Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 467, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103899

RESUMO

BACKGROUND: The elastomechanical properties of nanocarriers have recently been discussed as important for the efficient delivery of various therapeutics. Some data indicate that optimal nanocarriers' elasticity can modulate in vivo nanocarrier stability, interaction with phagocytes, and uptake by target cells. Here, we presented a study to extensively analyze the in vivo behavior of LIP-SS liposomes that were modified by forming the silicone network within the lipid bilayers to improve their elastomechanical properties. We verified liposome pharmacokinetic profiles and biodistribution, including retention in tumors on a mouse model of breast cancer, while biocompatibility was analyzed on healthy mice. RESULTS: We showed that fluorescently labeled LIP-SS and control LIP-CAT liposomes had similar pharmacokinetic profiles, biodistribution, and retention in tumors, indicating that modified elasticity did not improve nanocarrier in vivo performance. Interestingly, biocompatibility studies revealed no changes in blood morphology, liver, spleen, and kidney function but indicated prolonged activation of immune response manifesting in increased concentration of proinflammatory cytokines in sera of animals exposed to all tested liposomes. CONCLUSION: Incorporating the silicone layer into the liposome structure did not change nanocarriers' characteristics in vivo. Further modification of the LIP-SS surface, including decoration with hydrophilic stealth polymers, should be performed to improve their pharmacokinetics and retention in tumors significantly. Activation of the immune response by LIP-SS and LIP-CAT, resulting in elevated inflammatory cytokine production, requires detailed studies to elucidate its mechanism.


Assuntos
Elasticidade , Lipossomos , Silicones , Lipossomos/química , Animais , Camundongos , Feminino , Silicones/química , Distribuição Tecidual , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Bicamadas Lipídicas/química , Portadores de Fármacos/química
2.
Small ; 19(24): e2300097, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905236

RESUMO

The biological properties of spherical nucleic acids (SNAs) are largely independent of nanoparticle core identity but significantly affected by oligonucleotide surface density. Additionally, the payload-to-carrier (i.e., DNA-to-nanoparticle) mass ratio of SNAs is inversely proportional to core size. While SNAs with many core types and sizes have been developed, all in vivo analyses of SNA behavior have been limited to cores >10 nm in diameter. However, "ultrasmall" nanoparticle constructs (<10 nm diameter) can exhibit increased payload-to-carrier ratios, reduced liver accumulation, renal clearance, and enhanced tumor infiltration. Therefore, we hypothesized that SNAs with ultrasmall cores exhibit SNA-like properties, but with in vivo behavior akin to traditional ultrasmall nanoparticles. To investigate, we compared the behavior of SNAs with 1.4-nm Au102 nanocluster cores (AuNC-SNAs) and SNAs with 10-nm gold nanoparticle cores (AuNP-SNAs). Significantly, AuNC-SNAs possess SNA-like properties (e.g., high cellular uptake, low cytotoxicity) but show distinct in vivo behavior. When intravenously injected in mice, AuNC-SNAs display prolonged blood circulation, lower liver accumulation, and higher tumor accumulation than AuNP-SNAs. Thus, SNA-like properties persist at the sub-10-nm length scale and oligonucleotide arrangement and surface density are responsible for the biological properties of SNAs. This work has implications for the design of new nanocarriers for therapeutic applications.


Assuntos
Nanopartículas Metálicas , Ácidos Nucleicos , Animais , Camundongos , Ouro , Fígado , Oligonucleotídeos
3.
Small ; 18(4): e2103552, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34841670

RESUMO

Significant advances in physicochemical properties of polymeric micelles enable optimization of therapeutic drug efficacy, supporting nanomedicine manufacturing and clinical translation. Yet, the effect of micelle morphology on pharmacological efficacy is not adequately addressed. This work addresses this gap by assessing pharmacological efficacy of polymeric micelles with spherical and worm-like morphologies. It is observed that poly(2-oxazoline)-based polymeric micelles can be elongated over time from a spherical structure to worm-like structure, with elongation influenced by several conditions, including the amount and type of drug loaded into the micelles. The role of different morphologies on pharmacological performance of drug loaded micelles against triple-negative breast cancer and pancreatic cancer tumor models is further evaluated. Spherical micelles accumulate rapidly in the tumor tissue while retaining large amounts of drug; worm-like micelles accumulate more slowly and only upon releasing significant amounts of drug. These findings suggest that the dynamic character of the drug-micelle structure and the micelle morphology play a critical role in pharmacological performance, and that spherical micelles are better suited for systemic delivery of anticancer drugs to tumors when drugs are loosely associated with the polymeric micelles.


Assuntos
Antineoplásicos , Micelas , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Nanomedicina , Polímeros/química
4.
Nano Lett ; 21(6): 2588-2595, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33650872

RESUMO

Compared with traditional chemotherapeutics, vascular disruption agents (VDAs) have the advantages of rapidly blocking the supply of nutrients and starving tumors to death. Although the VDAs are effective under certain scenarios, this treatment triggers angiogenesis in the later stage of therapy that frequently leads to tumor recurrence and treatment failure. Additionally, the nonspecific tumor targeting and considerable side effects also impede the clinical applications of VDAs. Here we develop a customized strategy that combines a VDA with an anti-angiogenic drug (AAD) using mesoporous silica nanoparticles (MSNs) coated with platelet membrane for the self-assembled tumor targeting accumulation. The tailor-made nanoparticles accumulate in tumor tissues through the targeted adhesion of platelet membrane surface to damaged vessel sites, resulting in significant vascular disruption and efficient anti-angiogenesis in animal models. This study demonstrates the promising potential of combining VDA and AAD in a single nanoplatform for tumor eradication.


Assuntos
Nanopartículas , Neoplasias , Inibidores da Angiogênese/uso terapêutico , Animais , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Dióxido de Silício/uso terapêutico
5.
AAPS PharmSciTech ; 23(4): 111, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411416

RESUMO

Arsenic trioxide (ATO) has efficient anticancer effect on hepatocellular carcinoma (HCC) in clinical trials, but its off-target distribution and side effects have limited its use. Here, we demonstrate an albumin-embellished ATO-loaded polyethylene glycol-polycaprolactone-polyethyleneimine (PEG-PCL-PEI) nanoparticle (AATONP) to enhance the tumor distribution and intratumor drug release of ATO for HCC therapy. AATONP is prepared by surface embellishment with albumin on the cationic ATO-loaded PEG-PCL-PEI nanoparticles (CATONP). Albumin embellishment can reduce the cationic material's hemolytic toxicity in blood cells while maintaining the rapid internalization and lysosome escape abilities of the positively charged CATONP. AATONP provides sustained and low pH-responsive drug release, facilitating the targeted drug release in the intratumor acidic microenvironment. Moreover, AATONP can significantly improve the circulation time and tumor distribution of ATO via albumin-mediated transcytosis in HCC tumor-bearing mice. Compared with free ATO and the clinically used nanomedicine Genexol/PM, AATONP shows potent antitumor activity against a human HCC xenograft mouse model, leading to a higher tumor inhibition rate of 89.4% in HCC therapy. In conclusion, this work presents an efficient strategy to achieve tumor accumulation and the intratumor drug release of ATO for HCC therapy. An albumin-embellished arsenic trioxide (ATO)-loaded polyethylene glycol-polycaprolactone-polyethyleneimine nanoparticle (AATONP) is designed to enhance tumor distribution and intratumor drug release of ATO for hepatocellular carcinoma therapy. AATONP can achieve enhanced tumor distribution via albumin-mediated transcytosis and exhibit intratumor drug release of ATO via tumor acidic microenvironment-response, leading to potent antitumor activity.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Albuminas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Trióxido de Arsênio/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Polietilenoglicóis/uso terapêutico , Polietilenoimina , Transcitose , Microambiente Tumoral
6.
Pharmacol Res ; 172: 105800, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363949

RESUMO

Hepatocellular carcinoma (HCC) is one of the major cancers with high mortality rate. Traditional drugs used in clinic are usually limited by the drug resistance and side effect and novel agents are still needed. Macrolide brefeldin A (BFA) is a well-known lead compound in cancer chemotherapy, however, with poor solubility and instability. In this study, to overcome these disadvantages, BFA was encapsulated in mixed nanomicelles based on TPGS and F127 copolymers (M-BFA). M-BFA was conferred high solubility, colloidal stability, and capability of sustained release of intact BFA. In vitro, M-BFA markedly inhibited the proliferation, induced G0/G1 phase arrest, and caspase-dependent apoptosis in human liver carcinoma HepG2 cells. Moreover, M-BFA also induced autophagic cell death via Akt/mTOR and ERK pathways. In HepG2 tumor-bearing xenograft mice, indocyanine green (ICG) as a fluorescent probe loaded in M-BFA distributed to the tumor tissue rapidly, prolonged the blood circulation, and improved the tumor accumulation capacity. More importantly, M-BFA (10 mg/kg) dramatically delayed the tumor progression and induced extensive necrosis of the tumor tissues. Taken together, the present work suggests that M-BFA has promising potential in HCC therapy.


Assuntos
Antineoplásicos/administração & dosagem , Brefeldina A/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Micelas , Nanoestruturas/administração & dosagem , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Brefeldina A/sangue , Brefeldina A/química , Brefeldina A/farmacocinética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Polietilenos/administração & dosagem , Polietilenos/química , Polipropilenos/administração & dosagem , Polipropilenos/química , Ratos Sprague-Dawley , Distribuição Tecidual , Vitamina E/administração & dosagem , Vitamina E/química
7.
Small ; 16(44): e2004172, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33030305

RESUMO

Liposomes are the first and mostly explored nanocarriers for cancer drug delivery, which have shown great promise in clinical applications, but their limited accumulation and penetration into the tumor interstitial space, significantly reduce the therapeutic efficacy. Here, a γ-glutamyltranspeptidase (GGT)-triggered charge-switchable approach is reported that can trigger the fast endocytosis and transcytosis of the liposome in tumor microenvironments to overcome the harsh biological barriers in tumor tissues. The active transporting liposomal nanocarrier (GCSDL) is prepared by surface modification with a glutathione (GSH) moiety and encapsulated with doxorubicin (DOX). When the GCSDL contacts with tumor vascular endothelial cells, the overexpressed GGT enzyme on cytomembrane catalyzes the hydrolysis of GSH to generate cationic primary amines. The cationic GCSDL triggers fast caveolae-mediated endocytosis and vesicle-mediated transcytosis, resulting in sequential transcytosis to augment its tumor accumulation and penetration. Along with continual intercellular transportation, GCSDL can release DOX throughout the tumor to induce cancer cell apoptosis, resulting in complete eradication of hepatocellular carcinoma and cessation of pancreatic ductal adenocarcinoma's progression. This study develops an efficient strategy to realize high tumor accumulation and deep penetration for the liposomal drug delivery system via active transcytosis.


Assuntos
Células Endoteliais , Lipossomos , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos
8.
Small ; 16(31): e2002115, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32608187

RESUMO

Nanotheranostics have been actively sought in precision nanomedicine in recent years. However, insufficient tumor accumulation and limited cell uptake often impede the nanotheranostic efficacy. Herein, pH-sensitive charge-reversible polymer-coated layered double hydroxide (LDH) nanohybrids are devised to possess long circulation in blood but reserve surface charges in the weakly acidic tumor tissue to re-expose therapeutic LDH nanoparticles for enhanced tumor accumulation and cell uptake. In vitro experimental data demonstrate that charge-reversible nanohybrids mitigate the cell uptake in physiological conditions (pH 7.4), but remarkably facilitate internalization by tumor cells after charge reversion in the weakly acidic environment (pH 6.8). More significantly, about 6.0% of injected charge-reversible nanohybrids accumulate in the tumor tissue at 24 h post injection, far higher than the average accumulation (0.7%) reported elsewhere for nanoparticles. This high tumor accumulation clearly shows the tumor tissues in T1 -weighted magnetic resonance imaging. As a consequence, >95% inhibition of tumor growth in the B16F0-bearing mouse model is achieved via only one treatment combining RNAi and photothermal therapy under very mild irradiation (808 nm laser, 0.3 W cm-2 for 180 s). The current research thus demonstrates a new strategy to functionalize nanoparticles and simultaneously enhance their tumor accumulation and cell internalization for effective cancer theranostics.


Assuntos
Nanopartículas , Neoplasias , Animais , Diagnóstico por Imagem , Hidróxidos , Camundongos , Nanomedicina , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanomedicina Teranóstica
9.
Biol Pharm Bull ; 43(9): 1301-1305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879203

RESUMO

Enhancing blood flow to tumors is a prominent strategy for improving the tumor accumulation of macromolecular drugs through the enhanced permeability and retention (EPR) effect. IRL-1620 is an agonist of the endothelin B receptor, and is a promising molecule to enhance tumor blood flow by activating endothelial nitric oxide synthase. However, contradictory effects on tumor blood flow modulation have been reported because the effects of IRL-1620 may differ in different animal models. Here, we examined for the first time the effect of IRL-1620 on the EPR effect for PEGylated liposomes in a CT-26 murine colon cancer model. Co-injection of IRL-1620 at an optimum dose (3 nmol/kg) nearly doubled the tumor accumulation of liposomes compared with controls, indicating that IRL-1620 enhanced the EPR effect in the present colon cancer model. Co-injection of IRL-1620 is a promising strategy to improve the therapeutic effects of macromolecular drugs while reducing their side effects.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Antagonistas do Receptor de Endotelina B/administração & dosagem , Endotelinas/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Linhagem Celular Tumoral/transplante , Colo/patologia , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Lipossomos , Masculino , Camundongos , Permeabilidade/efeitos dos fármacos , Receptor de Endotelina B/metabolismo
10.
Nano Lett ; 19(12): 8690-8700, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31698897

RESUMO

Recent drug delivery nanosystems for cancer treatment still suffer from the poor tumor accumulation and low therapeutic efficacy due to the complex in vivo biological barriers. To resolve these problems, in this work, a novel gradient redox-responsive and two-stage rocket-mimetic drug nanocarrier is designed and constructed for improved tumor accumulation and safe chemotherapy. The nanocarrier is constructed on the basis of the disulfide-doped organosilica-micellar hybrid nanoparticles and the following dual-functional modification with disulfide-bonded polyethylene glycol (PEG) and amido-bonded polyethylenimine (PEI). First, prolonged circulation duration in the bloodstream is guaranteed due to the shielding of the outer PEG chains. Once the nanocarrier accumulates at the tumoral extracellular microenvironment with low glutathione (GSH) concentrations, the first-stage redox-responsive behavior with the separation of PEG and the exposure of PEI is triggered, leading to the improved tumor accumulation and cellular internalization. Furthermore, with their endocytosis by tumor cells, a high concentration of GSH induces the second-stage redox-responsiveness with the degradation of silsesquioxane framework and the release of the encapsulated drugs. As a result, the rocket-mimetic drug carrier displays longer circulation duration in the bloodstream, higher tumor accumulation capability, and improved antitumor efficacy (which is 2.5 times higher than that with inseparable PEG). It is envisioned that the rocket-mimetic strategy can provide new solutions for improving tumor accumulation and safety of nanocarriers in further cancer chemotherapy.


Assuntos
Doxorrubicina , Portadores de Fármacos , Nanopartículas , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Glutationa/química , Humanos , Micelas , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Polietilenoimina/química , Polietilenoimina/farmacocinética , Polietilenoimina/farmacologia
11.
Mol Pharm ; 16(3): 1367-1384, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776896

RESUMO

A promising approach toward cancer therapy is expected to integrate imaging and therapeutic agents into a versatile nanocarrier for achieving improved antitumor efficacy and reducing the side effects of conventional chemotherapy. Herein, we designed a poly(d,l-lactic- co-glycolic acid) (PLGA)-based theranostic nanoplatform using the double emulsion solvent evaporation method (W/O/W), which is associated with bovine serum albumin (BSA) modifications, to codeliver indocyanine green (ICG), a widely used near-infrared (NIR) dye, and doxorubicin (Dox), a chemotherapeutic drug, for dual-modality imaging-guided chemo-photothermal combination cancer therapy. The resultant ICG/Dox co-loaded hybrid PLGA nanoparticles (denoted as IDPNs) had a diameter of around 200 nm and exhibited excellent monodispersity, fluorescence/size stability, and biocompatibility. It was confirmed that IDPNs displayed a photothermal effect and that the heat induced faster release of Dox, which led to enhanced drug accumulation in cells and was followed by their efficient escape from the lysosomes into the cytoplasm and drug diffusion into the nucleus, resulting in a chemo-photothermal combinatorial therapeutic effect in vitro. Moreover, the IDPNs exhibited a high ability to accumulate in tumor tissue, owing to the enhanced permeability and retention (EPR) effect, and could realize real-time fluorescence/photoacoustic imaging of solid tumors with a high spatial resolution. In addition, the exposure of tumor regions to NIR irradiation could enhance the tumor penetration ability of IDPNs, almost eradicating subcutaneous tumors. In addition, the inhibition rate of IDPNs used in combination with laser irradiation against EMT-6 tumors in tumor-bearing nude mice (chemo-photothermal therapy) was approximately 95.6%, which was much higher than that for chemo- or photothermal treatment alone. Our study validated the fact that the use of well-defined IDPNs with NIR laser treatment could be a promising strategy for the early diagnosis and passive tumor-targeted chemo-photothermal therapy for cancer.


Assuntos
Terapia Combinada/métodos , Doxorrubicina/química , Verde de Indocianina/química , Raios Infravermelhos/uso terapêutico , Nanopartículas/química , Neoplasias/terapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Soroalbumina Bovina/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/efeitos adversos , Doxorrubicina/metabolismo , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Feminino , Temperatura Alta , Verde de Indocianina/efeitos adversos , Verde de Indocianina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células NIH 3T3 , Nanopartículas/efeitos adversos , Nanopartículas/metabolismo , Imagem Óptica , Fototerapia/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Soroalbumina Bovina/efeitos adversos , Soroalbumina Bovina/metabolismo , Distribuição Tecidual , Resultado do Tratamento
12.
Bioorg Med Chem ; 26(9): 2337-2344, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29622411

RESUMO

To examine the hydrophobic structure of PI polyamides on tumor accumulation in vivo, PI polyamide-fluorescein conjugates 1-5 with the distinct number of N-methylimidazole (Im) units were synthesized. There existed an inverse relationship between the Im unit number of the compounds and their hydrophobicity. Compound 1 with one Im unit and 3 with three Im units accumulated and retained preferentially in tumor tissues compared to 5 with five Im units. These results suggest the importance of a PI polyamide's primary structure, which partly contributes to its hydrophobic property, on its accumulation and/or retention in tumor tissues in vivo.


Assuntos
Imidazóis/metabolismo , Neoplasias/metabolismo , Nylons/metabolismo , Pirróis/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Fluoresceínas/síntese química , Fluoresceínas/química , Fluoresceínas/metabolismo , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/síntese química , Imidazóis/química , Camundongos Endogâmicos BALB C , Estrutura Molecular , Nylons/síntese química , Nylons/química , Pirróis/síntese química , Pirróis/química , Distribuição Tecidual
13.
Nano Lett ; 17(5): 2879-2886, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28287740

RESUMO

As the enhanced permeation and retention (EPR) effect continues to be a controversial topic in nanomedicine, we sought to examine EPR as a function of nanoparticle size, tumor model, and tumor location, while also evaluating tumors for EPR mediating factors such as microvessel density, vascular permeability, lymphatics, stromal content, and tumor-associated immune cells. Tumor accumulation was evaluated for 55 × 60, 80 × 180, and 80 × 320 nm PRINT particles in four subcutaneous flank tumor models (SKOV3 human ovarian, 344SQ murine nonsmall cell lung, A549 human nonsmall cell lung, and A431 human epidermoid cancer). Each tumor model revealed specific particle accumulation trends with evident particle size dependence. Immuno-histochemistry staining revealed differences in tumor microvessel densities that correlated with overall tumor accumulation. Immunofluorescence images displayed size-mediated tumor penetration with signal from the larger particles concentrated close to the blood vessels, while signal from the smaller particle was observed throughout the tissue. Differences were also observed for the 55 × 60 nm particle tumor penetration across flank tumor models as a function of stromal content. The 55 × 60 nm particles were further evaluated in three orthotopic, metastatic tumor models (344SQ, A549, and SKOV3), revealing preferential accumulation in primary tumors and metastases over healthy tissue. Moreover, we observed higher tumor accumulation in the orthotopic lung cancer models than in the flank lung cancer models, whereas tumor accumulation was constant for both orthotopic and flank ovarian cancer models, further demonstrating the variability in the EPR effect as a function of tumor model and location.


Assuntos
Nanopartículas/química , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Microambiente Celular/fisiologia , Corantes Fluorescentes/química , Xenoenxertos , Humanos , Camundongos , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/metabolismo , Tamanho da Partícula , Permeabilidade
14.
Nanomedicine ; 13(5): 1637-1644, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28254372

RESUMO

Systemic drug delivery to a solid tumor involves a sequence of steps that determine efficacy and survival. Extravasation from circulation at the tumor site is a critical step in this sequence since it regulates how much of the drug accumulates in the tumor. Despite its importance in determining outcomes, extravasation from circulation remains a "black box." The objective of this study is to develop predictive tools for optimization of drug delivery systems. By comparing pharmacokinetics of liposomal doxorubicin in tumor-free and tumor bearing mice we quantitatively assess the rate constants for distribution, elimination, and tumor accumulation. We then relate these rate constants to the tumor-type and drug delivery system. We compare tumor accumulation in three tumor types and show a 10-fold difference between a colorectal adenocarcinoma and a pancreatic adenocarcinoma. Finally, we show how quantitative predictions of changes in tumor accumulation can be used to optimize drug delivery systems.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Animais , Lipossomos/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Polietilenoglicóis , Distribuição Tecidual
15.
Nano Lett ; 15(10): 6371-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26389971

RESUMO

In this Letter, we varied targeting ligand density of an EGFR binding affibody on the surface of two different hydrogel PRINT nanoparticles (80 nm × 320 and 55 nm × 60 nm) and monitored effects on target-cell association, off-target phagocytic uptake, biodistribution, and tumor accumulation. Interestingly, variations in ligand density only significantly altered in vitro internalization rates for the 80 nm × 320 nm particle. However, in vivo, both particle sizes experienced significant changes in biodistribution and pharmacokinetics as a function of ligand density. Overall, nanoparticle size and passive accumulation were the dominant factors eliciting tumor sequestration.


Assuntos
Hidrogéis , Nanopartículas , Endocitose , Ligantes , Microscopia Eletrônica de Varredura , Distribuição Tecidual
16.
J Control Release ; 376: 167-183, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39384154

RESUMO

The clinical use of immunostimulatory polyinosinic:polycytidylic acid (pIC) for cancer therapy has been notably limited by its low tumor accumulation and poor cytosolic delivery to activate innate immune sensors. Here, we report a liponanogel (LNG)-based platform to address these challenges. The immunostimulatory LNG consists of an ionizable lipid shell coating a nanogel made of hyaluronic acid (HA), Mn2+ and pIC, which is denoted as LNG-Mn-pIC (LMP). The protonation of internal HA within acidic endosomes increases the endosomal membrane permeability and facilitates the cytosolic delivery of pIC. Moreover, Mn2+, previously reported to activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, synergizes with pIC to activate innate immune cells. Remarkably, intravenously injected LMP significantly induces tumor vasculature disruption and tumor cell apoptosis in an innate immune activation-dependent manner, facilitating the LMP delivery into tumors and leading to enhanced antitumor immunity that potently inhibits or even completely regresses the established tumors. In summary, this immunostimulatory LNG platform not only serves as a useful tool to uncover the immune activation-enhanced drug delivery profile but also represents a broadly applicable platform for effective cancer immunotherapy.

17.
Nucl Med Biol ; 132-133: 108911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614036

RESUMO

INTRODUCTION: The pretargeting approach consists of in vivo ligation between pre-injected antibodies and low-molecular-weight radiolabeled effectors. The advantage of the pretargeting approach is to improve a tumor-to-background ratio, but the disadvantage is to compromise tumor accumulation. In this study, we applied albumin binder (ALB) to the pretargeting approach to overcome low tumor accumulation. METHODS: We synthesized two novel trifunctional effectors containing an ALB moiety, a chelator, and a different tetrazine and two corresponding effectors without an ALB moiety. Albumin-binding assays and stability assays were performed using 111In-labeled effectors. Measurements of reaction rate constant were conducted using 111In-labeled effectors and anti-HER2 antibody trastuzumab modified by trans-cyclooctene, which drives the click reaction with tetrazine. Biodistribution studies using HER2-expressing tumor-bearing mice were performed with or without the pretargeting approach. RESULTS: In albumin-binding assays, ALB-containing effectors exhibited a marked binding to albumin. Two ALB-containing effectors showed the difference in the reactivity and the slight difference in the stability. In biodistribution studies without the pretargeting approach, two ALB-containing effectors showed different pharmacokinetics in blood retention. With the pretargeting approach, the tumor accumulation was improved by the introduction of ALB and the highest tumor accumulation was observed in using the ALB-containing effector with higher blood retention. CONCLUSION: These results suggest that the application of ALB to the pretargeting approach is effective to improve tumor accumulation, and the structure of tetrazine influences the utility of ALB-containing effectors.


Assuntos
Quelantes , Animais , Camundongos , Quelantes/química , Quelantes/síntese química , Distribuição Tecidual , Linhagem Celular Tumoral , Humanos , Técnicas de Química Sintética , Feminino , Albuminas/química , Receptor ErbB-2/metabolismo , Trastuzumab/química , Trastuzumab/farmacocinética
18.
ACS Nano ; 18(4): 2815-2827, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227820

RESUMO

Improving the performance of nanocarriers remains a major challenge in the clinical translation of nanomedicine. Efforts to optimize nanoparticle formulations typically rely on tuning the surface density and thickness of stealthy polymer coatings, such as poly(ethylene glycol) (PEG). Here, we show that modulating the surface topography of PEGylated nanoparticles using bottlebrush block copolymers (BBCPs) significantly enhances circulation and tumor accumulation, providing an alternative strategy to improve nanoparticle coatings. Specifically, nanoparticles with rough surface topography achieve high tumor cell uptake in vivo due to superior tumor extravasation and distribution compared to conventional smooth-surfaced nanoparticles based on linear block copolymers. Furthermore, surface topography profoundly impacts the interaction with serum proteins, resulting in the adsorption of fundamentally different proteins onto the surface of rough-surfaced nanoparticles formed from BBCPs. We envision that controlling the nanoparticle surface topography of PEGylated nanoparticles will enable the design of improved nanocarriers in various biomedical applications.


Assuntos
Nanopartículas , Neoplasias , Humanos , Polietilenoglicóis , Polímeros , Proteínas , Nanopartículas/metabolismo
19.
Ann Nucl Med ; 38(7): 574-583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38676906

RESUMO

OBJECTIVE: The marked success of prostate-specific membrane antigen (PSMA)-targeting radioligands with albumin binder (ALB) is attributed to the improvement of blood retention and tumor accumulation. [111In]In-PNT-DA1, our PSMA-targeting radioligand with ALB, also achieved improved tumor accumulation due to its prolonged blood retention. Although the advantage of ALBs is related to their reversible binding to albumin, the relationship between albumin-binding and tumor accumulation of PSMA-targeting radioligands remains unclear because of the lack of information about radioligands with stronger albumin-binding than ALBs. In this study, we designed and synthesized [111In]In-PNT-DM-HSA, a new radioligand that consists of a PSMA-targeting radioligand covalently bound to albumin. The pharmacokinetics of [111In]In-PNT-DM-HSA was compared with those of [111In]In-PNT-DA1 and [111In]In-PSMA-617, a non-ALB-conjugated radioligand, to evaluate the relationship between albumin-binding and tumor accumulation. METHOD: The [111In]In-PNT-DM-HSA was prepared by incubation of [111In]In-PNT-DM, a PSMA-targeting radioligand including a maleimide group, and human serum albumin (HSA). The ability of [111In]In-PNT-DM-HSA was evaluated by in vitro assays. A biodistribution study using LNCaP tumor-bearing mice was conducted to compare the pharmacokinetics of [111In]In-PNT-DM-HSA, [111In]In-PNT-DA1, and [111In]In-PSMA-617. RESULTS: The [111In]In-PNT-DM-HSA was obtained at a favorable radiochemical yield and high radiochemical purity. In vitro assays revealed that [111In]In-PNT-DM-HSA had fundamental characteristics as a PSMA-targeting radioligand interacting with albumin covalently. In a biodistribution study, [111In]In-PNT-DM-HSA and [111In]In-PNT-DA1 showed higher blood retention than [111In]In-PSMA-617. On the other hand, the tumor accumulation of [111In]In-PNT-DA1 was much higher than [111In]In-PNT-DM-HSA and [111In]In-PSMA-617. CONCLUSIONS: These results indicate that the moderate reversible binding of ALB with albumin, not covalent binding, may play a critical role in enhancing the tumor accumulation of PSMA-targeting radioligands.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Animais , Camundongos , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Humanos , Masculino , Ligantes , Linhagem Celular Tumoral , Distribuição Tecidual , Ligação Proteica , Albuminas/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Albumina Sérica/metabolismo , Albumina Sérica/química , Dipeptídeos/farmacocinética , Dipeptídeos/química , Dipeptídeos/metabolismo , Radioisótopos de Índio
20.
J Control Release ; 356: 242-255, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813039

RESUMO

Photodynamic therapy (PDT) has been widely used for the local treatment of a variety of cancer. To improve the therapeutic effect, delicate nanoparticles loading photosensitizers (PSs) have been designed to improve the accumulation of PSs in tumor. Different from the anti-cancer drugs for chemotherapy or immunotherapy, the delivery of PSs requires rapid tumor accumulation followed by quick elimination to reduce the potential risk of phototoxicity. However, owing to the nature of prolonged blood circulation of the nanoparticles, the conventional nanoparticulate delivery systems may decelerate the clearance of PSs. Here, we present a tumor-targeted delivery approach termed "IgG-hitchhiking" strategy through a self-assembled PSs nanostructure, according to the intrinsic binding between the photosensitizer pheophorbide A (PhA) and immunoglobulin (IgG). We utilize the intravital fluorescence microscopic imaging to uncover that the nanostructures (IgG:PhA NPs) increase the extravasation of PhA into tumor within the first hour post intravenous injection compared with free PhA, correlating with an improved efficacy of PDT. After ∼1 h post-injection, a quick decrease in the PhA amount in the tumor is observed, while the tumor IgG level is continuously increasing. The disparity of the tumor distribution between PhA and IgG allows the quick elimination of the PSs for minimized skin phototoxicity. Our results provide a direct evidence of the enhanced accumulation and elimination of the PSs in the tumor microenvironment through the "IgG-hitchhiking" approach. This strategy presents a promising tumor-targeted delivery approach for the PSs in lieu of the existing strategy for enhanced PDT with minimal toxicity in clinic.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Imunoglobulina G/uso terapêutico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA