Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38176909

RESUMO

Approximately one-third of neonatal seizures do not respond to first-line anticonvulsants, including phenobarbital, which enhances phasic inhibition. Whether enhancing tonic inhibition decreases seizure-like activity in the neonate when GABA is mainly depolarizing at this age is unknown. We evaluated if increasing tonic inhibition using THIP [4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, gaboxadol], a δ-subunit-selective GABAA receptor agonist, decreases seizure-like activity in neonatal C57BL/6J mice (postnatal day P5-8, both sexes) using acute brain slices. Whole-cell patch-clamp recordings showed that THIP enhanced GABAergic tonic inhibitory conductances in layer V neocortical and CA1 pyramidal neurons and increased their rheobase without altering sEPSC characteristics. Two-photon calcium imaging demonstrated that enhancing the activity of extrasynaptic GABAARs decreased neuronal firing in both brain regions. In the 4-aminopyridine and the low-Mg2+ model of pharmacoresistant seizures, THIP reduced epileptiform activity in the neocortex and CA1 hippocampal region of neonatal and adult brain slices in a dose-dependent manner. We conclude that neocortical layer V and CA1 pyramidal neurons have tonic inhibitory conductances, and when enhanced, they reduce neuronal firing and decrease seizure-like activity. Therefore, augmenting tonic inhibition could be a viable approach for treating neonatal seizures.


Assuntos
Neocórtex , Receptores de GABA-A , Camundongos , Animais , Masculino , Feminino , Animais Recém-Nascidos , Receptores de GABA-A/metabolismo , Camundongos Endogâmicos C57BL , Neocórtex/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Convulsões/tratamento farmacológico , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/fisiologia , Hipocampo/metabolismo , Inibição Neural/fisiologia
2.
J Neurosci ; 44(32)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38942471

RESUMO

The mechanisms utilized by neurons to regulate the efficacy of phasic and tonic inhibition and their impacts on synaptic plasticity and behavior are incompletely understood. Cleft lip and palate transmembrane protein 1 (Clptm1) is a membrane-spanning protein that interacts with multiple γ-aminobutyric acid type A receptor (GABAAR) subunits, trapping them in the endoplasmic reticulum and Golgi network. Overexpression and knock-down studies suggest that Clptm1 modulates GABAAR-mediated phasic inhibition and tonic inhibition as well as activity-induced inhibitory synaptic homeostasis in cultured hippocampal neurons. To investigate the role of Clptm1 in the modulation of GABAARs in vivo, we generated Clptm1 knock-out (KO) mice. Here, we show that genetic KO of Clptm1 elevated phasic and tonic inhibitory transmission in both male and female heterozygous mice. Although basal excitatory synaptic transmission was not affected, Clptm1 haploinsufficiency significantly blocked high-frequency stimulation-induced long-term potentiation (LTP) in hippocampal CA3→CA1 synapses. In the hippocampus-dependent contextual fear-conditioning behavior task, both male and female Clptm1 heterozygous KO mice exhibited impairment in contextual fear memory. In addition, LTP and contextual fear memory were rescued by application of L-655,708, a negative allosteric modulator of the extrasynaptic GABAAR α5 subunit. These results suggest that haploinsufficiency of Clptm1 contributes to cognitive deficits through altered synaptic transmission and plasticity by elevation of inhibitory neurotransmission, with tonic inhibition playing a major role.


Assuntos
Haploinsuficiência , Proteínas de Membrana , Camundongos Knockout , Plasticidade Neuronal , Receptores de GABA-A , Transmissão Sináptica , Animais , Camundongos , Masculino , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Feminino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transmissão Sináptica/fisiologia , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/genética , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/genética , Hipocampo/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Medo/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Memória/fisiologia , Inibição Neural/fisiologia
3.
J Integr Neurosci ; 23(1): 24, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38287860

RESUMO

OBJECTIVE: Absence seizures result from aberrant thalamocortical processing that confers synchronous, bilateral spike-and-wave discharges (SWDs) and behavioral arrest. Previous work has demonstrated that SWDs can result from enhanced thalamic tonic inhibition, consistent with the mechanism of first-line antiabsence drugs that target thalamic low-voltage-activated calcium channels. However, nearly half of patients with absence epilepsy are unresponsive to first-line medications. In this study we evaluated the role of cortical tonic inhibition and its manipulation on absence seizure expression. METHODS: We used video-electroencephalogram (EEG) monitoring to show that mice with a γ-aminobutyric acid type A (GABAA) receptor mutation (γ2R43Q) display absence seizures. Voltage-clamp recordings in brain slices from wild type and γ2R43Q mice were used to evaluate the amount of tonic inhibition and its selective pharmacological modulation. Finally, we determined whether modulating tonic inhibition controls seizure expression. RESULTS: γ2R43Q mice completely lack tonic inhibition in principal neurons of both layer 2/3 cortex and ventrobasal thalamus. Blocking cortical tonic inhibition in wild type mice is sufficient to elicit SWDs. Tonic inhibition in slices from γ2R43Q mice could be rescued in a dose-dependent fashion by the synthetic neurosteroid ganaxolone. Low-dose ganaxolone suppressed seizures in γ2R43Q mice. CONCLUSIONS: Our data suggest that reduced cortical tonic inhibition promotes absence seizures and that normal function can be restored via selective pharmacological rescue. These results, together with previous findings, suggest that deviations of tonic inhibition either above or below an optimal set point can contribute to absence epilepsy. Returning the thalamocortical system to this set point may provide a novel treatment for refractory absence epilepsy.


Assuntos
Epilepsia Tipo Ausência , Humanos , Camundongos , Animais , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Convulsões , Encéfalo , Tálamo , Eletroencefalografia
4.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279339

RESUMO

Network dynamics are crucial for action and sensation. Changes in synaptic physiology lead to the reorganization of local microcircuits. Consequently, the functional state of the network impacts the output signal depending on the firing patterns of its units. Networks exhibit steady states in which neurons show various activities, producing many networks with diverse properties. Transitions between network states determine the output signal generated and its functional results. The temporal dynamics of excitation/inhibition allow a shift between states in an operational network. Therefore, a process capable of modulating the dynamics of excitation/inhibition may be functionally important. This process is known as disinhibition. In this review, we describe the effect of GABA levels and GABAB receptors on tonic inhibition, which causes changes (due to disinhibition) in network dynamics, leading to synchronous functional oscillations.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Receptores de GABA-B , Receptores de GABA-B/metabolismo , Neurônios/metabolismo , Inibição Neural/fisiologia , Ácido gama-Aminobutírico , Receptores de GABA-A , Antagonistas GABAérgicos
5.
J Neurosci ; 42(9): 1738-1751, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35042768

RESUMO

Striatal adenosine A1 receptor (A1R) activation can inhibit dopamine release. A1Rs on other striatal neurons are activated by an adenosine tone that is limited by equilibrative nucleoside transporter 1 (ENT1) that is enriched on astrocytes and is ethanol sensitive. We explored whether dopamine release in nucleus accumbens core is under tonic inhibition by A1Rs, and is regulated by astrocytic ENT1 and ethanol. In ex vivo striatal slices from male and female mice, A1R agonists inhibited dopamine release evoked electrically or optogenetically and detected using fast-scan cyclic voltammetry, most strongly for lower stimulation frequencies and pulse numbers, thereby enhancing the activity-dependent contrast of dopamine release. Conversely, A1R antagonists reduced activity-dependent contrast but enhanced evoked dopamine release levels, even for single optogenetic pulses indicating an underlying tonic inhibition. The ENT1 inhibitor nitrobenzylthioinosine reduced dopamine release and promoted A1R-mediated inhibition, and, conversely, virally mediated astrocytic overexpression of ENT1 enhanced dopamine release and relieved A1R-mediated inhibition. By imaging the genetically encoded fluorescent adenosine sensor [GPCR-activation based (GRAB)-Ado], we identified a striatal extracellular adenosine tone that was elevated by the ENT1 inhibitor and sensitive to gliotoxin fluorocitrate. Finally, we identified that ethanol (50 mm) promoted A1R-mediated inhibition of dopamine release, through diminishing adenosine uptake via ENT1. Together, these data reveal that dopamine output dynamics are gated by a striatal adenosine tone, limiting amplitude but promoting contrast, regulated by ENT1, and promoted by ethanol. These data add to the diverse mechanisms through which ethanol modulates striatal dopamine, and to emerging datasets supporting astrocytic transporters as important regulators of striatal function.SIGNIFICANCE STATEMENT Dopamine axons in the mammalian striatum are emerging as strategic sites where neuromodulators can powerfully influence dopamine output in health and disease. We found that ambient levels of the neuromodulator adenosine tonically inhibit dopamine release in nucleus accumbens core via adenosine A1 receptors (A1Rs), to a variable level that promotes the contrast in dopamine signals released by different frequencies of activity. We reveal that the equilibrative nucleoside transporter 1 (ENT1) on astrocytes limits this tonic inhibition, and that ethanol promotes it by diminishing adenosine uptake via ENT1. These findings support the hypotheses that A1Rs on dopamine axons inhibit dopamine release and, furthermore, that astrocytes perform important roles in setting the level of striatal dopamine output, in health and disease.


Assuntos
Astrócitos , Dopamina , Transportador Equilibrativo 1 de Nucleosídeo , Etanol , Núcleo Accumbens , Receptor A1 de Adenosina , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Dopamina/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Etanol/farmacologia , Feminino , Masculino , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptor A1 de Adenosina/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(6): 3192-3202, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31974304

RESUMO

The binding of GABA (γ-aminobutyric acid) to extrasynaptic GABAA receptors generates tonic inhibition that acts as a powerful modulator of cortical network activity. Despite GABA being present throughout the extracellular space of the brain, previous work has shown that GABA may differentially modulate the excitability of neuron subtypes according to variation in chloride gradient. Here, using biophysically detailed neuron models, we predict that tonic inhibition can differentially modulate the excitability of neuron subtypes according to variation in electrophysiological properties. Surprisingly, tonic inhibition increased the responsiveness (or gain) in models with features typical for somatostatin interneurons but decreased gain in models with features typical for parvalbumin interneurons. Patch-clamp recordings from cortical interneurons supported these predictions, and further in silico analysis was then performed to seek a putative mechanism underlying gain modulation. We found that gain modulation in models was dependent upon the magnitude of tonic current generated at depolarized membrane potential-a property associated with outward rectifying GABAA receptors. Furthermore, tonic inhibition produced two biophysical changes in models of relevance to neuronal excitability: 1) enhanced action potential repolarization via increased current flow into the dendritic compartment, and 2) reduced activation of voltage-dependent potassium channels. Finally, we show theoretically that reduced potassium channel activation selectively increases gain in models possessing action potential dynamics typical for somatostatin interneurons. Potassium channels in parvalbumin-type models deactivate rapidly and are unavailable for further modulation. These findings show that GABA can differentially modulate interneuron excitability and suggest a mechanism through which this occurs in silico via differences of intrinsic electrophysiological properties.


Assuntos
Córtex Cerebral , Interneurônios , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Cinética , Camundongos , Modelos Neurológicos , Técnicas de Patch-Clamp
7.
Epilepsia ; 63(4): e35-e41, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152403

RESUMO

Variants in γ-aminobutyric acid A (GABAA ) receptor genes cause different forms of epilepsy and neurodevelopmental disorders. To date, GABRA4, encoding the α4-subunit, has not been associated with a monogenic condition. However, preclinical evidence points toward seizure susceptibility. Here, we report a de novo missense variant in GABRA4 (c.899C>T, p.Thr300Ile) in an individual with early-onset drug-resistant epilepsy and neurodevelopmental abnormalities. An electrophysiological characterization of the variant, which is located in the pore-forming domain, shows accelerated desensitization and a lack of seizure-protective neurosteroid function. In conclusion, our findings strongly suggest an association between de novo variation in GABRA4 and a neurodevelopmental disorder with epilepsy.


Assuntos
Epilepsia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Receptores de GABA-A , Epilepsia/genética , Humanos , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Receptores de GABA-A/genética , Convulsões/genética
8.
J Neurosci ; 40(22): 4266-4276, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32327534

RESUMO

Synaptic plasticity is triggered by different patterns of network activity. Here, we investigated how LTP in CA3-CA1 synapses induced by different stimulation patterns is affected by tonic GABAA conductances in rat hippocampal slices. Spike-timing-dependent LTP was induced by pairing Schaffer collateral stimulation with antidromic stimulation of CA1 pyramidal neurons. Theta-burst-induced LTP was induced by theta-burst stimulation of Schaffer collaterals. We mimicked increased tonic GABAA conductance by bath application of 30 µm GABA. Surprisingly, tonic GABAA conductance selectively suppressed theta-burst-induced LTP but not spike-timing-dependent LTP. We combined whole-cell patch-clamp electrophysiology, two-photon Ca2+ imaging, glutamate uncaging, and mathematical modeling to dissect the mechanisms underlying these differential effects of tonic GABAA conductance. We found that Ca2+ transients during pairing of an action potential with an EPSP were less sensitive to tonic GABAA conductance-induced shunting inhibition than Ca2+ transients induced by EPSP burst. Our results may explain how different forms of memory are affected by increasing tonic GABAA conductances under physiological or pathologic conditions, as well as under the influence of substances that target extrasynaptic GABAA receptors (e.g., neurosteroids, sedatives, antiepileptic drugs, and alcohol).SIGNIFICANCE STATEMENT Brain activity is associated with neuronal firing and synaptic signaling among neurons. Synaptic plasticity represents a mechanism for learning and memory. However, some neurotransmitters that escape the synaptic cleft or are released by astrocytes can target extrasynaptic receptors. Extrasynaptic GABAA receptors mediate tonic conductances that reduce the excitability of neurons by shunting. This results in the decreased ability for neurons to fire action potentials, but when action potentials are successfully triggered, tonic conductances are unable to reduce them significantly. As such, tonic GABAA conductances have minimal effects on spike-timing-dependent synaptic plasticity while strongly attenuating the plasticity evoked by EPSP bursts. Our findings shed light on how changes in tonic conductances can selectively affect different forms of learning and memory.


Assuntos
Região CA1 Hipocampal/metabolismo , Potenciais Pós-Sinápticos Excitadores , Potenciação de Longa Duração , Receptores de GABA-A/metabolismo , Ritmo Teta , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley
9.
J Neurosci ; 40(8): 1640-1649, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31915255

RESUMO

To bridge the gap between preclinical cellular models of disease and in vivo imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here we assess dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults. This paradigm induces robust perturbations that permeate frontotemporal networks, including an evoked 'mismatch negativity' response and transiently induced oscillations. Here, we probe GABAergic influences in the networks using double-blind placebo-controlled randomized-crossover administration of the GABA reuptake inhibitor, tiagabine (oral, 10 mg) in healthy older adults. We demonstrate the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations. We found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions.SIGNIFICANCE STATEMENT Understanding human brain function and developing new treatments require good models of brain function. We tested a detailed generative model of cortical microcircuits that accurately reproduced human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in health and disease with the mechanistic precision afforded by generative models of the brain.


Assuntos
Córtex Auditivo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Modelos Neurológicos , Rede Nervosa/diagnóstico por imagem , Neurônios/fisiologia , Idoso , Córtex Auditivo/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Lobo Frontal/efeitos dos fármacos , Inibidores da Captação de GABA/farmacologia , Humanos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tiagabina/farmacologia
10.
J Neurosci ; 40(32): 6250-6261, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32616668

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. Although altered interneuron development and function are clearly demonstrated in RTT mice, a particular mode of inhibition, tonic inhibition, has not been carefully examined. We report here that tonic inhibition is significantly reduced in pyramidal neurons in the CA1 region of the hippocampus in mice where Mecp2 is deleted either in all cells or specifically in astrocytes. Since no change is detected in the level of GABA receptors, such a reduction in tonic inhibition is likely a result of decreased ambient GABA level in the extracellular space. Consistent with this explanation, we observed increased expression of a GABA transporter, GABA transporter 3 (GAT3), in the hippocampus of the Mecp2 KO mice, as well as a corresponding increase of GAT3 current in hippocampal astrocytes. These phenotypes are relevant to RTT because pharmacological blockage of GAT3 can normalize tonic inhibition and intrinsic excitability in CA1 pyramidal neurons, and rescue the phenotype of increased network excitability in acute hippocampal slices from the Mecp2 KO mice. Finally, chronic administration of a GAT3 antagonist improved a composite symptom score and extended lifespan in the Mecp2 KO mice. Only male mice were used in this study. These results not only advance our understanding of RTT etiology by defining a new neuronal phenotype and revealing how it can be influenced by astrocytic alterations, but also reveal potential targets for intervention.SIGNIFICANCE STATEMENT Our study reports a novel phenotype of reduced tonic inhibition in hippocampal CA1 pyramidal neurons in the Rett syndrome mice, reveal a potential mechanism of increased GABA transporter expression/activity in the neighboring astrocytes, describe a disease-relevant consequence in hyperexcitability, and provide preliminary evidence that targeting this phenotype may slow down disease progression in Rett syndrome mice. These results help our understanding of the disease etiology and identify a new therapeutic target for treating Rett syndrome.


Assuntos
Astrócitos/fisiologia , Região CA1 Hipocampal/metabolismo , Inibição Neural , Células Piramidais/fisiologia , Síndrome de Rett/metabolismo , Animais , Astrócitos/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Células Piramidais/metabolismo , Receptores de GABA/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
11.
Pflugers Arch ; 473(8): 1261-1271, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34279736

RESUMO

The TSC1 and TSC2 tumor suppressor genes control the activity of mechanistic target of rapamycin (mTOR) pathway. Elevated activity of this pathway in Tsc2+/- mouse model leads to reduction of postsynaptic GABAB receptor-mediated inhibition and hyperexcitability in the medial prefrontal cortex (mPFC). In this study, we asked whether presynaptic GABAB receptors (GABABRs) can compensate this shift of hyperexcitability. Experiments were performed in brain slices from adolescent wild-type (WT) and Tsc2+/- mice. Miniature and spontaneous postsynaptic currents (m/sPSCs) were recorded from layer 2/3 pyramidal neurons in mPFC using patch-clamp technique using a Cs+-based intrapipette solution. Presynaptic GABABRs were activated by baclofen (10 µM) or blocked by CGP55845 (1 µM). Independent on genotype, GABABR modulators bidirectionally change miniature excitatory postsynaptic current (mEPSC) frequency by about 10%, indicating presynaptic GABABR-mediated effects on glutamatergic transmission are comparable in both genotypes. In contrast, frequencies of both mIPSCs and sIPCSs were suppressed by baclofen stronger in Tsc2+/- neurons than in WT ones, whereas CGP55845 significantly increased (m/s)IPSC frequencies only in WT cells. Effects of baclofen and CGP55845 on the amplitudes of evoked (e)IPSCs confirmed these observations. These data indicate (1) that GABAergic synapses are inhibited by ambient GABA in WT but not in Tsc2+/- slices, and (2) that baclofen shifts the E/I ratio, determined as the ratio of (m/s)EPSC frequency to (m/s)IPSC frequency, towards excitation only in Tsc2+/- cells. This excitatory presynaptic GABABR-mediated action has to be taken into account for a possible medication of mental disorders using baclofen.


Assuntos
Neurônios GABAérgicos/metabolismo , Córtex Pré-Frontal/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-B/metabolismo , Animais , Camundongos , Técnicas de Patch-Clamp , Proteína 2 do Complexo Esclerose Tuberosa/genética
12.
J Neurophysiol ; 126(4): 1310-1313, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495776

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder characterized a spectrum of phenotypes affecting neuronal and glial populations. Recent work by Dong et al. (Dong Q, Kim J, Nguyen L, Bu Q, Chang Q. J Neurosci 40: 6250-6261, 2020) suggests that augmented GABA uptake by astrocytes diminishes tonic inhibition in the hippocampus and contributes to increased seizure propensity in RTT. Here, I will review evidence supporting this possibility and critically evaluate how increased expression of a GABA transporter might contribute to this mechanism.


Assuntos
Astrócitos , Síndrome de Rett , Astrócitos/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Células Piramidais/metabolismo , Ácido gama-Aminobutírico
13.
Br J Anaesth ; 126(3): 674-683, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388140

RESUMO

BACKGROUND: Multiple cognitive and psychiatric disorders are associated with an increased tonic inhibitory conductance that is generated by α5 subunit-containing γ-aminobutyric acid type A (α5 GABAA) receptors. Negative allosteric modulators that inhibit α5 GABAA receptors (α5-NAMs) are being developed as treatments for these disorders. The effects of α5-NAMs have been studied on recombinant GABAA receptors expressed in non-neuronal cells; however, no study has compared drug effects on the tonic conductance generated by native GABAA receptors in neurones, which was the goal of this study. METHODS: The effects of five α5-NAMs (basmisanil, Ono-160, L-655,708, α5IA, and MRK-016) on tonic current evoked by a low concentration of GABA were studied using whole-cell recordings in cultured mouse hippocampal neurones. Drug effects on current evoked by a saturating concentration of GABA and on miniature inhibitory postsynaptic currents (mIPSCs) were also examined. RESULTS: The α5-NAMs caused a concentration-dependent decrease in tonic current. The potencies varied as the inhibitory concentration for 50% inhibition (IC50) of basmisanil (127 nM) was significantly higher than those of the other compounds (0.4-0.8 nM). In contrast, the maximal efficacies of the drugs were similar (35.5-51.3% inhibition). The α5-NAMs did not modify current evoked by a saturating GABA concentration or mIPSCs. CONCLUSIONS: Basmisanil was markedly less potent than the other α5-NAMs, an unexpected result based on studies of recombinant α5 GABAA receptors. Studying the effects of α5 GABAA receptor-selective drugs on the tonic inhibitory current in neurones could inform the selection of compounds for future clinical trials.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Antagonistas de Receptores de GABA-A/farmacologia , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Regulação Alostérica , Animais , Células Cultivadas , Cognição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Técnicas de Patch-Clamp
14.
J Biol Chem ; 294(32): 12220-12230, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239352

RESUMO

Neuroactive steroids (NASs) are synthesized within the brain and exert profound effects on behavior. These effects are primarily believed to arise from the activities of NASs as positive allosteric modulators (PAMs) of the GABA-type A receptor (GABAAR). NASs also activate a family of G protein-coupled receptors known as membrane progesterone receptors (mPRs). Here, using surface-biotinylation assays and electrophysiology techniques, we examined mPRs' role in mediating the effects of NAS on the efficacy of GABAergic inhibition. Selective mPR activation enhanced phosphorylation of Ser-408 and Ser-409 (Ser-408/9) within the GABAAR ß3 subunit, which depended on the activity of cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC). mPR activation did not directly modify GABAAR activity and had no acute effects on phasic or tonic inhibition. Instead, mPR activation induced a sustained elevation in tonic current, which was blocked by PKA and PKC inhibition. Substitution of Ser-408/9 to alanine residues also prevented the effects of mPR activation on tonic current. Furthermore, this substitution abolished the effects of sustained NAS exposure on tonic inhibition. Interestingly, the allosteric effects of NAS on GABAergic inhibition were independent of Ser-408/9 in the ß3 subunit. Additionally, although allosteric effects of NAS on GABAergic inhibition were sensitive to a recently developed "NAS antagonist," the sustained effects of NAS on tonic inhibition were not. We conclude that metabotropic effects of NAS on GABAergic inhibition are mediated by mPR-dependent modulation of GABAAR phosphorylation. We propose that this mechanism may contribute to the varying behavioral effects of NAS.


Assuntos
Neuroesteroides/metabolismo , Receptores de GABA-A/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Membrana Celular/metabolismo , Potenciais Evocados/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Neuroesteroides/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/genética , Receptores de Progesterona/agonistas , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
15.
Synapse ; 74(5): e22144, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31736138

RESUMO

Neurosteroids are potent allosteric modulators of GABAA receptors (GABAA Rs). Although the effects of exogenous neurosteroids on GABAA R function are well documented, less is known about effects of neurosteroids produced by local endogenous biosynthesis. The neurosteroidogenic enzymes 5α-reductase and 3α-hydroxysteroid dehydrogenase are expressed in two nuclei of somatosensory thalamus, the thalamic reticular nucleus (nRT) and ventrobasal nucleus (VB). Here, the effects of acute blockade of neurosteroidogenesis by the 5α-reductase inhibitor finasteride on phasic and tonic GABAA R-mediated currents were examined in nRT and VB of mice. In nRT, finasteride altered the decay and amplitude, but not the frequency, of phasic currents, with no effect on tonic inhibition. In VB neurons, by contrast, finasteride reduced both the size and frequency of phasic currents, and also reduced the degree of tonic inhibition. These studies thus provide novel evidence for endogenous modulation of GABAA R function by 5α-reduced neurosteroids in the mature thalamus.


Assuntos
Inibição Neural , Neuroesteroides/metabolismo , Núcleos Talâmicos/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Inibidores de 5-alfa Redutase/farmacologia , Animais , Feminino , Finasterida/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de GABA-A/metabolismo , Núcleos Talâmicos/efeitos dos fármacos , Núcleos Talâmicos/fisiologia
16.
Proc Natl Acad Sci U S A ; 114(34): E7179-E7186, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784756

RESUMO

Neuronal inhibition can occur via synaptic mechanisms or through tonic activation of extrasynaptic receptors. In spinal cord, glycine mediates synaptic inhibition through the activation of heteromeric glycine receptors (GlyRs) composed primarily of α1 and ß subunits. Inhibitory GlyRs are also found throughout the brain, where GlyR α2 and α3 subunit expression exceeds that of α1, particularly in forebrain structures, and coassembly of these α subunits with the ß subunit appears to occur to a lesser extent than in spinal cord. Here, we analyzed GlyR currents in several regions of the adolescent mouse forebrain (striatum, prefrontal cortex, hippocampus, amygdala, and bed nucleus of the stria terminalis). Our results show ubiquitous expression of GlyRs that mediate large-amplitude currents in response to exogenously applied glycine in these forebrain structures. Additionally, tonic inward currents were also detected, but only in the striatum, hippocampus, and prefrontal cortex (PFC). These tonic currents were sensitive to both strychnine and picrotoxin, indicating that they are mediated by extrasynaptic homomeric GlyRs. Recordings from mice deficient in the GlyR α3 subunit (Glra3-/-) revealed a lack of tonic GlyR currents in the striatum and the PFC. In Glra2-/Y animals, GlyR tonic currents were preserved; however, the amplitudes of current responses to exogenous glycine were significantly reduced. We conclude that functional α2 and α3 GlyRs are present in various regions of the forebrain and that α3 GlyRs specifically participate in tonic inhibition in the striatum and PFC. Our findings suggest roles for glycine in regulating neuronal excitability in the forebrain.


Assuntos
Glicinérgicos/farmacologia , Glicina/metabolismo , Prosencéfalo/fisiologia , Receptores de Glicina/metabolismo , Estricnina/farmacologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Picrotoxina/farmacologia , Prosencéfalo/efeitos dos fármacos , Receptores de Glicina/genética
17.
Molecules ; 25(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041202

RESUMO

Alzheimer's disease (AD) is a complex and chronic neurodegenerative disorder that involves a progressive and severe decline in cognition and memory. During the last few decades a considerable amount of research has been done in order to better understand tau-pathology, inflammatory activity and neuronal synapse loss in AD, all of them contributing to cognitive decline. Early hippocampal network dysfunction is one of the main factors associated with cognitive decline in AD. Much has been published about amyloid-beta1-42 (Aß1-42)-mediated excitotoxicity in AD. However, increasing evidence demonstrates that the remodeling of the inhibitory gamma-aminobutyric acid (GABAergic) system contributes to the excitatory/inhibitory (E/I) disruption in the AD hippocampus, but the underlying mechanisms are not well understood. In the present study, we show that hippocampal injection of Aß1-42 is sufficient to induce cognitive deficits 7 days post-injection. We demonstrate using in vitro whole-cell patch-clamping an increased inhibitory GABAergic tonic conductance mediated by extrasynaptic type A GABA receptors (GABAARs), recorded in the CA1 region of the mouse hippocampus following Aß1-42 micro injection. Such alterations in GABA neurotransmission and/or inhibitory GABAARs could have a significant impact on both hippocampal structure and function, causing E/I balance disruption and potentially contributing to cognitive deficits in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Região CA1 Hipocampal/metabolismo , Hipocampo/metabolismo , Células Piramidais/metabolismo , Ácido gama-Aminobutírico/metabolismo , Doença de Alzheimer/metabolismo , Animais , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
18.
Epilepsia ; 60(4): 730-743, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30895610

RESUMO

OBJECTIVE: Sex differences are evident in the antiseizure activity of neurosteroids; however, the potential mechanisms remain unclear. In this study, we sought to determine whether differences in target extrasynaptic δ-subunit γ-aminobutyric acid type A (GABA-A) receptor expression and function underlie the sex differences in seizure susceptibility and the antiseizure activity of neurosteroids. METHODS: Sex differences in seizure susceptibility and protective activity of three distinct neurosteroids-allopregnanolone (AP), androstanediol (AD), and ganaxolone-were evaluated in the pilocarpine model of status epilepticus (SE) and kindling seizure test in mice. Immunocytochemistry was used for δGABA-A receptor expression analysis, and patch-clamp recordings in brain slices evaluated its functional currents. RESULTS: Sex differences were apparent in kindling epileptogenic seizures, with males exhibiting a faster progression to a fully kindled state. Neurosteroids AP, AD, or ganaxolone produced dose-dependent protection against SE and acute partial seizures. However, female mice exhibited strikingly enhanced sensitivity to the antiseizure activity of neurosteroids compared to males. Sex differences in neurosteroid protection were unrelated to pharmacokinetic factors, as plasma levels of neurosteroids associated with seizure protection were similar between sexes. Mice lacking extrasynaptic δGABA-A receptors did not exhibit sex differences in neurosteroid protection. Consistent with a greater abundance of extrasynaptic δGABA-A receptors, AP produced a significantly greater potentiation of tonic currents in dentate gyrus granule cells in females than males; however, such enhanced AP sensitivity was diminished in δGABA-A receptor knockout female mice. SIGNIFICANCE: Neurosteroids exhibit greater antiseizure potency in females than males, likely due to a greater abundance of extrasynaptic δGABA-A receptors that mediate neurosteroid-sensitive tonic currents and seizure protection. These findings indicate the potential to develop personalized gender-specific neurosteroid treatments for SE and epilepsy in men and women, including catamenial epilepsy.


Assuntos
Neuroesteroides/farmacologia , Receptores de GABA-A/metabolismo , Convulsões/metabolismo , Caracteres Sexuais , Estado Epiléptico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pregnanolona/análogos & derivados , Pregnanolona/farmacologia
19.
J Pathol ; 244(2): 176-188, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29053192

RESUMO

Mechanisms underlying functional recovery after stroke are little known, and effective drug intervention during the delayed stage is desirable. One potential drug target, the protein-protein interaction between neuronal nitric oxide synthase (nNOS) and postsynaptic density protein 95 (PSD-95), is critical to acute ischaemic damage and neurogenesis. We show that nNOS-PSD-95 dissociation induced by microinjection of a recombinant fusion protein, Tat-nNOS-N1-133 , or systemic administration of a small-molecule, ZL006, from day 4 to day 10 after photothrombotic ischaemia in mice reduced excessive tonic inhibition in the peri-infarct cortex and ameliorated motor functional outcome. We also demonstrated improved neuroplasticity including increased dendrite spine density and synaptogenesis after reducing excessive tonic inhibition by nNOS-PSD-95 dissociation. Levels of gamma-aminobutyric acid (GABA) and GABA transporter-3/4 (GAT-3/4) are increased in the reactive astrocytes in the peri-infarct cortex. The GAT-3/4-selective antagonist SNAP-5114 reduced tonic inhibition and promoted function recovery, suggesting that increased tonic inhibition in the peri-infarct cortex was due to GABA release from reversed GAT-3/4 in reactive astrocytes. Treatments with Tat-nNOS-N1-133 or ZL006 after ischaemia inhibited astrocyte activation and GABA production, prevented the reversal of GAT-3/4, and consequently decreased excessive tonic inhibition and ameliorated functional outcome. The underlying molecular mechanisms were associated with epigenetic inhibition of glutamic acid decarboxylase 67 and monoamine oxidase B expression through reduced NO production. The nNOS-PSD-95 interaction is thus a potential target for functional restoration after stroke and ZL006, a small molecule inhibitor of this interaction, is a promising pharmacological lead compound. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Ácidos Aminossalicílicos/farmacologia , Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Benzilaminas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Proteína 4 Homóloga a Disks-Large/metabolismo , Atividade Motora/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Anisóis/farmacologia , Astrócitos/metabolismo , Isquemia Encefálica/enzimologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/psicologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Glutamato Descarboxilase/metabolismo , Monoaminoxidase/metabolismo , Córtex Motor/irrigação sanguínea , Córtex Motor/enzimologia , Córtex Motor/fisiopatologia , Inibição Neural/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ácidos Nipecóticos/farmacologia , Óxido Nítrico/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/farmacologia , Recuperação de Função Fisiológica , Via Secretória
20.
J Physiol ; 596(18): 4475-4495, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30019335

RESUMO

KEY POINTS: Physiologically relevant combinations of recombinant GABAA receptor (GABAR) subunits were expressed in HEK293 cells. Using whole-cell voltage clamp and rapid drug application, we measured the GABAR-subtype-specific properties to convey either synaptic or extrasynaptic signalling in a range of physiological contexts. α4ßδ GABARs are optimally tuned to submicromolar tonic GABA and transient surges of micromolar GABA concentrations. α5ß2γ2l GABARs are better suited to higher tonic GABA levels, but also convey robust responses to brief synaptic and perisynaptic GABA fluctuations. α1ß2/3δ GABARs function well at prolonged, micromolar (>2 µm) GABA levels, but not to low tonic (<1 µm GABA) or synaptic/transient GABAergic signalling. These results help illuminate the context- and isoform-specific modes of GABAergic signalling in the brain. ABSTRACT: GABAA receptors (GABARs) mediate a remarkable diversity of signalling modalities in vivo. Yet most published work characterizing responses to GABA has focused on the properties needed to convey fast, phasic synaptic inhibition. We therefore aimed to characterize the most prevalent (α4ßδ, α5ß3γ2L) and least prevalent (α1ß2δ) non-synaptic GABAR currents, using whole-cell voltage clamp recordings of recombinant GABAR expressed in HEK293 cells and drug application protocols to recapitulate the GABA concentration profiles occurring during both fast synaptic and slow extrasynaptic signalling. We found that α4ßδ GABARs were very sensitive to submicromolar GABA, with a rank order potency of α4ß2δ ≥ α4ß1δ ≈ α4ß3δ GABARs. In comparison, the GABA EC50 was up to 20 times higher for α1ß2γ2L GABARs, with α1ß2δ and α5ß3γ2L GABARs having intermediate GABA potency. Both α4ßδ and α5ß3γ2L GABAR currents exhibited slow, but substantial, desensitization as well as prolonged rates of deactivation. These GABAR current properties defined distinct 'dynamic ranges' of responsiveness to changing GABA for α4ß2δ (0.1-1 µm), α5ß3γ2L (0.5-7 µm) and α1ß2γ2L (0.6-9 µm) GABARs. Finally, α1ß2δ GABARs were notable for their relative lack of desensitization and extremely quick deactivation. In summary, our results help delineate the roles that specific GABARs may play in mediating non-synaptic GABA signals. Since ambient GABA levels may be altered during development as well as by drugs and disease states, these findings may help future efforts to understand disrupted inhibition underlying a variety of neurological illnesses, such as epilepsy.


Assuntos
Receptores de GABA-A/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , GABAérgicos/farmacologia , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Ratos , Receptores de GABA-A/química , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA