for "mental communication" on healthy participants. Twenty-one (21) participants were recruited and were repeatedly asked a series of questions where they were instructed to imagine playing tennis for "yes" and to stay relaxed for "no." The change in the mean time-of-flight of photons was used to calculate the change in concentrations of oxy- and deoxyhemoglobin since it provides a good compromise between depth sensitivity and signal-to-noise ratio. Features were extracted from the average oxyhemoglobin signals to classify them as "yes" or "no" responses. Linear-discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the responses using the leave-one-out cross-validation method. The overall accuracies achieved for all participants were 75% and 76%, using LDA and SVM, respectively. The results also reveal that there is no significant difference in accuracy between questions. In addition, physiological parameters [heart rate (HR) and mean arterial pressure (MAP)] were recorded on seven of the 21 participants during motor imagery (MI) and rest to investigate changes in these parameters between conditions. No significant difference in these parameters was found between conditions. These findings suggest that TR-fNIRS could be suitable as a BCI for patients with brain injuries.

13.
Beilstein J Nanotechnol ; 9: 2916-2924, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546988

RESUMO

Hexagonal upconverting nanoparticles (UCNPs) of NaYF4:Er3+,Yb3+ (ca. 300 nm) have been widely used to measure the temperature at the nanoscale using luminescence ratio thermometry. However, several factors limit their applications. For example, changes in the peak shape, mainly is the S-band emission, hinders their ability to be used as a universal temperature sensor. Herein, we introduce a universal calibration protocol for NaYF4:Er3+,Yb3+ upconverting nanoparticles that is robust to environmental changes and gives a precise temperature measurement. We used this new procedure to calculate the temperature profile inside a Taylor cone generated with an electrospray jet. Inside the Taylor cone the fluid velocity increases toward the tip of the cone. A constant acquisition length leads to a decrease in excitation and acquisition time. This decrease in excitation time causes a peak shape change that corrupts the temperature measurement if the entire peak shape is integrated in the calibration. Our universal calibration circumvents this problem and can be used for time-resolved applications. The temperature at the end of the Taylor cone increases due to the creation of a whispering gallery mode cavity with 980 nm excitation. We use time-resolved energy balance equations to support our optical temperature measurements inside the Taylor cone. We believe that the findings of this paper provide a foundation for time-resolved temperature measurements using NaYF4:Er3+,Yb3+ upconverting nanoparticles and can be used to understand temperature-dependent reactions such as protein unfolding inside microjet/microdroplets and microfluidic systems.

14.
J Appl Crystallogr ; 50(Pt 2): 570-575, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319318

RESUMO

An X-ray reflectometer using a laboratory X-ray source for quick measurements of the specular X-ray reflectivity curve is presented. It uses a bent-twisted crystal to monochromatize and focus the diverging X-rays (Cu Kα1) from a laboratory point source onto the sample. The reflected X-rays are recorded with a two-dimensional detector. Reflectivity curves can be measured without rotating the sample, detector or X-ray source during measurements. The instrument can separate the specularly reflected X-rays from the diffuse scattering background, so low reflectivities can be measured accurately. For a gold thin film on silicon, the reflectivity down to the order of 10-6 was obtained with a measurement time of 100 s and that down to 10-5 with a measurement time of 10 s. Reflectivity curves of a silicon wafer and a liquid ethylene glycol surface are shown as well. Time-resolved measurements of a TiO2 surface during UV irradiation are also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA