Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983846

RESUMO

Many soil-, water-, and plant-associated bacterial species from the orders Xanthomonadales, Burkholderales, and Neisseriales carry a type IV secretion system (T4SS) specialized in translocating effector proteins into other gram-negative species, leading to target cell death. These effectors, known as X-Tfes, carry a carboxyl-terminal domain of ∼120 residues, termed XVIPCD, characterized by several conserved motifs and a glutamine-rich tail. Previous studies showed that the XVIPCD is required for interaction with the T4SS coupling protein VirD4 and for T4SS-dependent translocation. However, the structural basis of the XVIPCD-VirD4 interaction is unknown. Here, we show that the XVIPCD interacts with the central all-alpha domain of VirD4 (VirD4AAD). We used solution NMR spectroscopy to solve the structure of the XVIPCD of X-TfeXAC2609 from Xanthomonas citri and to map its interaction surface with VirD4AAD Isothermal titration calorimetry and in vivo Xanthomonas citri versus Escherichia coli competition assays using wild-type and mutant X-TfeXAC2609 and X-TfeXAC3634 indicate that XVIPCDs can be divided into two regions with distinct functions: the well-folded N-terminal region contains specific conserved motifs that are responsible for interactions with VirD4AAD, while both N- and carboxyl-terminal regions are required for effective X-Tfe translocation into the target cell. The conformational stability of the N-terminal region is reduced at and below pH 7.0, a property that may facilitate X-Tfe unfolding and translocation through the more acidic environment of the periplasm.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Escherichia coli/química , Sistemas de Secreção Tipo IV/antagonistas & inibidores , Sistemas de Secreção Tipo IV/química , Xanthomonas/química , Proteínas de Bactérias/genética , Escherichia coli/genética , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Relação Estrutura-Atividade , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética
2.
Curr Top Microbiol Immunol ; 418: 233-260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29808338

RESUMO

The Agrobacterium tumefaciens VirB/VirD4 translocation machine is a member of a superfamily of translocators designated as type IV secretion systems (T4SSs) that function in many species of gram-negative and gram-positive bacteria. T4SSs evolved from ancestral conjugation systems for specialized purposes relating to bacterial colonization or infection. A. tumefaciens employs the VirB/VirD4 T4SS to deliver oncogenic DNA (T-DNA) and effector proteins to plant cells, causing the tumorous disease called crown gall. This T4SS elaborates both a cell-envelope-spanning channel and an extracellular pilus for establishing target cell contacts. Recent mechanistic and structural studies of the VirB/VirD4 T4SS and related conjugation systems in Escherichia coli have defined T4SS architectures, bases for substrate recruitment, the translocation route for DNA substrates, and steps in the pilus biogenesis pathway. In this review, we provide a brief history of A. tumefaciens VirB/VirD4 T4SS from its discovery in the 1980s to its current status as a paradigm for the T4SS superfamily. We discuss key advancements in defining VirB/VirD4 T4SS function and structure, and we highlight the power of in vivo mutational analyses and chimeric systems for identifying mechanistic themes and specialized adaptations of this fascinating nanomachine.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/genética , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/química , Proteínas Recombinantes de Fusão/metabolismo , Sistemas de Secreção Tipo IV/metabolismo
3.
Biochim Biophys Acta ; 1838(1 Pt B): 223-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24016550

RESUMO

Conjugation is the most important mechanism for horizontal gene transfer and it is the main responsible for the successful adaptation of bacteria to the environment. Conjugative plasmids are the DNA molecules transferred and a multiprotein system encoded by the conjugative plasmid itself is necessary. The high number of proteins involved in the process suggests that they should have a defined location in the cell and therefore, they should be recruited to that specific point. One of these proteins is the coupling protein that plays an essential role in bacterial conjugation. TrwB is the coupling protein of R388 plasmid that is divided in two domains: i) The N-terminal domain referred as transmembrane domain and ii) a large cytosolic domain that contains a nucleotide-binding motif similar to other ATPases. To investigate the role of these domains in the subcellular location of TrwB, we constructed two mutant proteins that comprised the transmembrane (TrwBTM) or the cytoplasmic (TrwBΔN70) domain of TrwB. By immunofluorescence and GFP-fusion proteins we demonstrate that TrwB and TrwBTM mutant protein were localized to the cell pole independently of the remaining R388 proteins. On the contrary, a soluble mutant protein (TrwBΔN70) was localized to the cytoplasm in the absence of R388 proteins. However, in the presence of other R388-encoded proteins, TrwBΔN70 localizes uniformly to the cell membrane, suggesting that interactions between the cytosolic domain of TrwB and other membrane proteins of R388 plasmid may happen. Our results suggest that the transmembrane domain of TrwB leads the protein to the cell pole.


Assuntos
Membrana Celular/metabolismo , Conjugação Genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Membrana Celular/genética , Membrana Celular/ultraestrutura , Proteínas de Ligação a DNA/deficiência , Escherichia coli/genética , Escherichia coli/ultraestrutura , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fatores de Tempo
4.
Biochim Biophys Acta ; 1828(9): 2015-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23735543

RESUMO

Bacteria use type IV secretion systems to transfer genetic material and proteins from donor to recipient cells, using proteins encoded by conjugative plasmids. Among those proteins the so-called Type IV Coupling Protein plays a central role in the process. One of the best studied members of this family is TrwB, the conjugative coupling protein of R388 plasmid. Previous studies indicated that the transmembrane domain of TrwB plays a role beyond the mere anchoring of the protein to the membrane. TrwB has also been shown to interact with other conjugative proteins, such as the VirB10-like protein of R388 TrwE. The goal of this study is to elucidate the role of the different domains of TrwB and TrwE in their biological function, and in both self- and TrwB-TrwE interactions. To this aim, a series of TrwB and TrwE deletion mutant proteins were constructed. Conjugation and interaction studies revealed that the transmembrane domain of TrwB, and particularly its second transmembrane helix, is needed for TrwB self-interaction and for R388 conjugative transfer and that there are contacts between TrwB and TrwE in the membrane. On the contrary, the lack of the TMD of TrwE does not completely abolish R388 conjugation although the interaction between TrwE-TrwB is lost. These results identify protein-protein interactions inside the membrane needed for T4SS function.


Assuntos
Membrana Celular/química , Conjugação Genética/genética , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Plasmídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transporte Proteico
5.
Front Microbiol ; 8: 2260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201021

RESUMO

Bacteria display a variety of mechanisms to control plasmid conjugation. Among them, fertility inhibition (FI) systems prevent conjugation of co-resident plasmids within donor cells. Analysis of the mechanisms of inhibition between conjugative plasmids could provide new alternatives to fight antibiotic resistance dissemination. In this work, inhibition of conjugation of broad host range IncW plasmids was analyzed in the presence of a set of co-resident plasmids. Strong FI systems against plasmid R388 conjugation were found in IncF/MOBF12 as well as in IncI/MOBP12 plasmids, represented by plasmids F and R64, respectively. In both cases, the responsible gene was pifC, known also to be involved in FI of IncP plasmids and Agrobacterium T-DNA transfer to plant cells. It was also discovered that the R388 gene osa, which affects T-DNA transfer, also prevented conjugation of IncP-1/MOBP11 plasmids represented by plasmids RP4 and R751. Conjugation experiments of different mobilizable plasmids, helped by either FI-susceptible or FI-resistant transfer systems, demonstrated that the conjugative component affected by both PifC and Osa was the type IV conjugative coupling protein. In addition, in silico analysis of FI proteins suggests that they represent recent acquisitions of conjugative plasmids, i.e., are not shared by members of the same plasmid species. This implies that FI are rapidly-moving accessory genes, possibly acting on evolutionary fights between plasmids for the colonization of specific hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA