Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(2): 583-597.e23, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220456

RESUMO

When DNA is unwound during replication, it becomes overtwisted and forms positive supercoils in front of the translocating DNA polymerase. Unless removed or dissipated, this superhelical tension can impede replication elongation. Topoisomerases, including gyrase and topoisomerase IV in bacteria, are required to relax positive supercoils ahead of DNA polymerase but may not be sufficient for replication. Here, we find that GapR, a chromosome structuring protein in Caulobacter crescentus, is required to complete DNA replication. GapR associates in vivo with positively supercoiled chromosomal DNA, and our biochemical and structural studies demonstrate that GapR forms a dimer-of-dimers that fully encircles overtwisted DNA. Further, we show that GapR stimulates gyrase and topo IV to relax positive supercoils, thereby enabling DNA replication. Analogous chromosome structuring proteins that locate to the overtwisted DNA in front of replication forks may be present in other organisms, similarly helping to recruit and stimulate topoisomerases during DNA replication.


Assuntos
Cromossomos Bacterianos/fisiologia , DNA Bacteriano/química , DNA Super-Helicoidal/metabolismo , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiologia , Estruturas Cromossômicas/fisiologia , Cromossomos Bacterianos/metabolismo , DNA/fisiologia , Replicação do DNA/fisiologia , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/fisiologia , DNA Bacteriano/fisiologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Cinética
2.
Mol Cell ; 83(10): 1573-1587.e8, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207624

RESUMO

DNA supercoiling has emerged as a major contributor to gene regulation in bacteria, but how DNA supercoiling impacts transcription dynamics in eukaryotes is unclear. Here, using single-molecule dual-color nascent transcription imaging in budding yeast, we show that transcriptional bursting of divergent and tandem GAL genes is coupled. Temporal coupling of neighboring genes requires rapid release of DNA supercoils by topoisomerases. When DNA supercoils accumulate, transcription of one gene inhibits transcription at its adjacent genes. Transcription inhibition of the GAL genes results from destabilized binding of the transcription factor Gal4. Moreover, wild-type yeast minimizes supercoiling-mediated inhibition by maintaining sufficient levels of topoisomerases. Overall, we discover fundamental differences in transcriptional control by DNA supercoiling between bacteria and yeast and show that rapid supercoiling release in eukaryotes ensures proper gene expression of neighboring genes.


Assuntos
Saccharomyces cerevisiae , Transcrição Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA Topoisomerases Tipo II/genética , DNA , DNA Bacteriano/genética , DNA Super-Helicoidal/genética , DNA Topoisomerases Tipo I/metabolismo
3.
Mol Cell ; 82(22): 4202-4217.e5, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36302374

RESUMO

Condensins are evolutionarily conserved molecular motors that translocate along DNA and form loops. To address how DNA topology affects condensin translocation, we applied auxin-inducible degradation of topoisomerases I and II and analyzed the binding and function of an interphase condensin that mediates X chromosome dosage compensation in C. elegans. TOP-2 depletion reduced long-range spreading of condensin-DC (dosage compensation) from its recruitment sites and shortened 3D DNA contacts measured by Hi-C. TOP-1 depletion did not affect long-range spreading but resulted in condensin-DC accumulation within expressed gene bodies. Both TOP-1 and TOP-2 depletion resulted in X chromosome derepression, indicating that condensin-DC translocation at both scales is required for its function. Together, the distinct effects of TOP-1 and TOP-2 suggest two distinct modes of condensin-DC association with chromatin: long-range DNA loop extrusion that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.


Assuntos
Adenosina Trifosfatases , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenosina Trifosfatases/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Cromossomos/metabolismo
4.
Mol Cell ; 80(1): 102-113.e6, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853547

RESUMO

Repair of covalent DNA-protein crosslinks (DPCs) by DNA-dependent proteases has emerged as an essential genome maintenance mechanism required for cellular viability and tumor suppression. However, how proteolysis is restricted to the crosslinked protein while leaving surrounding chromatin proteins unharmed has remained unknown. Using defined DPC model substrates, we show that the DPC protease SPRTN displays strict DNA structure-specific activity. Strikingly, SPRTN cleaves DPCs at or in direct proximity to disruptions within double-stranded DNA. In contrast, proteins crosslinked to intact double- or single-stranded DNA are not cleaved by SPRTN. NMR spectroscopy data suggest that specificity is not merely affinity-driven but achieved through a flexible bipartite strategy based on two DNA binding interfaces recognizing distinct structural features. This couples DNA context to activation of the enzyme, tightly confining SPRTN's action to biologically relevant scenarios.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/química , Linhagem Celular , Proteínas de Ligação a DNA/química , Humanos , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Domínios Proteicos , Relação Estrutura-Atividade
5.
Mol Cell ; 78(4): 739-751.e8, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32259483

RESUMO

DNA topological stress inhibits DNA replication fork (RF) progression and contributes to DNA replication stress. In Saccharomyces cerevisiae, we demonstrate that centromeric DNA and the rDNA array are especially vulnerable to DNA topological stress during replication. The activity of the SMC complexes cohesin and condensin are linked to both the generation and repair of DNA topological-stress-linked damage in these regions. At cohesin-enriched centromeres, cohesin activity causes the accumulation of DNA damage, RF rotation, and pre-catenation, confirming that cohesin-dependent DNA topological stress impacts on normal replication progression. In contrast, at the rDNA, cohesin and condensin activity inhibit the repair of damage caused by DNA topological stress. We propose that, as well as generally acting to ensure faithful genetic inheritance, SMCs can disrupt genome stability by trapping DNA topological stress.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
6.
Mol Cell ; 75(2): 267-283.e12, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31202576

RESUMO

How spatial chromosome organization influences genome integrity is still poorly understood. Here, we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CCCTC-binding factor (CTCF) and cohesin-bound sites at the bases of chromatin loops, and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hotspots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability and are key contributors to the occurrence of genome rearrangements that drive cancer.


Assuntos
DNA Topoisomerases Tipo II/genética , Instabilidade Genômica/genética , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Translocação Genética/genética , Fator de Ligação a CCCTC/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina/química , Cromatina/genética , Cromossomos/química , Cromossomos/genética , DNA/genética , Quebras de DNA de Cadeia Dupla , Humanos , Leucemia/genética , Leucemia/patologia
7.
Mol Microbiol ; 119(1): 19-28, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565252

RESUMO

Transcription is a noisy and stochastic process that produces sibling-to-sibling variations in physiology across a population of genetically identical cells. This pattern of diversity reflects, in part, the burst-like nature of transcription. Transcription bursting has many causes and a failure to remove the supercoils that accumulate in DNA during transcription elongation is an important contributor. Positive supercoiling of the DNA ahead of the transcription elongation complex can result in RNA polymerase stalling if this DNA topological roadblock is not removed. The relaxation of these positive supercoils is performed by the ATP-dependent type II topoisomerases DNA gyrase and topoisomerase IV. Interference with the action of these topoisomerases involving, inter alia, topoisomerase poisons, fluctuations in the [ATP]/[ADP] ratio, and/or the intervention of nucleoid-associated proteins with GapR-like or YejK-like activities, may have consequences for the smooth operation of the transcriptional machinery. Antibiotic-tolerant (but not resistant) persister cells are among the phenotypic outliers that may emerge. However, interference with type II topoisomerase activity can have much broader consequences, making it an important epigenetic driver of physiological diversity in the bacterial population.


Assuntos
DNA Girase , DNA , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/genética , Bactérias/genética , Bactérias/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Trifosfato de Adenosina/metabolismo , Epigênese Genética , DNA Super-Helicoidal , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
8.
Trends Biochem Sci ; 44(5): 415-432, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30609953

RESUMO

All organisms, including unicellular pathogens, compulsorily possess DNA topoisomerases for successful nucleic acid metabolism. But particular subtypes of topoisomerases exist, in all prokaryotes and in some unicellular eukaryotes, that are absent in higher eukaryotes. Moreover, topoisomerases from pathogenic members of a niche possess some unique molecular architecture and functionalities completely distinct from their nonpathogenic colleagues. This review will highlight the unique attributes associated with the structures and functions of topoisomerases from the unicellular pathogens, with special reference to bacteria and protozoan parasites. It will also summarise the progress made in the domain pertaining to the druggability of these topoisomerases, upon which a future platform for therapeutic development can be successfully constructed.


Assuntos
Bactérias/enzimologia , DNA Topoisomerases , Eucariotos/enzimologia , Animais , DNA Topoisomerases/química , DNA Topoisomerases/metabolismo
9.
Retrovirology ; 20(1): 10, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254203

RESUMO

BACKGROUND: Once integrated in the genome of infected cells, HIV-1 provirus is transcribed by the cellular transcription machinery. This process is regulated by both viral and cellular factors, which are necessary for an efficient viral replication as well as for the setting up of viral latency, leading to a repressed transcription of the integrated provirus. RESULTS: In this study, we examined the role of two parameters in HIV-1 LTR promoter activity. We identified DNA topoisomerase1 (TOP1) to be a potent repressor of this promoter and linked this repression to its catalytic domain. Additionally, we confirmed the folding of a Guanine quadruplex (G4) structure in the HIV-1 promoter and its repressive effect. We demonstrated a direct interaction between TOP1 and this G4 structure, providing evidence of a functional relationship between the two repressive elements. Mutations abolishing G4 folding affected TOP1/G4 interaction and hindered G4-dependent inhibition of TOP1 catalytic activity in vitro. As a result, HIV-1 promoter activity was reactivated in a native chromatin environment. Lastly, we noticed an enrichment of predicted G4 sequences in the promoter of TOP1-repressed cellular genes. CONCLUSIONS: Our results demonstrate the formation of a TOP1/G4 complex on the HIV-1 LTR promoter and its repressive effect on the promoter activity. They reveal the existence of a new mechanism of TOP1/G4-dependent transcriptional repression conserved between viral and human genes. This mechanism contrasts with the known property of TOP1 as global transcriptional activator and offers new perspectives for anti-cancer and anti-viral strategies.


Assuntos
HIV-1 , Humanos , HIV-1/genética , Guanina , Fatores de Transcrição/genética , Cromatina , Repetição Terminal Longa de HIV/genética , Transcrição Gênica
10.
J Mol Evol ; 91(2): 192-203, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651963

RESUMO

Type IB topoisomerases relax the torsional stress associated with DNA metabolism in the nucleus and mitochondria and constitute important molecular targets of anticancer drugs. Vertebrates stand out among eukaryotes by having two Type IB topoisomerases acting specifically in the nucleus (TOP1) and mitochondria (TOP1MT). Despite their major importance, the origin and evolution of these paralogues remain unknown. Here, we examine the molecular evolutionary processes acting on both TOP1 and TOP1MT in Chordata, taking advantage of the increasing number of available genome sequences. We found that both TOP1 and TOP1MT evolved under strong purifying selection, as expected considering their essential biological functions. Critical active sites, including those associated with resistance to anticancer agents, were found particularly conserved. However, TOP1MT presented a higher rate of molecular evolution than TOP1, possibly related with its specialized activity on the mitochondrial genome and a less critical role in cells. We could place the duplication event that originated the TOP1 and TOP1MT paralogues early in the radiation of vertebrates, most likely associated with the first round of vertebrate tetraploidization (1R). Moreover, our data suggest that cyclostomes present a specialized mitochondrial Type IB topoisomerase. Interestingly, we identified two missense mutations replacing amino acids in the Linker region of TOP1MT in Neanderthals, which appears as a rare event when comparing the genome of both species. In conclusion, TOP1 and TOP1MT differ in their rates of evolution, and their evolutionary histories allowed us to better understand the evolution of chordates.


Assuntos
Cordados , DNA Mitocondrial , Animais , DNA Mitocondrial/genética , Cordados/genética , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , Mitocôndrias/genética , Núcleo Celular/genética
11.
Biochem Soc Trans ; 51(1): 403-413, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36629511

RESUMO

In guanine-rich DNA strands, base-base interactions among guanines allow the conformational shift from the B-form DNA to the non-canonical quadruplex or G4 structure. The functional significance of G4 DNA in vivo is largely dependent on the interaction with protein factors, many of which contain the arginine-glycine-glycine or RGG repeat and other consensus G4-binding motifs. These G4-interacting proteins can significantly modulate the effect of G4 DNA structure on genome maintenance, either preventing or aggravating G4-assoicated genome instability. While the role of helicases in resolving G4 DNA structure has been extensively discussed, identification and characterization of protein factors contributing to elevation in G4-associated genome instability has been relatively sparse. In this minireview, we will particularly highlight recent discoveries regarding how interaction between certain G4-binding proteins and G4 DNA could exacerbate genome instability potentiated by G4 DNA-forming sequences.


Assuntos
DNA , Quadruplex G , DNA/química , DNA Helicases/metabolismo , Replicação do DNA , Instabilidade Genômica
12.
Extremophiles ; 28(1): 7, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062175

RESUMO

Topoisomerases are crucial enzymes in genome maintenance that modulate the topological changes during DNA metabolism. Deinococcus radiodurans, a Gram-positive bacterium is characterized by its resistance to many abiotic stresses including gamma radiation. Its multipartite genome encodes both type I and type II topoisomerases. Time-lapse studies using fluorescently tagged topoisomerase IB (drTopoIB-RFP) and DNA gyrase (GyrA-RFP) were performed to check the dynamics and localization with respect to DNA repair and cell division under normal and post-irradiation growth conditions. Results suggested that TopoIB and DNA gyrase are mostly found on nucleoid, highly dynamic, and show growth phase-dependent subcellular localization. The drTopoIB-RFP was also present at peripheral and septum regions but does not co-localize with the cell division protein, drFtsZ. On the other hand, DNA gyrase co-localizes with PprA a pleiotropic protein involved in radioresistance, on the nucleoid during the post-irradiation recovery (PIR). The topoIB mutant was found to be sensitive to hydroxyurea treatment, and showed more accumulation of single-stranded DNA during the PIR, compared to the wild type suggesting its role in DNA replication stress. Together, these results suggest differential localization of drTopoIB-RFP and GyrA-RFP in D. radiodurans and their interaction with PprA protein, emphasizing the functional significance and role in radioresistance.


Assuntos
DNA Girase , Deinococcus , DNA Girase/genética , DNA Girase/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA
13.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176164

RESUMO

DNA topoisomerases are important enzymes that stabilize DNA supercoiling and resolve entanglements. There are two main types of topoisomerases in all cells: type I, which causes single-stranded DNA breaks, and type II, which cuts double-stranded DNA. Topoisomerase activity is particularly increased in rapidly dividing cells, such as cancer cells. Topoisomerase inhibitors have been an effective chemotherapeutic option for the treatment of several cancers. In addition, combination cancer therapy with topoisomerase inhibitors may increase therapeutic efficacy and decrease resistance or side effects. Topoisomerase inhibitors are currently being used worldwide, including in the United States, and clinical trials on the combination of topoisomerase inhibitors with other drugs are currently underway. The primary objective of this review was to comprehensively analyze the current clinical landscape concerning the combined application of irinotecan, an extensively investigated type I topoisomerase inhibitor for colorectal cancer, and doxorubicin, an extensively researched type II topoisomerase inhibitor for breast cancer, while presenting a novel approach for cancer therapy.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Humanos , Feminino , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Quimioterapia Combinada , Neoplasias Colorretais/tratamento farmacológico , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo I/metabolismo
14.
J Biol Chem ; 297(2): 101000, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303706

RESUMO

DNA gyrase is a type II topoisomerase that is responsible for maintaining the topological state of bacterial and some archaeal genomes. It uses an ATP-dependent two-gate strand-passage mechanism that is shared among all type II topoisomerases. During this process, DNA gyrase creates a transient break in the DNA, the G-segment, to form a cleavage complex. This allows a second DNA duplex, known as the T-segment, to pass through the broken G-segment. After the broken strand is religated, the T-segment is able to exit out of the enzyme through a gate called the C-gate. Although many steps of the type II topoisomerase mechanism have been studied extensively, many questions remain about how the T-segment ultimately exits out of the C-gate. A recent cryo-EM structure of Streptococcus pneumoniae GyrA shows a putative T-segment in close proximity to the C-gate, suggesting that residues in this region may be important for coordinating DNA exit from the enzyme. Here, we show through site-directed mutagenesis and biochemical characterization that three conserved basic residues in the C-gate of DNA gyrase are important for DNA supercoiling activity, but not for ATPase or cleavage activity. Together with the structural information previously published, our data suggest a model in which these residues cluster to form a positively charged region that facilitates T-segment passage into the cavity formed between the DNA gate and C-gate.


Assuntos
Domínio Catalítico , DNA Girase/metabolismo , DNA Bacteriano/química , DNA Super-Helicoidal , Infecções Pneumocócicas/enzimologia , Elementos Estruturais de Proteínas , Streptococcus pneumoniae/enzimologia , DNA Girase/química , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/patogenicidade
15.
Bioorg Med Chem Lett ; 65: 128648, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231579

RESUMO

There is an increasingly urgent and unmet medical need for novel antibiotic drugs that tackle infections caused by multidrug-resistant (MDR) pathogens. Novel bacterial type II topoisomerase inhibitors (NBTIs) are of high interest due to limited cross-resistance with fluoroquinolones, however analogues with Gram-negative activity often suffer from hERG channel inhibition. A novel series of bicyclic-oxazolidinone inhibitors of bacterial type II topoisomerase were identified which display potent broad-spectrum anti-bacterial activity, including against MDR strains, along with an encouraging in vitro safety profile. In vivo proof of concept was achieved in a A. baumannii mouse thigh infection model.


Assuntos
Oxazolidinonas , Inibidores da Topoisomerase , Animais , Antibacterianos/farmacologia , DNA Girase/metabolismo , Fluoroquinolonas/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Oxazolidinonas/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase/farmacologia
16.
Bioorg Chem ; 128: 106087, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970069

RESUMO

Novel bacterial topoisomerase inhibitors (NBTIs) are an important new class of antibacterials targeting bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Notwithstanding their potent antibacterial activity, they suffer from a detrimental class-related hERG blockage. In this study, we designed and synthesized an optimized library of NBTIs comprising different linker moieties that exhibit reduced hERG inhibition and retain inhibitory potencies on DNA gyrase and topoisomerase IV of Staphylococcus aureus and Escherichia coli, respectively, as well as potent antibacterial activities. Substitution of the linker's tertiary amine with polar groups outcome in diminished hERG inhibition. Compound 17 expresses nanomolar enzyme inhibitory potency and antibacterial activity against both Gram-positive and Gram-negative bacteria as well as reduced hERG inhibition relative to our previously published NBTI analogs. Here, we point to some important NBTI's structural features that influence their hERG inhibitory activity.


Assuntos
Antibacterianos , DNA Girase , Antibacterianos/química , Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV , Escherichia coli/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Naftiridinas/química , Relação Estrutura-Atividade , Tioinosina/análogos & derivados , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
17.
Drug Dev Res ; 83(6): 1305-1330, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716118

RESUMO

Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.


Assuntos
Adamantano , Anti-Infecciosos , Adamantano/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias , Ciprofloxacina/farmacologia , DNA Girase/genética , DNA Girase/farmacologia , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
18.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232843

RESUMO

Topoisomerases are essential enzymes that recognize and modify the topology of DNA to allow DNA replication and transcription to take place. Topoisomerases are divided into type I topoisomerases, that cleave one DNA strand to modify DNA topology, and type II, that cleave both DNA strands. Topoisomerases normally rapidly religate cleaved-DNA once the topology has been modified. Topoisomerases do not recognize specific DNA sequences, but actively cleave positively supercoiled DNA ahead of transcription bubbles or replication forks, and negative supercoils (or precatenanes) behind, thus allowing the unwinding of the DNA-helix to proceed (during both transcription and replication). Drugs that stabilize DNA-cleavage complexes with topoisomerases produce cytotoxic DNA damage and kill fast-dividing cells; they are widely used in cancer chemotherapy. Oligonucleotide-recognizing topoisomerase inhibitors (OTIs) have given drugs that stabilize DNA-cleavage complexes specificity by linking them to either: (i) DNA duplex recognizing triplex forming oligonucleotide (TFO-OTIs) or DNA duplex recognizing pyrrole-imidazole-polyamides (PIP-OTIs) (ii) or by conventional Watson-Crick base pairing (WC-OTIs). This converts compounds from indiscriminate DNA-damaging drugs to highly specific targeted DNA-cleaving OTIs. Herein we propose simple strategies to enable DNA-duplex strand invasion of WC-OTIs giving strand-invading SI-OTIs. This will make SI-OTIs similar to the guide RNAs of CRISPR/Cas9 nuclease bacterial immune systems. However, an important difference between OTIs and CRISPR/Cas9, is that OTIs do not require the introduction of foreign proteins into cells. Recent successful oligonucleotide therapeutics for neurodegenerative diseases suggest that OTIs can be developed to be highly specific gene editing agents for DNA lesions that cause neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Oligonucleotídeos , DNA/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Super-Helicoidal , Humanos , Imidazóis , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Nylons , Oligonucleotídeos/química , Pirróis , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/uso terapêutico
19.
Mol Microbiol ; 113(2): 356-368, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31713907

RESUMO

Maintaining an appropriate DNA topology with DNA-based processes (DNA replication, transcription and recombination) is crucial for all three domains of life. In bacteria, the homeostatic regulation for controlling DNA supercoiling relies on antagonistic activities of two DNA topoisomerases, TopoI and gyrase. In hyperthermophilic crenarchaea, the presence of such a regulatory system is suggested as two DNA topoisomerases, TopoVI and reverse gyrase, catalyze antagonistic activities. To test this hypothesis, we estimated and compared the number of the TopoVI with that of the two reverse gyrases, TopR1 and TopR2, in Sulfolobus solfataricus cells maintained either at 80 or at 88°C, or reciprocally shifted from one temperature to the other. From the three DNA topoisomerases, TopR1 is the only one exhibiting significant quantitative variations in response to the up- and down-shifts. In addition, the corresponding intrinsic activities of these three DNA topoisomerases were tested in vitro at both temperatures. Although temperature modulates the three DNA topoisomerases activities, TopR1 is the sole topoisomerase able to function at high temperature. Altogether, results presented in this study demonstrate, for the first time, that the DNA topological state of a crenarchaeon is regulated via a homeostatic control, which is mainly mediated by the fine-tuning of TopR1.


Assuntos
Archaea , Proteínas Arqueais/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases/metabolismo , Sulfolobus solfataricus , Archaea/genética , Archaea/metabolismo , DNA Bacteriano , DNA Super-Helicoidal , Homeostase , Temperatura Alta , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
20.
Trends Genet ; 34(2): 111-120, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29179918

RESUMO

Head-on replication-transcription conflict is especially bitter in bacterial chromosomes, explaining why actively transcribed genes are always co-oriented with replication. The mechanism of this conflict remains unclear, besides the anticipated accumulation of positive supercoils between head-on-conflicting polymerases. Unexpectedly, experiments in bacterial and human cells reveal that head-on replication-transcription conflict induces R-loops, indicating hypernegative supercoiling [(-)sc] in the region - precisely the opposite of that assumed. Further, as a result of these R-loops, both replication and transcription in the affected region permanently stall, so the failure of R-loop removal in RNase H-deficient bacteria becomes lethal. How hyper(-)sc emerges in the middle of a positively supercoiled chromosomal domain is a mystery that requires rethinking of topoisomerase action around polymerases.


Assuntos
Replicação do DNA , DNA Bacteriano/química , RNA Polimerases Dirigidas por DNA/genética , RNA Bacteriano/química , Transcrição Gênica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cromossomos Bacterianos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA