Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(45): 27820-27824, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093197

RESUMO

From the famous 1918 H1N1 influenza to the present COVID-19 pandemic, the need for improved viral detection techniques is all too apparent. The aim of the present paper is to show that identification of individual virus particles in clinical sample materials quickly and reliably is near at hand. First of all, our team has developed techniques for identification of virions based on a modular atomic force microscopy (AFM). Furthermore, femtosecond adaptive spectroscopic techniques with enhanced resolution via coherent anti-Stokes Raman scattering (FASTER CARS) using tip-enhanced techniques markedly improves the sensitivity [M. O. Scully, et al, Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002)].


Assuntos
Microscopia de Força Atômica/métodos , SARS-CoV-2/ultraestrutura , Análise Espectral Raman/métodos , Lasers/normas , Limite de Detecção , Microscopia de Força Atômica/instrumentação , Análise Espectral Raman/instrumentação , Tempo , Vírion/ultraestrutura
2.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799702

RESUMO

Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.


Assuntos
Parede Celular/metabolismo , Células Vegetais/metabolismo , Análise Espectral Raman/métodos , Microscopia de Força Atômica/métodos , Plantas/metabolismo , Vibração
3.
J Biomed Mater Res B Appl Biomater ; 111(6): 1197-1206, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36715221

RESUMO

Here, surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) were used to characterize the selective adsorption of N-substituted 4-[(NH-R)(phosphono)-S-methyl]phenylboronic acids on the surface of platinum nanoparticles (PtNPs) from an aqueous solution and from air. The nature of the interaction of the studied compounds with the PtNPs/H2 O and PtNPs/air interfaces was discussed and compared. For this purpose, 4-[(N-anilino)(phosphono)-S-methyl]phenylboronic acid (1-PBA-PA) and its two analogs (2-PBA-PA and bis{1-PBA-PA}) as well as the PtNPs were synthesized in surfactant/ion-free solution via a synthetic route that allows control of the size and morphology of the NPs. The positively charged PtNPs with a size of ~12 nm were characterized by ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD).


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Organofosfonatos , Nanopartículas Metálicas/química , Ácidos Fosforosos , Análise Espectral Raman/métodos , Platina/química , Nanoestruturas/química
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 190: 378-382, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28950229

RESUMO

Tip-enhanced Raman scattering (TERS) is a promising analytical approach for some two-dimensional materials and offers the possibility to correlate imaging and chemical data. Tip-enhanced Raman spectra of graphene are discussed in some details, including substrate, gap between tip-apex and sample surface as well as Ag-nanowire. The TERS spectra give special emphasis to the possibility of TERS tip to induce a large number of defects only while got the tip attached to sample surface. Then the dependence of the TERS spectra of graphene and gap between the probe tip and sample surface was studied, and distribution features of electromagnetic (EM) field around tip were also simulated by finite-difference time-domain (FDTD). The Raman signal enhancement of graphene was further discussed with respect to experimental data. Furthermore, the Ag-nanowire as a nano-antenna could significantly enhance the weak Raman signal of D-band of monolayer graphene is shown, and the TERS spectra of graphene with regard to different regions of Ag-nanowires (endpoints, body) were obtained toward investigating into the distribution of electromagnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA