Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2218032120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669097

RESUMO

Sarcopenia is distinct from normal muscle atrophy in that it is closely related to a shift in the muscle fiber type. Deficiency of the anabolic action of androgen on skeletal muscles is associated with sarcopenia; however, the function of the androgen receptor (AR) pathway in sarcopenia remains poorly understood. We generated a mouse model (fast-twitch muscle-specific AR knockout [fmARKO] mice) in which the AR was selectively deleted in the fast-twitch muscle fibers. In young male mice, the deletion caused no change in muscle mass, but it reduced muscle strength and fatigue resistance and induced a shift in the soleus muscles from fast-twitch fibers to slow-twitch fibers (14% increase, P = 0.02). After middle age, with the control mice, the male fmARKO mice showed much less muscle function, accompanied by lower hindlimb muscle mass; this phenotype was similar to the progression of sarcopenia. The bone mineral density of the femur was significantly reduced in the fmARKO mice, indicating possible osteosarcopenia. Microarray and gene ontology analyses revealed that in male fmARKO mice, there was downregulation of polyamine biosynthesis-related geneswhich was confirmed by liquid chromatography-tandem mass spectrometry assay and the primary cultured myofibers. None of the AR deletion-related phenotypes were observed in female fmARKO mice. Our findings showed that the AR pathway had essential muscle type- and sex-specific roles in the differentiation toward fast-twitch fibers and in the maintenance of muscle composition and function. The AR in fast-twitch muscles was the dominant regulator of muscle fiber-type composition and muscle function, including the muscle-bone relationship.


Assuntos
Doenças Musculares , Sarcopenia , Camundongos , Masculino , Feminino , Animais , Sarcopenia/genética , Sarcopenia/metabolismo , Receptores Androgênicos/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Doenças Musculares/metabolismo , Fenótipo , Camundongos Knockout
2.
J Physiol ; 602(12): 2855-2872, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709959

RESUMO

Alpha band oscillations in shared synaptic inputs to the alpha motor neuron pool can be considered an involuntary source of noise that hinders precise voluntary force production. This study investigated the impact of changing muscle length on the shared synaptic oscillations to spinal motor neurons, particularly in the physiological tremor band. Fourteen healthy individuals performed low-level dorsiflexion contractions at ankle joint angles of 90° and 130°, while high-density surface electromyography (HDsEMG) was recorded from the tibialis anterior (TA). We decomposed the HDsEMG into motor units spike trains and calculated the motor units' coherence within the delta (1-5 Hz), alpha (5-15 Hz), and beta (15-35 Hz) bands. Additionally, force steadiness and force spectral power within the tremor band were quantified. Results showed no significant differences in force steadiness between 90° and 130°. In contrast, alpha band oscillations in both synaptic inputs and force output decreased as the length of the TA was moved from shorter (90°) to longer (130°), with no changes in delta and beta bands. In a second set of experiments (10 participants), evoked twitches were recorded with the ankle joint at 90° and 130°, revealing longer twitch durations in the longer TA muscle length condition compared to the shorter. These experimental results, supported by a simple computational simulation, suggest that increasing muscle length enhances the muscle's low-pass filtering properties, influencing the oscillations generated by the Ia afferent feedback loop. Therefore, this study provides valuable insights into the interplay between muscle biomechanics and neural oscillations. KEY POINTS: We investigated whether changes in muscle length, achieved by changing joint position, could influence common synaptic oscillations to spinal motor neurons, particularly in the tremor band (5-15 Hz). Our results demonstrate that changing muscle length from shorter to longer induces reductions in the magnitude of alpha band oscillations in common synaptic inputs. Importantly, these reductions were reflected in the oscillations of muscle force output within the alpha band. Longer twitch durations were observed in the longer muscle length condition compared to the shorter, suggesting that increasing muscle length enhances the muscle's low-pass filtering properties. Changes in the peripheral contractile properties of motor units due to changes in muscle length significantly influence the transmission of shared synaptic inputs into muscle force output. These findings prove the interplay between muscle mechanics and neural adaptations.


Assuntos
Neurônios Motores , Contração Muscular , Músculo Esquelético , Humanos , Neurônios Motores/fisiologia , Masculino , Adulto , Músculo Esquelético/fisiologia , Músculo Esquelético/inervação , Contração Muscular/fisiologia , Feminino , Eletromiografia , Adulto Jovem , Sinapses/fisiologia , Medula Espinal/fisiologia
3.
J Biol Chem ; 299(7): 104848, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217003

RESUMO

Skeletal muscle consists of both fast- and slow-twitch fibers. Phospholipids are important structural components of cellular membranes, and the diversity of their fatty acid composition affects membrane characteristics. Although some studies have shown that acyl chain species in phospholipids differ among various muscle fiber types, the mechanisms underlying these differences are unclear. To investigate this, we analyzed phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules in the murine extensor digitorum longus (EDL; fast-twitch) and soleus (slow-twitch) muscles. In the EDL muscle, the vast majority (93.6%) of PC molecules was palmitate-containing PC (16:0-PC), whereas in the soleus muscle, in addition to 16:0-PC, 27.9% of PC molecules was stearate-containing PC (18:0-PC). Most palmitate and stearate were bound at the sn-1 position of 16:0- and 18:0-PC, respectively, and 18:0-PC was found in type I and IIa fibers. The amount of 18:0-PE was higher in the soleus than in the EDL muscle. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) increased the amount of 18:0-PC in the EDL. Lysophosphatidylglycerol acyltransferase 1 (LPGAT1) was highly expressed in the soleus compared with that in the EDL muscle and was upregulated by PGC-1α. LPGAT1 knockout decreased the incorporation of stearate into PC and PE in vitro and ex vivo and the amount of 18:0-PC and 18:0-PE in murine skeletal muscle with an increase in the level of 16:0-PC and 16:0-PE. Moreover, knocking out LPGAT1 decreased the amount of stearate-containing phosphatidylserine (18:0-PS), suggesting that LPGAT1 regulated the acyl chain profiles of phospholipids, namely, PC, PE, and PS, in the skeletal muscle.


Assuntos
Fibras Musculares de Contração Rápida , Músculo Esquelético , Fosfolipídeos , Animais , Camundongos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/química , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Estearatos/metabolismo , Plasmalogênios , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fibras Musculares Esqueléticas/metabolismo
4.
Exp Physiol ; 109(6): 915-925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38595307

RESUMO

Post-activation potentiation (PAP) is defined as an enhanced contractile response of a muscle following its own contractile activity and is influenced by the intensity and duration of the conditioning contraction. The aim of this study was to determine if the combination of intensity and duration, that is, torque-time integral (TTI) is a determinant of PAP amplitude. We compared PAP amplitude following low-to-maximal voluntary conditioning contraction intensities with and without similar TTI in the knee extensors. Twelve healthy males completed two experimental sessions. Femoral nerve stimulation was applied to evoke single twitches on the relaxed quadriceps before and after isometric conditioning contractions of knee extensors. In one session, participants performed conditioning contractions without similar TTI (6 s at 100, 80, 60, 40 and 20% maximal voluntary contraction (MVC)), while they performed conditioning contractions with similar TTI in the other session (6 s at 100%, 7.5 s at 80%, 10 s at 60%, 15 s at 40%, and 30 s at 20% MVC). In both sessions, PAP amplitude was related to conditioning contraction intensity. The higher the conditioning contraction intensity with or without similar TTI, the higher PAP. Significant correlations were found (i) between PAP and conditioning contraction intensity with (r2 = 0.70; P < 0.001) or without similar TTI (r2 = 0.64; P < 0.001), and (ii) between PAP with and without similar TTI (r2 = 0.82; P < 0.001). The results provide evidence that TTI has a minor influence on PAP in the knee extensors. This suggests that to optimize the effect of PAP, it is more relevant to control the intensity of the contraction rather than the TTI.


Assuntos
Contração Isométrica , Torque , Humanos , Masculino , Contração Isométrica/fisiologia , Adulto , Adulto Jovem , Músculo Quadríceps/fisiologia , Estimulação Elétrica/métodos , Joelho/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Contração Muscular/fisiologia , Nervo Femoral/fisiologia
5.
Neurochem Res ; 49(3): 636-648, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37989895

RESUMO

Hallucinogenic 5-HT2A receptor (5-HT2AR) agonists-induced head-twitch response (HTR) is regulated by Gs signaling pathway. Formation of heterodimers between 5-HT2AR and metabotropic glutamate mGlu2 receptor (mGluR2) is essential for the hallucinogenic 5-HT2AR agonist-induced HTR. In order to investigate the effects of mGluR2 agonists and inverse agonists on hallucinogenic 5-HT2AR agonists DOM-induced HTR, C57BL/6 mice were pretreated with mGluR2 agonists (LY379268, LY354740, LY404039) or the inverse agonist LY341495, and the HTR was manually counted after administering DOM immediately. IP-One (IP1) HTRF assay and cAMP assay were performed to evaluate the effect of LY341495 or LY354740 on DOM-induced Gq and Gs activation in Human Embryonic Kidney-293 (HEK-293) T-type cells co-expressing 5-HT2AR and mGluR2. The results showed that DOM-induced HTR in mice was dose-dependently inhibited by LY379268, LY354740, and LY404039, while it was dose-dependently enhanced by LY341495. Moreover, LY341495 reversed the inhibitory effect of LY354740 on DOM-induced HTR. In HEK-293T cells co-expressing 5-HT2AR and mGluR2, DOM-induced cAMP level was decreased by LY354740 and increased by LY341495, but DOM-induced IP1 level was not regulated by LY354740 or LY341495. The regulation of DOM-induced HTR by mGluR2 agonists and inverse agonists is closely related to 5-HT2AR-mediated Gs signaling pathway. In HEK-293T cells co-expressing 5-HT2AR and mGluR2 A677S/A681P/A685G mutant (mGluR2 3 A mutant), DOM-induced cAMP level was not regulated by LY354740, but was significantly enhanced by LY341495. The 5-HT2AR/mGluR2 heterodimers is critical for DOM-induced HTR and cAMP level, both of which are inhibited by mGluR2 agonists and enhanced by mGluR2 inverse agonists.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Compostos Bicíclicos com Pontes , Óxidos S-Cíclicos , Agonismo Inverso de Drogas , Receptores de Glutamato Metabotrópico , Serotonina , Camundongos , Humanos , Animais , Células HEK293 , Camundongos Endogâmicos C57BL , Transdução de Sinais
6.
Eur J Appl Physiol ; 124(7): 2171-2181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38436666

RESUMO

PURPOSE: The interpolated twitch technique (ITT) is often used to assess voluntary activation during isometric contractions; however, this may have limited relevance to dynamic contractions. Although the ITT has been applied to relatively slow isokinetic contractions (< 150°/s), it has received limited consideration during unconstrained velocity (i.e., isotonic) contractions, despite their relevance to natural movements. Here, we explored the ITT during isotonic knee extension contractions using a modified dynamometer. METHODS: Young males (n = 6) and females (n = 4) performed isometric and isotonic knee extension contractions of sub-maximal and maximal intensities with doublet (150 Hz) muscle belly stimulations to assess voluntary activation. Following each voluntary isotonic contraction (velocity range ~ 35°/s to ~ 275°/s), resting potentiated doublets were evaluated during passive joint rotation at the same angular velocity achieved during voluntary efforts, to account for force-velocity characteristics. Correlations between voluntary activation and the proportion of maximal torque or power were evaluated for isometric and isotonic contractions, respectively. RESULTS: Isometric voluntary activation was strongly correlated with increasing torque output (r = 0.96, p < 0.001). Doublet torque during passive joint rotation displayed a hyperbolic relationship with increasing angular velocity (r = 0.98, p < 0.001). Isotonic voluntary activation was strongly correlated with increasing power output (r = 0.89, p < 0.001). During maximal effort contractions, no differences were observed in voluntary activation between isometric and isotonic conditions (89.4% vs. 89.2%, p = 0.904). CONCLUSIONS: The ITT is a valid approach to evaluate voluntary activation during an isotonic contraction using a modified dynamometer. Participants were able to achieve a similar high level of voluntary activation during isometric and isotonic contractions.


Assuntos
Contração Isométrica , Contração Isotônica , Articulação do Joelho , Músculo Esquelético , Torque , Humanos , Masculino , Feminino , Contração Isotônica/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Adulto , Articulação do Joelho/fisiologia , Adulto Jovem , Joelho/fisiologia , Contração Muscular/fisiologia
7.
Eur J Appl Physiol ; 124(4): 1175-1184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37952231

RESUMO

PURPOSE: Cancer-related fatigue (CRF) is the most reported side effect of cancer and its treatments. Mechanisms of CRF are multidimensional, including neuromuscular alterations leading to decreased muscle strength and endurance (i.e., fatigability). Recently, exercise fatigability and CRF have been related, while fatigability mechanisms remain unclear. Traditionally, fatigability is assessed from maximal voluntary contractions (MVC) decrease, but some authors hypothesized that the rate of force development (RFD) determined during a rapid contraction could also be an interesting indicator of functional alterations. However, to our knowledge, no study investigated RFD in cancer patients. The purpose of this study was to determine whether RFD, fatigability amplitude, and etiology are different between fatigued and non-fatigued cancer patients. METHODS: Eighteen participants with cancer, divided in fatigued or non-fatigued groups according their CRF level, completed a 5-min all-out exercise in ankle plantar flexor muscles composed of 62 isometric MVC of 4 s with 1 s rest, to assess fatigability amplitude as the force-time relationship asymptote (FA). Before and after exercise, fatigability etiologies (i.e., voluntary activation (VA) and evoked forces by electrical stimulation (Db100)) were assessed as well as RFD in 50 and 100 ms (RFD50 and RFD100, respectively) during rapid contractions. RESULTS: FA is significantly lower in fatigued group. Significant differences were found between pre- and post-exercise VA, Db100, RFD50, and RFD100 for both groups, with no statistical difference between groups. CONCLUSION: During treatments, fatigability is higher in fatigued patients; however, the mechanisms of fatigability and RFD alterations are similar in both groups. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04391543, May 2020.


Assuntos
Fadiga Muscular , Neoplasias , Humanos , Fadiga Muscular/fisiologia , Eletromiografia/métodos , Contração Isométrica/fisiologia , Fadiga/etiologia , Neoplasias/complicações , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia
8.
Eur J Appl Physiol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935151

RESUMO

Acute sleep restriction (SR) reduces strength through an unknown mechanism. PURPOSE: To determine how SR affects quadriceps contractile function and recruitment. METHODS: Eighteen healthy subjects (9 M, 9F, age 23.8 ± 2.8y) underwent isometric (maximal and submaximal), isokinetic (300-60°·s-1), and interpolated twitch (ITT) assessment of knee extensors following 3d of adequate sleep (SA; 7-9 h·night-1), 3d of SR (5 h·night-1), and 7d of washout (WO; 7-9 h·night-1). RESULTS: Compared to SA (227.9 ± 76.6Nm) and WO (228.19 ± 62.9Nm), MVIC was lesser following SR (209.9 ± 73.9Nm; p = 0.006) and this effect was greater for males (- 9.8 v. - 4.8%). There was no significant effect of sleep or sleep x speed interaction on peak isokinetic torque. Peak twitch torque was greater in the potentiated state, but no significant effect of sleep was noted. Males displayed greater potentiation of peak twitch torque (12 v. 7.5%) and rate of torque development (16.7 v. 8.2%) than females but this was not affected by sleep condition. ITT-assessed voluntary activation did not vary among sleep conditions (SA: 81.8 ± 13.1% v. SR: 84.4 ± 12.6% v. WO 84.9 ± 12.6%; p = 0.093). SR induced a leftward shift in Torque-EMG relationship at high torque output in both sexes. Compared to SA, females displayed greater y-intercept and lesser slope with SR and WO and males displayed lesser y-intercept and greater slope with SR and WO. CONCLUSIONS: Three nights of SR decreases voluntary isometric knee extensor strength, but not twitch contractile properties. Sex-specific differences in neuromuscular efficiency may explain the greater MVIC reduction in males following SR.

9.
Appetite ; 195: 107207, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218416

RESUMO

Food and non-alcoholic beverage (hereafter: food) marketing is prevalent in digital media and predominantly for foods high in fats, salt and/or sugar (HFSS). However, little is known about food marketing in videogame livestreaming platforms - a hybridisation of social and gaming media where individuals can watch influencers (i.e., streamers) play videogames. No studies have explored food cues within the streamed content or content likely to be viewed by adolescents. The current study analysed the food cues in Twitch (the leading videogame livestreaming platform) videos (n = 52, 52h) uploaded to the platform during October 2020-September 2021 by influencers likely to be popular with adolescents. Food cues (n = 133, 2.56 per hour) were coded for exposure (e.g., display type, healthfulness) and power (e.g., presentation) using a World Health Organization (WHO) protocol and the UK Nutrient Profile Model. The majority (70.7%) of cues were HFSS, with energy drinks being the most featured food category (62.4%). Most cues were branded (80.5%) and featured as either product placement (44.4%) or a looping image (40.6%). Influencers were more likely to consume healthy (88.5%) than HFSS items (33.4%). The mean duration of each food cue was 20 min and 25 s per hour. Only 2.3% of cues had an advertising disclosure. This study provides the first empirical assessment of food cues on Twitch in livestreamed content likely to be popular with adolescents and has implications for digital food marketing policy development.


Assuntos
Bebidas Energéticas , Mídias Sociais , Adolescente , Humanos , Internet , Alimentos , Bebidas , Marketing/métodos , Publicidade
10.
Int J Toxicol ; 43(2): 123-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38063479

RESUMO

When conducting toxicology studies, the interpretation of drug-related neurological clinical signs such as convulsions, myoclonus/myoclonic jerks, tremors, ataxia, and salivation requires an understanding of the spontaneous incidence of those observations in commonly used laboratory animal species. The spontaneous incidence of central nervous system clinical signs in control animals from a single facility using cage-side observations or high definition video monitoring was retrospectively analyzed. Spontaneous convulsions were observed at low incidence in Beagle dogs and Sprague-Dawley rats but were not identified in cynomolgus monkeys and Göttingen minipigs. Spontaneous myoclonic jerks and muscle twitches were observed at low incidence in Beagle dogs, cynomolgus monkeys, and Sprague-Dawley rats but were not seen in Göttingen minipigs. Spontaneous ataxia/incoordination was identified in all species and generally with a higher incidence when using video monitoring. Salivation and tremors were the two most frequent spontaneous clinical signs and both were observed in all species. Data from the current study unveil potential limitations when using control data obtained from a single study for toxicology interpretation related to low incidence neurological clinical signs while providing historical control data from Beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Göttingen minipigs.


Assuntos
Mioclonia , Ratos , Suínos , Animais , Cães , Ratos Sprague-Dawley , Porco Miniatura , Estudos Retrospectivos , Macaca fascicularis , Tremor/induzido quimicamente , Incidência , Convulsões , Ataxia
11.
J Clin Monit Comput ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758405

RESUMO

Mechanomyography is currently the accepted laboratory reference standard for quantitative neuromuscular blockade monitoring. Mechanomyographs are not commercially available. Previously, a mechanomyograph was built by our laboratory and used in several clinical studies. It was subsequently redesigned to improve its usability and functionality and to accommodate a wider range of hand sizes and shapes using an iterative design process. Each version of the redesigned device was initially tested for usability and functionality in the lab with the investigators as subjects without electrical stimulation. The redesigned devices were then assessed on patients undergoing elective surgery under general anesthesia without neuromuscular blocking drugs. Since the patients were not paralyzed, the expected train-of-four ratio was 1.0. The device accuracy and precision were represented by the train-of-four ratio mean and standard deviation. If issues with the device's useability or functionality were discovered, changes were made, and the redesign processes repeated. The final mechanomyograph design was used to collect 2,362 train-of-four ratios from 21 patients. The mean and standard deviation of the train-of-four ratios were 0.99 ± 0.030. Additionally, the final mechanomyograph design was easier to use and adjust than the original design and fit a wider range of hand sizes. The final design also reduced the frequency of adjustments and the time needed for adjustments, facilitating data collection during a surgical procedure.

12.
J Clin Monit Comput ; 38(1): 205-212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831378

RESUMO

PURPOSE: The purpose of this study was to compare the Stimpod electromyograph neuromuscular blockade monitor to mechanomyography, which is widely considered to be the reference standard. METHODS: The Stimpod electromyograph was used with its designated electrode array on the same hand as the mechanomyograph. Pairs of train-of-four measurements were recorded every 0.5-2 min. When the train-of-four count was zero on the electromyograph monitor, pairs of post tetanic count measurements were recorded every 2.5 min, instead of train-of-four measurements. Measurements were recorded from immediately after induction of anesthesia until just before emergence. Stimulation current was set to 60 mA with a duration of 200 microsec. The mechanomyography recording system recorded each twitch waveform for analysis. High resolution electromyograph waveforms were also recorded using a datalogger accessory provided by the manufacturer, facilitating inspection of individual waveforms. The administration of neuromuscular blocking drugs was left up to the discretion of the anesthesia care team. RESULTS: Twenty-three patients contributed 1,088 data pairs suitable for analysis. Bland-Altman analysis of 415 pairs of train-of-four ratios showed a bias of 0.028 and limits of agreement of -0.18 and 0.24. Two hundred seventy-three train-of-four count data pairs were compared by Cohen's quadratically weighted kappa which was calculated to be 0.44, indicating moderate agreement. Three hundred thirty-eight post tetanic count data pairs were compared by Cohen's quadradically weighted kappa which was calculated to be 0.80, indicating substantial agreement. CONCLUSION: The electromyograph produced results that were comparable to the mechanomyograph.


Assuntos
Anestesia , Bloqueio Neuromuscular , Humanos , Eletromiografia/métodos , Monitoração Neuromuscular , Estimulação Elétrica/métodos , Bloqueio Neuromuscular/métodos
13.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892319

RESUMO

The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.


Assuntos
Metabolômica , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Animais , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Metabolômica/métodos , Metaboloma , Metabolismo Energético , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Glicólise
14.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396828

RESUMO

The pathogenesis of sarcopenia includes the dysfunction of calcium homeostasis associated with the sarcoplasmic reticulum; however, the localization in sarcoplasmic reticulum-related factors and differences by myofiber type remain unclear. Here, we investigated the effects of aging on sarcoplasmic reticulum-related factors in the soleus (slow-twitch) and gastrocnemius (fast-twitch) muscles of 3- and 24-month-old male C57BL/6J mice. There were no notable differences in the skeletal muscle weight of these 3- and 24-month-old mice. The expression of Atp2a1, Atp2a2, Sln, and Pln increased with age in the gastrocnemius muscles, but not in the soleus muscles. Subsequently, immunohistochemical analysis revealed ectopic sarcoplasmic reticulum calcium ion ATPase (SERCA) 1 and SERCA2a immunoreactivity only in the gastrocnemius muscles of old mice. Histochemical and transmission electron microscope analysis identified tubular aggregate (TA), an aggregation of the sarcoplasmic reticulum, in the gastrocnemius muscles of old mice. Dihydropyridine receptor α1, ryanodine receptor 1, junctophilin (JPH) 1, and JPH2, which contribute to sarcoplasmic reticulum function, were also localized in or around the TA. Furthermore, JPH1 and JPH2 co-localized with matrix metalloproteinase (MMP) 2 around the TA. These results suggest that sarcoplasmic reticulum-related factors are localized in or around TAs that occur in fast-twitch muscle with aging, but some of them might be degraded by MMP2.


Assuntos
Doenças Musculares , Retículo Sarcoplasmático , Camundongos , Masculino , Animais , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Envelhecimento/metabolismo , Doenças Musculares/metabolismo
15.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338790

RESUMO

Fishes' skeletal muscles are crucial for swimming and are differentiated into slow-twitch muscles (SM) and fast-twitch muscles (FM) based on physiological and metabolic properties. Consequently, mitochondrial characteristics (number and morphology) adapt to each fiber type's specific functional needs. However, the mechanisms governing mitochondrial adaptation to the specific bioenergetic requirements of each fiber type in teleosts remain unclear. To address this knowledge gap, we investigated the mitochondrial differences and mitochondrial homeostasis status (including biogenesis, autophagy, fission, and fusion) between SM and FM in teleosts using Takifugu rubripes as a representative model. Our findings reveal that SM mitochondria are more numerous and larger compared to FM. To adapt to the increased mitochondrial number and size, SM exhibit elevated mitochondrial biogenesis and dynamics (fission/fusion), yet show no differences in mitochondrial autophagy. Our study provides insights into the adaptive mechanisms shaping mitochondrial characteristics in teleost muscles. The abundance and elongation of mitochondria in SM are maintained through elevated mitochondrial biogenesis, fusion, and fission, suggesting an adaptive response to fulfill the bioenergetic demands of SM that rely extensively on OXPHOS in teleosts. Our findings enhance our understanding of mitochondrial adaptations in diverse muscle types among teleosts and shed light on the evolutionary strategies of bioenergetics in fishes.


Assuntos
Fibras Musculares Esqueléticas , Doenças Musculares , Humanos , Fibras Musculares Esqueléticas/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Homeostase
16.
Dev Dyn ; 252(9): 1162-1179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222488

RESUMO

BACKGROUND: Betaglycan, also known as the TGFß type III receptor (Tgfbr3), is a co-receptor that modulates TGFß family signaling. Tgfbr3 is upregulated during C2C12 myoblast differentiation and expressed in mouse embryos myocytes. RESULTS: To investigate tgfbr3 transcriptional regulation during zebrafish embryonic myogenesis, we cloned a 3.2 kb promoter fragment that drives reporter transcription during C2C12 myoblasts differentiation and in the Tg(tgfbr3:mCherry) transgenic zebrafish. We detect tgfbr3 protein and mCherry expression in the adaxial cells concomitantly with the onset of their radial migration to become slow-twitch muscle fibers in the Tg(tgfbr3:mCherry). Remarkably, this expression displays a measurable antero-posterior somitic gradient expression. CONCLUSIONS: tgfbr3 is transcriptionally regulated during somitic muscle development in zebrafish with an antero-posterior gradient expression that preferentially marks the adaxial cells and their descendants.


Assuntos
Somitos , Peixe-Zebra , Animais , Camundongos , Somitos/metabolismo , Proteoglicanas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Desenvolvimento Muscular/fisiologia
17.
J Neurophysiol ; 130(4): 925-930, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671448

RESUMO

According to current guidelines, when measuring voluntary activation (VA) using transcranial magnetic stimulation (TMS), stimulator output (SO) should not exceed the intensity that, during a maximal voluntary contraction (MVC), elicits a motor evoked potential (MEP) from the antagonist muscle >15%-20% of its maximal M-wave amplitude. However, VA is based on agonist evoked-torque responses [i.e., superimposed twitch (SIT) and estimated resting twitch (ERT)], which means limiting SO based on electromyographic (EMG) responses will often lead to a submaximal SIT and ERT, possibly underestimating VA. Therefore, the purpose of this study was to compare elbow flexor VA calculated using the original method (i.e., intensity based on MEP size; SOMEP) and a method based solely on eliciting the largest SIT at 50% MVC torque (SOSIT), regardless of triceps brachii MEP size. Fifteen healthy, young participants performed 10 sets of brief contractions at 100%, 75%, and 50% MVC torque, with TMS delivered at SOMEP (73.0 ± 13.5%) or SOSIT (92.0 ± 10.8%) for five sets each. Although the mean ERT torque was greater using SOSIT (15.2 ± 4.8 Nm) compared with SOMEP (13.0 ± 3.7 Nm; P = 0.031), the SIT amplitude at 100% MVC torque was not different (SOMEP: 0.69 ± 0.49 Nm vs. SOSIT: 0.74 ± 0.52 Nm; P = 0.604). Despite the ERT disparity, VA scores were not different between SOMEP (94.6 ± 3.5%) and SOSIT (95.0 ± 3.3%; P = 0.572). Even though SOSIT did not lead to a higher VA score than the SOMEP method, it has the benefit of yielding the same result without the need to record antagonist EMG or perform MVCs when determining SO, which can induce fatigue before measuring VA.NEW & NOTEWORTHY When using transcranial magnetic stimulation (TMS) to determine voluntary activation (VA) of the elbow flexors, we hypothesized that a stimulator output designed to limit antagonist muscle activity would evoke submaximal agonist superimposed twitch amplitudes, thus underestimating VA. Contrary to our hypothesis, VA was not greater with an output based on maximal superimposed twitch amplitude. Nevertheless, our findings advance methodological practices by simplifying the equipment and minimizing the time required to determine VA using TMS.


Assuntos
Fadiga Muscular , Músculo Esquelético , Humanos , Fadiga Muscular/fisiologia , Estimulação Elétrica/métodos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Torque , Fenômenos Magnéticos , Eletromiografia/métodos
18.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35353898

RESUMO

Functional classification of proteins from sequences alone has become a critical bottleneck in understanding the myriad of protein sequences that accumulate in our databases. The great diversity of homologous sequences hides, in many cases, a variety of functional activities that cannot be anticipated. Their identification appears critical for a fundamental understanding of the evolution of living organisms and for biotechnological applications. ProfileView is a sequence-based computational method, designed to functionally classify sets of homologous sequences. It relies on two main ideas: the use of multiple profile models whose construction explores evolutionary information in available databases, and a novel definition of a representation space in which to analyze sequences with multiple profile models combined together. ProfileView classifies protein families by enriching known functional groups with new sequences and discovering new groups and subgroups. We validate ProfileView on seven classes of widespread proteins involved in the interaction with nucleic acids, amino acids and small molecules, and in a large variety of functions and enzymatic reactions. ProfileView agrees with the large set of functional data collected for these proteins from the literature regarding the organization into functional subgroups and residues that characterize the functions. In addition, ProfileView resolves undefined functional classifications and extracts the molecular determinants underlying protein functional diversity, showing its potential to select sequences towards accurate experimental design and discovery of novel biological functions. On protein families with complex domain architecture, ProfileView functional classification reconciles domain combinations, unlike phylogenetic reconstruction. ProfileView proves to outperform the functional classification approach PANTHER, the two k-mer-based methods CUPP and eCAMI and a neural network approach based on Restricted Boltzmann Machines. It overcomes time complexity limitations of the latter.


Assuntos
Evolução Molecular , Proteínas , Sequência de Aminoácidos , Bases de Dados de Proteínas , Filogenia , Extratos Vegetais , Proteínas/química , Proteínas/genética
19.
BMC Neurosci ; 24(1): 2, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631757

RESUMO

BACKGROUND: The head-twitch response (HTR) in mice is considered a behavioral model for hallucinogens and serotonin 5-HT2A receptor function, as well as Tourette syndrome in humans. It is mediated by 5-HT2A receptor agonists such as ( ±)- 2,5-dimethoxy-4-iodoamphetamine (DOI) in the prefrontal cortex (PFC). The 5-HT2A antagonist EMD 281014, can prevent both DOI-induced HTR during ageing and c-fos expression in different regions of PFC. Moreover, the nonselective monoamine releaser methamphetamine (MA) suppressed DOI-induced HTR through ageing via concomitant activation of inhibitory 5-HT1A receptors, but enhanced DOI-evoked c-fos expression. d-Fenfluramine is a selective 5-HT releaser and induces HTR in mice, whereas MA does not. Currently, we investigated whether EMD 281014 or MA would alter: (1) d-fenfluramine-induced HTR frequency in 20-, 30- and 60-day old mice, (2) d-fenfluramine-evoked c-fos expression in PFC, and (3) whether blockade of inhibitory serotonergic 5-HT1A- or adrenergic ɑ2-receptors would prevent suppressive effect of MA on d-fenfluramine-induced HTR. RESULTS: EMD 281014 (0.001-0.05 mg/kg) or MA (0.1-5 mg/kg) blocked d-fenfluramine-induced HTR dose-dependently during ageing. The 5-HT1A antagonist WAY 100635 countered the inhibitory effect of MA on d-fenfluramine-induced HTR in 30-day old mice, whereas the adrenergic ɑ2 antagonist RS 79948 reversed MA's inhibitory effect in both 20- and 30- day old mice. d-Fenfluramine significantly increased c-fos expressions in PFC regions. MA (1 mg/kg) pretreatment significantly increased d-fenfluramine-evoked c-fos expression in different regions of PFC. EMD 281014 (0.05 mg/kg) failed to prevent d-fenfluramine-induced c-fos expression, but significantly increased it in one PFC region (PrL at - 2.68 mm). CONCLUSION: EMD 281014 suppressed d-fenfluramine-induced HTR but failed to prevent d-fenfluramine-evoked c-fos expression which suggest involvement of additional serotonergic receptors in the mediation of evoked c-fos. The suppressive effect of MA on d-fenfluramine-evoked HTR is due to well-recognized functional interactions between stimulatory 5-HT2A- and the inhibitory 5-HT1A- and ɑ2-receptors. MA-evoked increases in c-fos expression in PFC regions are due to the activation of diverse monoaminergic receptors through increased synaptic concentrations of 5-HT, NE and/or DA, which may also account for the additive effect of MA on d-fenfluramine-evoked changes in c-fos expression. Our findings suggest potential drug receptor functional interaction during development when used in combination.


Assuntos
Fenfluramina , Metanfetamina , Córtex Pré-Frontal , Proteínas Proto-Oncogênicas c-fos , Animais , Humanos , Camundongos , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Envelhecimento/metabolismo , Fenfluramina/metabolismo , Fenfluramina/farmacologia , Metanfetamina/metabolismo , Metanfetamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
20.
J Magn Reson Imaging ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776094

RESUMO

BACKGROUND: Motor units (MUs) control the contraction of muscles and degenerate with age. It is therefore of interest to measure whole muscle and MU twitch profiles in aging skeletal muscle. PURPOSE: Apply phase contrast MU MRI (PC-MUMRI) in a cohort of healthy adults to measure whole anterior compartment, individual muscles, and single MU twitch profiles in the calf. Assess the effect of age and sex on contraction and relaxation times. STUDY TYPE: Prospective cross-sectional study. SUBJECTS: Sixty-one healthy participants (N = 32 male; age 55 ± 16 years [range: 26-82]). FIELD STRENGTH/SEQUENCES: 3 T, velocity encoded gradient echo and single shot spin echo pulsed gradient spin echo, echo-planar imaging. ASSESSMENT: Anterior shin compartment (N = 47), individual muscle (tibialis anterior, extensor digitorum longus, peroneus longus; N = 47) and single MU (N = 34) twitch profiles were extracted from the data to calculate contraction and relaxation times. STATISTICAL TESTS: Multivariable linear regression to investigate relationships between age, sex and contraction and relaxation times of the whole anterior compartment. Pearson correlation to investigate relationships between age and contraction and relaxation times of individual muscles and single MUs. A P value <0.05 was considered statistically significant. RESULTS: Age and sex predicted significantly increased contraction and relaxation time for the anterior compartment. Females had significantly longer contraction times than males (females 86 ± 8 msec, males 80 ± 9 msec). Relaxation times were longer, not significant (females 204 ± 36 msec, males 188 ± 34 msec, P = 0.151). Contraction and relaxation times of single MUs showed no change with age (P = 0.462, P = 0.534, respectively). DATE CONCLUSION: Older participants had significantly longer contraction and relaxation times of the whole anterior compartment compared to younger participants. Females had longer contraction and relaxation times than males, significant for contraction time. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA